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Abstract

We consider a natural generalization of the classical pattern matching problem: given com-

pressed representations of a pattern p[1 . .M ] and a text t[1 . . N ] of sizes m and n, respectively,

does p occur in t? We develop an optimal linear time solution for the case when p and t are

compressed using the LZW method. This improves the previously known O((n+m) log(n+m))
time solution of G ↪asieniec and Rytter [11], and essentially closes the line of research devoted

to studying LZW-compressed exact pattern matching.
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1 Introduction

One of the most natural problems concerning processing information is pattern matching, in

which we are given a pattern p[1 . .M ] and a text t[1 . . N ], and have to check if there is an

occurrence of p in t. Although many very efficient (both from a purely theoretical and more

practically oriented point of view) solutions to this problem are known [16, 8, 13, 9, 5, 4],

most data is archived and stored in a compressed form. This suggest an intriguing research

direction: if the text, or both the pattern and the text, are given in their compressed

representations, do we really need to decompress them in order to detect an occurrence? If

just the text is compressed, this is the compressed pattern matching problem. For Lempel-

Ziv-Welch compression, used for example in Unix compress utility and GIF images, Amir et

al. introduced two algorithms with respective time complexities O(n+M2) and O(n logM +
M) [1], where n is the compressed size of the text. The pattern preprocessing time was then

improved [14] to get O(n+M1+ε) time complexity. In a recent paper [12] we proved that in

fact a O(n+M) solution is possible, as long as the alphabet consists of integers which can be

sorted in linear time. A more general problem is the fully compressed pattern matching, where

both the text and the pattern are compressed. This problem seems to be substantially more

involved than compressed pattern matching, as we cannot afford to perform any preprocessing

for every possible prefix/suffix of the pattern, and such preprocessing is a vital ingredient

of any efficient pattern matching algorithm known to the author. Nevertheless, G ↪asieniec

and Rytter [11] developed a O((n+m) log(n+m)) time algorithm for this problem, where

n and m are the compressed sizes of the text and the pattern, respectively.
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In this paper we show that in fact an optimal linear time solution is possible for fully

LZW-compressed pattern matching. The starting point of our algorithm is the O(n+M)
time algorithm [12]. Of course we cannot afford to use it directly as M might be of order m2.

Nevertheless, we can apply the method to a few carefully chosen fragments of the pattern.

Then, using those fragments we try to prune the set of possible occurrences, and verify them

all at once by a combined usage of the so-called PREF function and iterative compression of

the (compressed) pattern similar to the method of [11]. The chosen fragments correspond to

the most complicated part of the pattern, in a certain sense. If there is no such part, we

observe that the pattern is periodic, and a modification of the algorithm from [12] can be

applied. To state this modification, and prove its properties, we briefly review the algorithm

from [12] in the next section. While the modification itself might seem simple, we would like

to point out that it is nontrivial, and we need quite a few additional ideas in order to get the

result.

2 Preliminaries

We consider strings over finite alphabet Σ (which consists of integers which can be sorted

in linear time, namely Σ = {1, 2, . . . , (n + m)c}) given in a Lempel-Ziv-Welch compressed

form, where a string is represented as a sequence of codewords. Each codeword is either a

single letter or a previously occurring codeword concatenated with a single character. This

additional character is not given explicitly: we define it as the first character of the next

codeword, and initialize the set of codewords to contain all single characters in the very

beginning. The resulting compression method enjoys a particularly simple encoding/decoding

process, but unfortunately requires outputting at least Ω(
√
N) codewords (so, for example,

we are not able to achieve an exponential compression possible in the general Lempel-Ziv

method). Still, its simplicity and good compression ratio achieved on real life instances

make it an interesting model to work with. For the rest of the paper we will use LZW when

referring to Lempel-Ziv-Welch compression.

We are interested in a variation of the classical pattern matching problem: given a pattern

p[1 . .M ] and a text t[1 . . N ], does p occur in t? We assume that both p and t are given in

LZW compressed forms of size m and n, respectively, and wish to achieve a running time

depending on the size of the compressed representation n+m, not on the original lengths N

and M . If the pattern does occur in the text, we would like to get the position of its first

occurrence. We call such problem the fully compressed pattern matching.

A closely related problem is the compressed pattern matching, where we aim to detect the

first occurrence of an uncompressed pattern in a compressed text. In a previous paper [12],

we proved that this problem can be solved in deterministic linear time. This O(n+M) time

algorithm will be our starting point. Of course we cannot directly apply it as M might be of

order m2. Nevertheless, a modified version of this solution will be one of our basic building

bricks. In order to state the modification and prove its correctness we briefly review the

idea behind the original algorithm in the remaining part of this section. First we need a few

auxiliary lemmas. A period of a word w is an integer 0 < d ≤ |w| such that w[i] = w[i+ d]
whenever both letters are defined.

I Lemma 1 (Periodicity lemma). If both d and d′ are periods of w, and d+d′ ≤ |w|+gcd(d, d′),

then gcd(d, d′) is a period as well.

Using any linear time suffix array construction algorithm and fast LCA queries [2] we get

the following.
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626 Fully LZW-compressed pattern matching

I Lemma 2. Pattern p can be preprocessed in linear time so that given any two fragments

p[i . . i+ k] and p[j . . j + k] we can find their longest common prefix (suffix) in constant time.

I Lemma 3. Pattern p can be preprocessed in linear time so that given any fragment p[i . . j]
we can find its longest prefix which is a suffix of the whole pattern in constant time, assuming

we know the (explicit or implicit) vertex corresponding to p[i . . j] in the suffix tree.

A border of a word w is an integer 0 ≤ b < |w| such that w[1 . . b] = w[|w| − b+ 1 . . |w|].
The longest border is usually called the border (similarly, the shortest period is called the

period). By applying the preprocessing from the Knuth-Morris-Pratt algorithm for both the

pattern and the reversed pattern we get the following.

I Lemma 4. Pattern p can be preprocessed in linear time so that we can find the border of

each its prefix (suffix) in constant time.

A snippet is any substring (factor) p[i . . j] of the pattern, represented as a pair of integers

(i, j). If i = 1 we call it a prefix snippet, and if j = |p| a suffix snippet. An extended snippet is

a snippet for which we also store the corresponding vertex in the suffix tree (built for the

pattern) and the longest suffix which is a prefix of the pattern. A sequence of snippets is a

concatenation of a number of substrings of the pattern.

A high-level idea behind the linear time LZW-compressed pattern matching is to first

reduce the problem to pattern matching in a sequence of extended snippets. It turns out

that if the alphabet is of constant size, the reduction can be almost trivially performed in

linear time, and for polynomial size integer alphabets we can apply more sophisticated tools

to get the same complexity. Then we focus on pattern matching in a sequence of snippets.

The idea is to simulate the well-known Knuth-Morris-Pratt algorithm while operating on

whole snippets instead of single characters using Lemma 5 and Lemma 6.

I Lemma 5. Given a prefix snippet and a suffix snippet we can detect an occurrence of the

pattern in their concatenation in constant time.

I Lemma 6. Given a prefix snippet p[1 . . i] and a snippet p[j . . k] we can find the longest

long border b of p[1 . . i] such that p[1 . . b]p[j . . k] is a prefix of the whole p in constant time,

where a long border is b ≥ i
2 such that p[1 . . b] = p[i− b+ 1 . . i].

During the simulation we might create some new snippets, but they will be always either

prefix snippets or half snippets of the form p[ i2 . . i]. All information required to make those

snippets extended can be precomputed in a relatively straightforward way using O(M) time.

The running time of the resulting procedure is as much as Θ(n logM), though. To

accelerate it we try to detect situations when there is a long snippet near the beginning of

the sequence, and apply Lemma 7 and Lemma 8 to quickly process all snippets on its left.

I Lemma 7. Given a sequence of extended snippets s1s2 . . . si such that |si| ≥ 2
∑
j<i |sj |,

we can detect an occurrence of p in s1s2 . . . si in time O(i).

I Lemma 8. Given a sequence of extended snippets s1s2 . . . si such that |si| ≥ 2
∑
j<i |sj |,

we can compute the longest prefix of p which is a suffix of s1s2 . . . si in time O(i).

After such modification the algorithm works in linear time, which can be shown by

defining a potential function depending just on the lengths of the snippets, see the original

paper.
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3 Overview of the algorithm

Our goal is to detect an occurrence of a pattern p[1 . .M ] in a given text t[1 . . N ], where p and t

are described by a Lempel-Ziv-Welch parse of size m and n, respectively. The difficulty here is

rather clear: M might be of order m2, and hence looking at each possible prefix or suffix of the

pattern would imply a quadratic (or higher) total complexity. As most efficient uncompressed

pattern algorithms are based on a more or less involved preprocessing concerning all prefixes

or suffixes, such quadratic behavior seems difficult to avoid. Nevertheless, we can try to

use the following reasoning here: either the pattern is really complicated, and then m is

very similar to M , hence we can use the linear compressed pattern matching algorithm

sketched in the previous section, or it is in some sense repetitive, and we can hope to speedup

the preprocessing by building on this repetitiveness. In this section we give a high level

formalization of this intuition.

We will try to process whole codewords at once. To this aim we need the following

technical lemma which allows us to compare large chunks of the text (or the pattern) in

a single step. It follows from the linear time construction of the so-called suffix tree of a

tree [17] and constant time LCA queries [2].

I Lemma 9. It is possible to preprocess in linear time a LZW parse of a text over an alphabet

consisting of integers which can be sorted in linear time so that given any two codewords we

can compute their longest common suffix in constant time.

We defer its proof to Section 6 as it is not really necessary to understand the whole idea.

As an obvious corollary, given two codewords we can check if the shorter is a suffix of the

longer in constant time.

In the very beginning we reverse both the pattern and the text. This is necessary because

the above lemma tells how to compute the longest common suffix, and we would actually

like to compute the longest common prefix. The only way we will access the characters of

both the pattern and the text is either through computing the longest common prefix of two

reversed codewords, or retrieving a specified character of a reversed codeword (which can

be performed in constant time using level ancestor queries), hence the input can be safely

reversed without worrying that it will make working with it more complicated. We call those

reversed codewords blocks. Note that all suffixes of a block are valid blocks as well.

We start with classifying all possible patterns into two types. Note that this classification

depends on both m (size of the compressed pattern) and n (size of the compressed texts)

which might seem a little unintuitive.

I Definition 10. A kernel of the pattern is any (uncompressed) substring of length n+m

such that its border is less than n+m
2 . A kernel decomposition of the pattern is its prefix

with period at most n+m
2 followed by a kernel.

Note that the distance between two occurrences of such substring must be at least n+m
2 ,

and hence a kernel occurs at most 2m times in the pattern and 2n times in the text. It might

happen that there is no kernel, or in other words all relatively short fragments are highly

repetitive. In such case the whole pattern turns out to be highly repetitive.

I Lemma 11. The pattern either has a kernel decomposition or its period is at most n+m
2 .

Moreover, those two situations can be distinguished in linear time, and if a decomposition

exists it can be found with the same complexity.

Proof. We start with decompressing the prefix of length n+m. If its period d is at least
n+m

2 , we can return it as a kernel. Otherwise we compute the longest common prefix of the

S TAC S ’ 1 2



628 Fully LZW-compressed pattern matching

pattern and the pattern shifted by d characters (or, in other words, we compute how far the

period extends in the whole pattern). This can be performed using at most 2(n+m) queries

described in Lemma 9 (note that being able to check if one block is a prefix of another would

be enough to get a linear total complexity here, as we can first identify the longest prefix

consisting of whole blocks in both words and then inspect the remaining at most min(n,m)
characters naively). If d is the period of the whole pattern, we are done. Otherwise we

identified a substring s of length n+m followed by a character a such that the period of s is at

most d ≤ n+m−1
2 but the period of sa is different (larger). We remove the first character of s

and get s′. Let d′ be the period of s′a. If d′ ≥ n+m
2 , s′a is a kernel. Otherwise d, d′ ≤ n+m−1

2
are both periods of s′, and hence by Lemma 1 they are both multiplies of the period of s′.

Let b be the character such that d is a period of s′b (note that a 6= b). Because d is a period

of s′b, s′[|s′|+ 1− d] = b. Similarly, because d′ is a period of s′a, s′[|s′|+ 1− d′] = a. Hence

s′[|s′|+ 1− d] 6= s′[|s′|+ 1− d′], and because (|s′|+ 1− d)− (|s′|+ 1− d′) is a multiple of the

period of s′ we get a contradiction. Note that the prefix before s′a is periodic with period

d ≤ n+m
2 by the construction. J

If the pattern turns out to be repetitive, we try to apply the algorithm described in the

preliminaries. The intuition is that while we required a certain preprocessing of the whole

pattern, when its period is d it is enough to preprocess just its prefix of length O(d). This

intuition is formalized in Section 4. If the pattern has a kernel, we use it to identify O(n)
potential occurrences, which we then manage to verify efficiently. The verification uses a

similar idea to the one from Lemma 9 but unfortunately it turns out that we need to somehow

compress the pattern during the verification as to keep the running time linear. The details

of this part are given in Section 5.

4 Detecting occurrence of a periodic pattern

If the pattern is periodic, we would like to somehow use this periodicity so that we do not

have to preprocess the whole pattern (i.e., build the suffix tree, LCA structure, compute the

borders of all prefixes and suffixes, and so on). It seems reasonable that preprocessing just

the first few repetitions of the period should be enough. More precisely, we will decompress a

sufficiently long prefix of p and compute some of its occurrences inside the text. To compute

those occurrences we apply a fairly simple modification of Levered-pattern-matching

(see [12]) called Lazy-levered-pattern-matching. The pseudocode of the modified

version can be seen below.

First observe that both Lemma 5 and Lemma 7 can be modified in a straightforward

way so that we get the leftmost occurrence, if any exists. The original procedure quits as

soon as it detects that the pattern occurs. We would like it to proceed so that we get more

than one occurrence, though. A naive solution would be to simply continue, but then the

following situation could happen: both ` and |sk| are very close to m, the pattern occurs

both in the very beginning of p[1 . . `]sk and somewhere close to the boundary between the

two parts, and the longest suffix of the concatenation which is a prefix of the pattern is very

short. Then we would detect just the first occurrence, and for some reasons that will be clear

in the proof of Lemma 15 this is not enough. Hence whenever there is an occurrence in the

concatenation, we skip just the first half of p[1 . . `] and continue, see lines 11-14. This is the

only change in the algorithm.

While Lazy-levered-pattern-matching is not capable of generating all occurrences

in some cases, it will always detect a lot of them, in a certain sense. This is formalized in the

following lemma.
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Algorithm 1 Lazy-levered-pattern-matching(s1, s2, . . . , sn)
1: `← longest prefix of p ending s1 . Lemma 3

2: k ← 2
3: while k ≤ n and `+

∑n
i=k |si| ≥M do

4: choose t ≥ k minimizing |sk|+ |sk+1|+ . . .+ |st−1| − |st|
2

5: if `+ |sk|+ |sk+1|+ . . .+ |st−1| ≤ |st|
2 then

6: output the first occurrence of p in p[1 . . `]sksk+1 . . . st, if any . Lemma 7

7: `← longest prefix of p ending p[1 . . `]sksk+1 . . . st . Lemma 8

8: k ← t+ 1
9: else

10: output the first occurrence of p in p[1 . . `]sk, if any . Lemma 5

11: if p occurs in p[1 . . `]sk then

12: `← longest prefix of p ending p[
⌈
`
2
⌉
. . `]

13: continue

14: end if

15: if p[1 . . `]sk is a prefix of p then

16: `← `+ |sk|
17: k ← k + 1
18: continue

19: end if

20: b← longest long border of p[1 . . `] s.t. p[1 . . b]sk is a prefix of p . Lemma 6

21: if b is undefined then

22: `← longest prefix of p ending p[
⌈
`
2
⌉
. . `]

23: continue

24: end if

25: `← b+ |sk|
26: k ← k + 1
27: end if

28: end while

I Lemma 12. If the pattern of length M occurs starting at the i-th character, Lazy-levered-

pattern-matching detects at least one occurrence starting at the j-th character for some

j ∈ {i− M
2 , i−

M
2 + 1, . . . , i}.

Proof. There are just two places where we can lose a potential occurrence: line 7 and 12.

More precisely, it is possible that we output an occurrence and then skip a few others. We

would like to prove that the occurrences we skip are quite close to the occurrences we output.

We consider the two problematic lines separately.

line 7 st is a lever, so ` + |s1| + . . . + |st| ≤ 3
2M . Hence the distance between any two

occurrences of the pattern inside p[1 . . `]sksk+1 . . . st is at most M
2 . We output the first

of them, and so can safely ignore the remaining ones.

line 12 If there is an occurrence, we remove the first half of p[1 . . `] and might skip some

other occurrences starting there. If the first occurrence starts later, we will not skip

anything. Otherwise we output the first occurrence starting in p[1 . . `2 ], and if there is

any other occurrence starting there, their distance is at most `
2 ≤

M
2 , hence we can safely

ignore the latter.

J
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630 Fully LZW-compressed pattern matching

I Lemma 13. Lazy-levered-pattern-matching can be implemented to work in time

O(n) and use O(M) additional memory.

Proof. The proof is almost the same as in [12]. The only difference as far as the running

time is concerned is line 12. By removing the first half of p[1 . . `] we either decrease the

current potential by 1 or create a lever and thus can amortize the constant time used to

locate the first occurrence of the pattern inside p[1 . . `]sk. J

Note that Lazy-levered-pattern-matching works with a sequence of snippets. By

first applying the preprocessing mentioned in the preliminaries we can use it to compute a

small set which approximates all occurrences in a compressed text.

I Lemma 14. Lazy-levered-pattern-matching can be used to compute a set S of

O(n) occurrences of an uncompressed pattern of length M ≥ n in a compressed text such

that whenever there is an occurrence starting at the i-th character, S contains j from

{i− M
2 , i−

M
2 + 1, . . . , i}.

Proof. As mentioned in the preliminaries, we can reduce compressed pattern matching to

pattern matching in a sequence of snippets in linear time. Because M ≥ n, the preprocessing

does not produce any occurrences yet. Then we apply Lazy-levered-pattern-matching.

Because its running time is linear by Lemma 13, it cannot find more than O(n + M)
occurrences. A closer look at the analysis shows that the number of occurrences produced

can be bounded by the potentials of all sequences created during the initial preprocessing

phase, which as shown in [12] is at most O(n). J

Now it turns out that if the pattern is compressed but highly periodic, the occurrences

found in linear time by the above lemma applied to a sufficiently long prefix of p are enough

to detect an occurrence of the whole pattern.

I Lemma 15. Fully compressed pattern matching can be solved in linear time if the period

of the pattern is at most n+m
2 . Furthermore, given a set of r potential occurrences we can

verify all of them in O(n+m+ r) time.

Proof. We build the shortest prefix p[1 . . αd] of the pattern such that αd ≥ n+m, where

d ≤ n+m
2 is the period of the whole pattern. Observe that αd ≤ 3

2 (n+m) and hence we can

afford to store this prefix in an uncompressed form. By Lemma 14 we construct a set S of O(n)
occurrences of p[1 . . αd] such that for any other occurrence starting at the i-th character there

exists j ∈ S such that 0 ≤ i− j ≤ αd
2 ≤

3
2 (n+m). We partition the elements in S according

to their remainders modulo d so that St = {j ∈ S : j ≡ t (mod d)} and consider each St
separately. Note that we can easily ensure that its elements are sorted by either applying

radix sort to the whole S or simply observing that Lazy-levered-pattern-matching

generate the occurrences from left to right.

We split St into maximal groups of consecutive elements x1 < x2 < . . . < xk such that

xi+1 ≤ xi + αd
2 , which clearly can be performed in linear time with a single left-to-right

sweep. Each such group actually corresponds to a fragment starting at the x1-th character

and ending at the (xk + αd − 1)-th character which is a power of p[1 . . d]. This is almost

enough to detect an occurrence of the whole pattern. If the fragment is sufficiently long,

we get an occurrence. In some cases this is not enough to detect the occurrence because

we might be required to extend the period to the right as to make sufficient space for the

whole pattern. Fortunately, it is impossible to repeat p[1 . . d] more than 3
2α times starting at

the xk character, as otherwise we would have another xk+1 ∈ St which we might have used
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to extend the group. Hence to compute how far the period extends it would be enough to

align p[1 . . αd]p[1 . . αd2 ] starting at the xk character and compute the first mismatch with the

text. We can assume that all suffixes of p[1 . . αd] are blocks with just a linear increase in the

problem size, and hence we can apply Lemma 9 to preprocess the input so that each such

alignment can be processed in time proportional to the number of block in the corresponding

fragment of the text. To finish the proof, note that any single block in the text will be

processed at most twice. Otherwise we would have two groups ending at the xk-th and x′k′ -th

characters such that |xk + αd− (x′k′ + αd)| ≤ αd
2 and that would mean that one of those

groups is not maximal. After computing how far the period extends after each group, we

only have to check a simple arithmetic conditions to find out if the pattern occurs starting at

the corresponding x1.

To verify a set of r potential occurrences, we construct the groups and compute how far

the period extends after each of them as above. Then for each potential occurrence starting

at the bi-th character we lookup the corresponding Sbi mod d and find the rightmost group

such that x1 ≤ bi. We can verify an occurrence by looking up how far the period extends

after the xk-th character and checking a simple arithmetic condition. To get the claimed

time bound, observe that we do not have to perform the lookup separately for each possible

occurrence. By first splitting them according to their remainders modulo d and sorting

all x1 and bi in linear time using radix sort consisting of two passes we get a linear total

complexity. J

5 Using kernel to accelerate pattern matching

We start with computing all occurrences of the kernel in both the pattern and the text.

Because the kernel is long and aperiodic, there are no more than 2m of the former and 2n of

the latter. The question is if we are able to detect all those occurrences efficiently. It turns

out that because the kernel is aperiodic, Lazy-levered-pattern-matching can be (again)

used for the task. More formally, we have the following lemma.

I Lemma 16. Lazy-levered-pattern-matching can be used to compute in O(n+M)
time all occurrences of an aperiodic pattern of length M ≥ n in a compressed text.

Proof. By Lemma 14 we can construct in linear time a set of occurrences such that any

other occurrence is quite close to one of them. But the pattern is aperiodic, so if it occurs

at positions i and j with |i − j| ≤ M
2 , then in fact i = j. Hence the set contains all

occurrences. J

We apply the above lemma to find the occurrences of the kernel in both the pattern

and the text. Each occurrence of the kernel in the text gives us a possible candidate for an

occurrence of the whole pattern (for example by aligning it with the first occurrence of the

kernel in the pattern). Hence we have just a linear number of candidates to verify. Still, the

verification is not trivial. An obvious approach would be to repeat a computation similar to

the one from Lemma 11 for each candidate. This would be too slow, though, as it might turn

out that some blocks from the pattern are inspected multiple times. We require a slightly

more sophisticated approach.

Using (any) kernel decomposition of the pattern we represent it as p = p1p2p3, where

the period of p1 is at most n+m
2 , and p2 is a kernel. We start with locating all occurrences

of p2p3 in the text. It turns out that because p2 is aperiodic, there cannot be too many of

them. Hence we can afford to generate all such occurrences and then verify if any of them is

preceded by p1 as follows:

S TAC S ’ 1 2
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Algorithm 2 PREF(T [1 . . |T |])
1: PREF[1] = 0, s← 1
2: for i = 2, 3, . . . , |T | do
3: k ← i− s+ 1
4: r ← s+ PREF [s]− 1
5: if r < i then

6: PREF[i] = Naive-Scan(i, 1)
7: if PREF[i] > 0 then

8: s← i

9: end if

10: else if PREF[k] + k < PREF[s] then
11: PREF[i]← PREF[k]
12: else

13: x← Naive-scan(r + 1, r − i+ 2)
14: PREF[i]← r − i+ 1 + x

15: s← i

16: end if

17: end for

18: PREF[1] = |T |

1. if |p1| ≥ n then we can directly apply Lemma 15,

2. if |p1| < n then take the prefix of p1p2 consisting of the first n+m letters. Depending on

whether this prefix is periodic with the period at most n+m
2 or aperiodic, we can apply

Lemma 15 or Lemma 16.

The most involved part is computing all occurrences of p2p3. To find them we construct

a new string T = p2p3$t[1 . . N ] by concatenating the suffix of the pattern and the text. For

this new string we compute the values of the prefix function defined in the following way:

PREF[i] = max{j : T [k] = T [i+ k − 1] for all k = 1, 2, . . . , j}

Of course we cannot afford to compute PREF[i] for all possible N+M values of i. Fortunately,

PREF[i] ≥ |p2| iff p2 occurs in T starting at the i-th character. Because |p2| = n+m and p2
is aperiodic, there are no more than 2N+M

n+m ≤ n+m such values of i. We aim to compute

PREF[i] just for those i. First lets take a look at the relatively well-known algorithm

which computes all PREF[i] for all i, which can be found in the classic stringology book by

Crochemore and Rytter [7]. We state its code for the sake of completeness. Naive-scan(x, y)
performs a naive scanning of the input starting at the x-th and y-th characters and returns

the first mismatch, if any. PREF uses this procedure in a clever way as to reuse already

processed parts of the input and keep the total running time linear. The complexity is linear

because the value of s+ PREF[s] cannot decrease nor exceed |T |, and whenever it increases

we are able to pay for the time spent in Naive-scan using the difference between the new

and the old value.

We will transform this algorithm so that it computes only PREF[i] such that the kernel

occurs starting at the i-th character. We call such positions i interesting. The first problem

we encounter is that we need a constant time access to any PREF[i] and cannot afford to

allocate a table of length |T |. This can be easily overcome.
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I Lemma 17. A table PREF such that PREF[i] > 0 iff the kernel occurs starting at the i-th

character and any entry can be accessed in constant time can be implemented in space and

after preprocessing not exceeding the compressed size of T , which is O(n+m).

Proof. Observe that any two occurrences of the kernel cannot be too close. More precisely,

their distance must be at least n+m
2 . We split the whole T into disjoint fragments of size

n+m
2 . There are no more than 2(n+m) of them and there is at most one occurrence in each

of them. Hence we can implement the table by allocating an array of size 2(n + m) with

each entry storing at most one element. J

We modify line 2 so that it iterates only through interesting values of i. Note that

whenever we access some PREF[j] inside, j is either i, s or k = i − s + 1. In the first

two cases it is clear that the corresponding positions are interesting so we can access the

corresponding value using Lemma 17. The third case is not that obvious, though. It might

happen that k is not interesting and we will get PREF[k] = 0 instead of the true value. If

r ≥ i + |p2| − 1 then because p2 occurs at i, it occurs at k as well, and so k is interesting.

Otherwise we cannot access the true value of PREF[k], so we start a naive scan by calling

Naive-scan(i+ |p2|, |p2|+ 1) (we can start at the |p2|+ 1-th character because p2 occurs at

i). After the scanning we set s← i. Note that because r < i+ |p2| − 1, this increases the

current value of s+ PREF[s], and we can use the increase to amortize the scanning.

We still have to show how to modify Naive-scan. Clearly we cannot afford to perform

the comparisons character by character. By the increasing s+ PREF[s] argument, any single

character from the text is inspected at most once by accessing T [x] (we call it a left side

access). It might be inspected multiple times by accessing T [y], though (which we call a

right side access). We would like to perform the comparisons block by block using Lemma 9.

After a single query we skip at least one block. If we skip a block responsible for the left

side access, we can clearly afford to pay for the comparison. We need to somehow amortize

the situation when we skip a block responsible for the right side access. For this we will

iteratively compress the input (this is similar to the idea used in [10] with the exception that

we work with PREF instead of the failure function). More formally, consider the sequence of

blocks describing p2p3. First note that no further blocks from T will be responsible for a

right side access because of the unique $ character. Whenever some two neighboring blocks

b1, b2 from this prefix occur in the same block b′ from the text, we would like to glue them,

i.e., replace by a single block. We cannot be sure that there exists a block corresponding to

their concatenation, but because we know where it occurs in b′ we can extract (in constant

time, by using the level ancestor data structure [3] to preprocess the whole code trie) a

block for which the concatenation is a prefix. We will perform such replacement whenever

possible. Unfortunately, after such replacement we face a new problem: p2p3 is represented

as a concatenation of prefixes of blocks instead of whole blocks. Nevertheless, we can still

apply Lemma 9 to compute the longest common prefix of two prefixes of blocks b[1..i] and

b′[1..i′] by first computing the longest common prefix of b and b′, and decreasing it if it

exceeds min(i, i′). More formally, we store a block cover of p2p3.

I Definition 18. A block cover of a word w is a sequence b1[1 . . i1], b2[1 . . i2], . . . , bk[1 . . ik]
of prefixes of blocks such that their concatenation is equal to w.

This definition is illustrated on Figure 1. Obviously, the initial partition of p2p3 into

blocks is a valid block cover. If during the execution of Naive-scan we find out that two

neighboring elements bj [1 . . i1], bj+1[1 . . ij+1] of the current cover occur in some other longer

block b, we replace them with the corresponding prefix of b′, see Figure 2.
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w

b1[1..i1] b2[1..i2] bk[1..ik]bk−1[ik−1]...

Figure 1 A block cover of w.

bj [1..ij ] bj+1[1..ij+1]

b

b′

b′[1..ij + ij+1]

Figure 2 Compressing the current block cover.
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b
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b
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suffix tree for [$,a$,b$,aa$,ba$,bb$,baa$,abb$,aabb$]

a b

a $

$

bb$ b$
$

a

$

a$bb$

$

Figure 3 A trie (on the left) and its suffix tree (on the right).

We store all bj [1 . . ij ] on a doubly linked list and update its element accordingly after

each replacement. The final required step is to show how we can quickly access in line 13 the

block corresponding to r − i+ 2. We clearly are allowed to spend just constant time there.

We keep a pointer to the block covering the r-th character of the pattern. Whenever we need

to access the block covering the (r − i+ 2)-th character, we simply move the pointer to the

left, and whenever the current longest match extends, we move the pointer to the right. We

cannot move to the left more time than we move to the right, and the latter can be bounded

by the number of blocks in the whole p1p2 if we replace the neighboring blocks whenever it

is possible.

I Lemma 19. Fully compressed pattern matching can be solved in linear time if we are given

the kernel of the pattern.

I Theorem 20. Fully LZW-compressed pattern matching for strings over a polynomial size

integer alphabet can be solved in optimal linear time assuming the word RAM model.

6 LZW parse preprocessing

The goal of this section is to prove Lemma 9. We aim to preprocess the codewords trie so

that given any two codewords, we can compute their longest common suffix in constant time.

The suffix tree of a tree A, where A is a tree with edges labeled with single characters, is

defined as the compressed trie containing sA(v)$ for all v ∈ A, where sA(v) is the string

constructed by concatenating the labels of all edges on the v-to-root path in A, see Figure 3.

This has been first used by Kosaraju [15], who developed a O(|A| log |A|) time construction

algorithm, where |A| is the number of nodes of A. The complexity has been then improved

by Breslauer [6] to just O(|A| log |Σ|) and by Shibuya [17] to linear for integer alphabets.

We build the suffix tree of the codeword trie T in linear time [17]. As a result we also

get for any node v of the input trie the node of the suffix tree corresponding to sT (v)$.



P. Gawrychowski 635

Now assume that we would like to compute the longest common suffix of two codewords

corresponding to nodes u and v in the input trie. In other words, we would like to compute

the longest common prefix of sT (u) and sT (v). This can be found in constant time after a

linear time preprocessing by retrieving the lowest common ancestor of their corresponding

nodes in the suffix tree [2].
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