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—— Abstract

We present an optimal, combinatorial 1 — 1/e approximation algorithm for Maximum Coverage
over a matroid constraint, using non-oblivious local search. Calinescu, Chekuri, Pal and Vondrak
have given an optimal 1—1/e approximation algorithm for the more general problem of monotone
submodular maximization over a matroid constraint. The advantage of our algorithm is that it
is entirely combinatorial, and in many circumstances also faster, as well as conceptually simpler.

Following previous work on satisfiability problems by Alimonti, as well as by Khanna, Mot-
wani, Sudan and Vazirani, our local search algorithm is non-oblivious. That is, our algorithm
uses an auxiliary linear objective function to evaluate solutions. This function gives more weight
to elements covered multiple times. We show that the locality ratio of the resulting local search
procedure is at least 1 — 1/e. Our local search procedure only considers improvements of size 1.
In contrast, we show that oblivious local search, guided only by the problem’s objective function,
achieves an approximation ratio of only (n — 1)/(2n — 1 — k) when improvements of size k are
considered.

In general, our local search algorithm could take an exponential amount of time to converge
to an ezact local optimum. We address this situation by using a combination of approximate
local search and the same partial enumeration techniques as Calinescu et al., resulting in a clean
(1 — 1/e)-approximation algorithm running in polynomial time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases approximation algorithms; maximum coverage; matroids; local search

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.601

1 Introduction

Maximum coverage [1,6-9,11,13,16] (also known as Max Cover) is a well-known combinatorial
optimization problem related to Set Cover. Given a universe U, element weights w: U — Ry,
a family F C 22" of subsets of U, and a number n, the problem is to select n sets 5; € F
such that w(S; U---US,) is as large as possible.

Like many combinatorial optimization problems, maximum coverage is hard to solve
exactly. A straightforward reduction from Set Cover shows that the decision version of
maximum coverage with unit weights (deciding whether there are n sets that span at least
m elements) is NP-complete, so the best we can hope for is an approximation algorithm.

One natural approach is the following heuristic. First pick the set S; of maximum
weight. Then pick the set Sy that maximizes w(S3 \ S1), and so on. This approach leads
to the well-known greedy algorithm, and yields an approximation ratio of 1 — 1/e = 0.632+.
Amazingly, in this setting the greedy algorithm is optimal. Feige [9] used the PCP theorem to
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show that if there exists a polynomial-time algorithm that approximates maximum coverage
within a ratio of 1 — 1/e + € for some € > 0 then P = NP.

The present paper deals with a generalized version of maximum coverage, in which
we are given a matroid m over F, and the goal is to find a collection S C F that covers
elements of maximum weight, subject to the constraint that S € m. We call this problem
mazximum coverage over a matroid constraint. If the underlying matroid is the uniform
matroid of rank n, we recover the original problem. Because every maximum coverage
function is monotone submodular, this problem falls under the more general setting of
maximizing monotone submodular functions subject to a matroid constraint. The greedy
algorithm still applies in this general setting, but its approximation ratio is only 1/2, even
when the monotone submodular function is a maximum coverage function. Calinescu,
Chekuri, P4l and Vondrék [5] developed a sophisticated algorithm for a general problem of
monotone submodular maximization over a matroid constraint, which achieves the optimal
approximation ratio of 1 — 1/e. Their algorithm first finds a fractional solution using the
continuous greedy algorithm, and then rounds it to an integral solution using pipage rounding.

1.1 Qur contribution

We propose a simple algorithm for maximum coverage over a matroid constraint. Like
the continuous greedy algorithm, our algorithm achieves the optimal approximation ratio
of 1 — 1/e. In contrast to the continuous greedy algorithm, however, our algorithm is
combinatorial, in the sense that it only deals with integral solutions. Our approach is based
on non-oblivious local search, a technique first proposed by Alimonti [2] and by Khanna,
Motwani, Sudan and Vazirani [12].

In classical (or, oblivious) local search, the algorithm starts at an arbitrary solution, and
proceeds by iteratively making small changes that improve the objective function, until no such
improvement can be made. The locality ratio of a local search algorithm is minw(S)/w(O),
where S is a solution that is locally-optimal with respect to the small changes considered by
the algorithm, O is a global optimum, and w is the objective function for the problem. The
locality ratio provides a natural, worst-case guarantee on the approximation performance of
the local search algorithm.

In many cases, oblivious local search may have a very poor locality ratio, implying that a
locally-optimal solution may be of significantly lower quality than the global optimum. For
example, for our problem the locality ratio for an algorithm changing a single set at each
step is 1/2. As the locality ratio depends on the type and size of local changes considered,
one approach for improving an algorithm’s performance is simply to consider larger (but
still constant-sized) neighborhoods. Unfortunately, in our case, this technique results in no
asymptotic improvement in the locality ratio. Specifically, we show that the locality ratio
of oblivious local search remains only (n — 1)/(2n — 1 — k) when k sets are exchanged. For
constant k, this is only marginally better than the approximation ratio 1/2 achievable using
the greedy algorithm.

Non-oblivious local search adopts a more radical approach by altering the objective
function used to guide the search. We proceed as before, but modify the local search
algorithm to use an auxiliary objective function to decide whether the current solution is an
improvement. By carefully choosing this auxiliary function, we can ensure that poor local
optima with respect to the original objective function are no longer local optima.

In this paper, we present a non-oblivious local search algorithm for the problem of
maximum coverage over a matroid constraint. Specifically, we construct an auxiliary objective
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function whose locality ratio (for single changes) is slightly larger than 1 — 1/e, resulting in
an algorithm whose approximation ratio is the best possible, assuming P # NP.

In general, local search algorithms could converge in exponentially many steps. We
address this issue using approximate local search, a technique described systematically by
Schulz, Orlin and Punnen [15]. Approximate local search allows us to bound the running time
of the algorithm at a small cost in the resulting approximation ratio. By employing partial
enumeration, as described by Calinescu et al., we can eliminate this small cost, achieving an
approximation ratio of 1 —1/e.

1.2 Comparison with existing algorithms

Both our algorithm and the one by Calinescu et al. give the same approximation ratio.

The continuous greedy algorithm works on a discretized version of a particular continuous
relaxation of the problem to obtain a fractional solution to the problem. This solution must
then be rounded to an integral solution using the pipage rounding technique, which employs a
submodular minimization algorithm at each step. In contrast, our algorithm always maintains
a current integral solution and requires only simple combinatorial operations that add and
remove elements from this solution. Moreover, our algorithm is extremely simple, and can
be described using only a few lines of pseudocode.

In most settings, our algorithm is also faster. For a fair comparison, we consider versions
of both algorithms that achieve an approximation ratio of at least 1 — 1/e. Furthermore, we
analyze the algorithm of Calinescu et al. only in the special case of maximum coverage. In this
setting, it is possible to calculate the continuous relaxation of the objective function exactly,
rather than by random sampling, thus greatly improving the runtime of the continuous
greedy algorithm. Denoting the rank of the matroid by n, the total number of sets by s = |F]|,
the maximal size of a set by u, and the sum of the sizes of all sets by U, our algorithm runs

in time O(n?s%u), whereas the algorithm by Calinescu et al. runs in time O(n?s%u + s7).

For all non-trivial instances of the problem, we must have s > n, and so our algorithm is
indeed considerably faster, assuming that the size u of the largest set does not dominate
both expressions. We stress that this is the case even after the continuous greedy algorithm
has been optimized to compute the maximum coverage function directly, rather than by
sampling as in the general analysis of Calinescu et al. [5].

Another relevant algorithm is described in an earlier paper by the same set of authors [4].

The algorithm presented by Calinescu et al. in that paper is more general than ours, but
less general than their later paper. It applies to monotone submodular functions which are
sums of weighted rank functions of matroids. The continuous greedy algorithm is replaced
with a simple linear program. In the simplest case of a uniform matroid, the running time of
this algorithm (using interior-point methods) is O(U?"5 + s7); more complicated matroids
result in even worse running times. When the sets are large, this is considerably slower than
our algorithm.

1.3 Future work

We believe that the approach outlined in this paper can be used to design approximation
algorithms for similar problems. In particular, we are working on generalizing the algorithm
to monotone submodular functions.
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1.4 Paper organization

Section 2 provides a concise overview of existing work related to maximum coverage. In
Section 3 we formally present the problem, discuss the limitations of oblivious local search,
and present our non-oblivious local search algorithm. In Section 4 we give an analysis of the
approximation ratio and runtime for our non-oblivious local search algorithm, and show how
to attain a clean, polynomial time (1 — 1/e)-approximation by using partial enumeration
techniques, as in [5].

For reasons of space, we defer some proofs to the appendix, which only appears in the
full version of the paper that can be found on the authors’ websites. In the appendix we
also discuss the optimality of our auxiliary objective function, and analyze the standard
oblivious local search in the special case of strongly base orderable matroids, showing that its
performance can be much worse than our non-oblivious local search algorithm. Finally, we
show that the difficulty of finding an exact local optimum is not an artifact of our oblivious
non-oblivious objective function by presenting an instance for which even the oblivious local
search algorithm requires an exponential number of improvements to find an exact local
optimum.

1.5 Acknowledgments

We thank Anupam Gupta for suggesting the problem to us, and Allan Borodin and Roy
Schwartz for helpful discussions.

2 Related work

Maximum coverage was first defined by Hochbaum and Pathria [11] in 1998. In fact, an even
more general problem had been defined earlier by Cornuejols, Fisher and Nemhauser [8] in
1977, in the context of locating bank accounts. Both papers describe the greedy algorithm,
and show that its approximation ratiois 1 — (1 —1/n)" = 1 —1/e.

Feige [9], in his seminal paper on the inapproximability of Set Cover, showed that unless
P = NP, it is impossible to approximate maximum coverage to within 1 — 1/e + € for any
e > 0. His proof uses PCP techniques, extending earlier work by Lund and Yannakakis [14].

Maximum coverage over a partition matroid was considered by Chekuri and Kumar [6]
under the name mazimum coverage with group budget constraints. In this variant, the family
F is partitioned into subfamilies F;, and the solution must contain at most n; sets from
Fi, and at most n overall. They analyze the performance of the greedy algorithm when the
greedy choices are given by an approximate oracle.

Algorithms for maximum coverage with group budget constraints with the optimal approx-
imation ratio 1 —1/e were presented by Srinivasan [16] and by Ageev and Sviridenko [1]. Both
algorithms first formulate the problem as an LP, and then round the solution. Srinivasan’s
approach involves sophisticated sampling. Ageev and Sviridenko’s approach, pipage rounding,
repeatedly simplifies the solution until it becomes integral, without decreasing its value. Both
approaches work in more general settings.

Calinescu, Chekuri, P4l and Vondrék [5] combined a more sophisticated version of pipage
rounding with the continuous greedy algorithm to obtain an optimal 1 — 1/e approximation
algorithm for monotone submodular maximization over a matroid constraint. The continuous
greedy algorithm is a steepest descent algorithm running in continuous time (in practice, a
suitably discretized version is used), producing a fractional solution. This solution is rounded
using pipage rounding.
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Other generalizations of maximum coverage appear in the literature. In budgeted mazximum
coverage, each element is provided with a cost, and the sets chosen by the algorithm are
restricted by the total cost of the elements they cover. Khuller, Moss and Naor [13] show that
a greedy approach yields an optimal 1 — 1/e approximation algorithm. Cohen and Katzir [7)
generalize this even further, and provide an optimal 1 — 1/e semi-greedy approximation
algorithm.

3 Local search for maximum coverage over a matroid
We consider the problem of maximum coverage over a matroid. The inputs are

A universe U.
Value oracle access to a non-negative weight function w: U — R...
A family F of subsets of U with |F| = s, maxacr |A| = u.

A matroid over F of rank n, given as an independence oracle.

Note that the matroid m has as its ground set the sets F, and so a member of m is a collection
of sets from F. We call the members of m independent sets. We extend w to a function over
subsets A of U by letting w(A) = »_ . , w(u). The goal, then, is to find a collection of sets
S C F that covers elements in U of maximal weight, subject to the constraint that S € m:

maxw(US).

Sem

Recall that m is a matroid over F if: (1) m # 0, (2) m is downward-closed (if A € m and
B C A, then B € m), and (3) for all A, B € m with |A| > |B| we have BU {z} € m for some
x € A\ B. This last property guarantees that all maximal independent sets of the matroid
have the same cardinality. These sets are called bases, and their common cardinality is called
the rank, denoted in this paper by n.

Our starting point is the oblivious local search algorithm, shown in Algorithm 1. The
algorithm starts from an arbitrary base S (obtained, e.g., by the standard greedy algorithm)
and repeatedly attempts to improve the total weight of all elements covered by S by
exchanging up to k sets in S with k& sets not in S, maintaining the matroid constraint. We
call a pair (A, B) a k-exchange for S if A C S with |A| < k, B C F\ S with |B| = |A]. When
no single k-exchange improves the weight of all elements covered by S, the algorithm returns

S.

Algorithm 1 Oblivious k-LocalSearch

S <« an arbitrary basis in m.
repeat

Sold S {Remember previous solution }

Let & be the set of all valid k-exchanges for S

S+ argmax w (U(S \AU B))

(A,B)eE

until S = S,q {Repeat until no improvement is possible}
return S
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As mentioned in the introduction, the locality ratio of Algorithm 1 is rather poor. Consider
the following set system:

A1 = {.’E,GA}, AQ = {GB},
Bl = {y}, Bg = {JZ}

The elements x,y have unit weight, and the elements €4, ep have some arbitrarily small
weight € > 0. We consider the partition matroid whose independents sets contain at most
one of {4;, B;} for i € {1,2}. Under this matroid, the base {A1, A2} is a local optimum for
1-exchanges, since replacing A; by By or A by Bs both result in a net loss of €. The global
optimum is { By, Bz}, and the locality ratio is thus (1 4 2¢)/2. Note that the base {47, A2}
is also produced by the standard greedy algorithm applied to this instance. This shows that
we cannot hope to beat the locality ratio by choosing a greedy starting solution.

We can generalize this example to show that oblivious k-local search has a locality ratio of
at most 5" for all k < n. Let the universe U consist of n—1 elements {z1,...,z,_1} and
n — k elements {y1,...,yn—x}, all of weight 1, and n — 1 elements {ea, ..., €, } of arbitrarily
small weight € > 0. For each 1 < i < n, there are two sets A; and B;, defined as follows:

Ai = {6i} for 1 S ( S n-— 17 A'IL = {zla"'v'xn—l}a
Bi={x;}for1<i<n-1, B, =A{vy1,-- s Yn—k}

We consider the partition matroid whose independent sets contain at most one of {A;, B;} for
each i € [n]. The globally optimal solution is the set B = {B; }1<i<n, which covers elements
of total weight n —14+n —k =2n —k — 1. The set A = {A;}1<i<y is locally optimal under
improvements of size k and covers elements of total weight only (n — 1)(1 + €), and the
locality ratio is thus (n — 1)(1 +¢€)/(2n — k — 1). In order to see that it is, in fact, a local
optimum, note that if we do not replace A, with B,,, the remaining replacements can only
decrease the value of the solution. Suppose, then, that we do replace A, with B,,. This
replacement reduces the total weight of the covered elements by k& — 1. There are only k — 1
remaining exchanges, each of which can increase the total weight of the covered elements by
less than 1. Again, we note that the solution A is also the solution produced by the greedy
algorithm. In the special case of strongly base orderable matroids, the approximation ratio
of oblivious k-local search is, in fact, exactly #, as we show in the full version of the
paper.

Let us examine the first instance above in more detail. Intuitively, the basis {A4;, B2} in
our example is better than the basis {A;, A>} since it is of almost equal value to {47, A2}
but additionally covers element x twice. From a local search perspective, this is an advantage
since it ensures that x will stay covered after the next exchange. In order to improve
the performance of local search, we want to somehow give extra weight to solutions that
offer flexibility in future exchanges, perhaps even at a slight loss in the objective function.
Following this intuition, we employ a function which gives extra weight to elements that are
covered multiple times as an auxiliary objective function. A similar idea appears in Khanna
et al. [12], in the context of the maximum satisfiability problem, and even earlier in similar
work by Alimonti [2]. There, the idea is to give extra weight to clauses which are satisfied by
more than one variable, because these clauses will remain satisfied after flipping the next
variable in the search procedure.

Thus, we seek to modify Algorithm 1 by replacing the oblivious objective function w with
an auxiliary objective function f of the general form:

f(8) = Z ap, (syw(u),

uelU



Y. Filmus and J. Ward

where h,(S) = |{A € S : u € A}| is the number of sets in S that contain element u. By
setting, for example «a; > a; for all i > 1, we can give extra value to solutions that cover
some element more than once. Additionally, note that if we set ap = 0 and «; = 1 for all
i > 0, we recover the oblivious objective function. We now consider the problem of how
to set the a;. We want to balance two concerns. First, we want to allow the algorithm to
potentially decrease the objective value of the current solution in the short-term, in exchange
for future flexibility. However, in the long-term, we want the algorithm to give enough weight
to the original objective that it produces a reasonable final solution.

There is no immediately compelling reason to assign any weight to elements that have
not been covered at all, so let us set ag = 0, and examine the above instance in terms of the
remaining a;. We have

f({A1, Az}) = (1 + 2¢)ay, f({A1, B2}) = a2 + €an,
f({B1,42}) = (1 + €)ay, f({B1, B2}) = 2a.
By setting e = #2-%1, the solution {A;1, Ay} will remain a local optimum, even for the non-

oblivious potential function. The locality ratio (in terms of the original objective function)
will remain 1/2 + € = 1/2 + *2-%L. If we set as to be too close to a1, there will not be
much improvement in the locality ratio, and if as < g, the locality ratio will decrease.
This confirms our intuition that it is advantageous to give more weight to elements that are
covered multiple times. Alternatively, if we set aa > 2a1, then the solution {A4;, Bo} will
become a local optimum, and the locality ratio will become 1/2 + ¢/2. This confirms our
intuition that it is bad to give too much extra weight to elements covered multiple times.

By extending a similar analysis to arbitrary instances, we obtain the following values for
Qe

1 1

ag =0, Ozlzl—m, Ozi+1:(i+1)ai—iai,1—m,

(1)

where the constant el is defined as

n—1 1 1
Nt b
¢ ;l!+(n—l)!(n—1)'

This choice of «; is optimal, as we show in the full version of the paper. We note that the
sequence ell, where i > 2, is decreasing and bounded below by e:

» Lemma 1. For all n > 2 we have e < el™ and el > eln 1
Our coeflicients «; satisfy the following properties, which follow directly from their definition.

» Lemma 2. Let §; = a1 — oy Then, the B; satisfy the recurrence relation

1 . 1
BO:]-_mu Bi =1fi—1 — —=

eln]”
» Lemma 3. Foralli<n, B; >0 and Biy1 < B;.
» Lemma 4. There exists a universal constant Cy such that for all i < n, a; < Cylogi.

Our resulting local search algorithm for maximum coverage over a matroid is given in
Algorithm 2. In addition to using the non-oblivious potential function f described above, we
modify our algorithm to start from a greedy initial solution. This initial solution is a good
starting point, and speeds up the convergence of the algorithm. Our algorithm takes as a
parameter §, which governs how much an improvement is required to improve the current
solution to be accepted. We describe this aspect of the algorithm in more detail in the next
section.
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Algorithm 2 LocalSearch(9)

{Greedy algorithm}
S+
fori=1—ndo

S S+ argmax [f(S+A)— £(9)]
AeF:S+Aem

end for
{Local search}
repeat
Sola = S {Remember previous solution}
Let &€ be the set of all valid 1-exchanges for S
S« argmax 4 pyee f((S\ A) U B)
until S < (14 §)Soa {Repeat until d-locally optimal}
return Sgq

4 Analysis of the non-oblivious local search algorithm

Our analysis makes use of the notion of a §-approzimate local optimum. Formally, we say
that a solution S is a d-approximate local optimum if (1 +6)f(S) > f(S’) for all solutions S’
differing from S by a single set. Intuitively, replacing exact local optimality (as in Algorithm
1) with approximate local optimality limits the total number of improvements the algorithm
can make, at a slight cost in the approximation factor. We consider some §-approximate
local optimum S = {Si,...,S,} and some global optimum O = {Oy,...,0,}. A classical
result of Brualdi [3] shows that for any matroid m we can renumber the sets of O so that for
each i, S_;,0; := (S\ {S;}) U{O;} is a base of m. We suppose that O has been renumbered
so that this is the case, and consider the 1-exchanges that remove S; from S and add O; to
the result. Local optimality implies that for each ¢, we have

(L+8)f(S) = f(S=i, 0i).

Summing over all n such inequalities we obtain the inequality
n
n(1+0)f(S) = Zf(s—i,oi)- (2)
i=1

The main difficulty of the analysis lies in the fact that inequality (2) is given in terms of
the non-oblivious potential function f, but we wish to derive an approximation guarantee for
the original objective function w. In order to put f and w on common ground, we make the
following definitions.

For any two subsets L, G C [n], we define Ef, ¢ to be the set of elements that belong to
the sets S; for ¢ € L, and O; for j € GG, and no other sets in .S and O. The sets E, ¢ thus
form a partition of U. Then, for all integers [, c,g > 0 such that 1 <1+ ¢+ g < n, we define

Treg= Y, w(BLa).
L,G:
|L|=l+c,
|Gl=g+c,
|[LNG|=c
In words, z;,,q is the total weight of elements that belong to exactly [ + ¢ of the sets S;,
exactly g + c of the sets O;, exactly c of them sharing indices. We call the variables z; . 4

symmetric variables.
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We can express all the quantities we are interested in using the symmetric variables x; g .:

1(8)= Z Qtelle,g = Z QT e,g (since ag = 0),
I+e21 lc,g

n

> F(5-,00) =Y (lewge1 + gaurers + (0= 1= g)01i)Ti e,

i=1 l,c,g

w (U S) = Z Tlegs

l4+c>1

w (U O) = Z Tic,g-

g+c>1

The only expression which is not immediate is the one for .7 | f(S_;,0;). We derive it as
follows: consider an element u € Ey, ¢ for some sets L, G. In S, the element u appears in |L|
sets. If i € LNG or i ¢ L UG, it also appears in |L| sets in (S_;,0;). Finally, if i € L'\ G,
it appears in |L| — 1 sets in (S_;,0;). If i € G\ L, it appears in |L| + 1 sets in (S_;, O;).

» Theorem 5. If S is a §-approximate local optimum, then
(14 Codnlogn)w(JS) > (1 —1/e™w(JO), for some universal constant Cy.

Proof. Reformulating inequality (2) in terms of our symmetric notation and simplifying, we
obtain

0 S Z((l + g + 5n)al+c - laH»cfl - gal+c+1)xl,c,g' (3)
l,c,g

Similarly, reformulating the statement of the theorem in terms of our symmetric notation,
we obtain

1
0 < (14 Cponlogn) Z Lieg — (1 — e[”]) Z Zic,g- (4)

I+c>1 g+c>1

Since we have z; . 4 > 0 for all [, ¢, g, in order to prove the lemma, it suffices to show that the
coefficient of any term ;.4 in (3) is at most its coefficient in (4). We consider three cases,
and simplify expressions using the fact that ag = 0. In the first, suppose that g = ¢ =0. We
must show that for all 1 <[ <n,

(I+dn)oy —loy—1 <14 Coonlogn. (5)

In the next case, suppose that [ = ¢ = 0. We must show that for all 1 < g < n,
1
—gag < — 1*@ . (6)
e
Finally, we must show for [, g,c such that [+ c# 0, g+ c#0,and 1 <l +c+ g < n,

1
(l+g+n)aire —lagre—1 — gper1 < o + 0Con logn. (7)

We now verify each of these inequalities, using the properties of a; stated in Lemmas 2, 3,
and 4. For (5), we have

1
(I+on)ay —lay—1 = Ifi—1+dna; = B+ o + dnoy

1
Sﬂo+m+5nal = 1+dnay < 1+ Coonlogn.
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Inequality (6) follows directly from the fact that ¢ > 1 and ay =1 — ﬁ For inequality (7),
we consider two cases. First, suppose ¢ = 0 and so ¢ > 1. Then, we have

1
{4+ on)ajye — loyge—1 < 1B + dnoyge = Bip1 + o B + onagqe

1 1
< — + oy < — + Codnlogn.
e["] e["]

If g > 1, then we have

I+ g+on)aute —late—1 — 90ttt = WBite—1 — 9Bic + noyye

1 1
SUBige—1 = Bige + 0Ny = T cBige + onagye < o + Codnlogn.

eln
This completes the proof of Theorem 5. <

We obtain the following corollary by setting

€ €
0= =0 :
Conlogn (1 — o5 —€) (nlogn)

» Corollary 6. Algorithm LocalSearch(Cie/(nlogn)) is a (1 — 1/el™ — €)-approzimation
algorithm, for some universal constant C7 and all € > 0.

Since e > el™| the same proof shows that if we replace el by e in the definition of the
sequence «;, then the resulting approximation ratio is 1 — 1/e — e.

Now, we turn to the run-time of Algorithm 2. First, we note that by keeping track of
how many times each element of U is covered by the current solution, we can compute the
change in f due to adding or removing a set from the solution using only O(u) value oracle
calls. The initial greedy phase takes time O(nsu). Each iteration of the local search phase
requires ns calls to the independence oracle for m and O(nsu) calls to the value oracle for w.
Thus, each iteration can be completed in time O(nsu). We now bound the total number of
improvements that the algorithm can make.

» Lemma 7. For any & > 0, Algorithm LocalSearch(8) makes at most O(6=1) improvements.

Proof. Let S be the solution produced by the initial greedy phase of LocalSearch(d), and
let O = argmaxge,, f(S). Then, LocalSearch(d) makes at most 10g1+5(f(0)/f(§)) improve-
ments. Because the sequence of coefficients «; is increasing and concave, for any S CT C F
and A € F\T we must have 0 < f(T+A) — f(T) < f(S+ A) — f(S), and so f is monotone
submodular. Thus, the classical result of Fischer, Nemhauser, and Wolsey [10] implies that
the greedy algorithm is a 2-approximation for maximizing f, so 2f(§) > f(é) Algorithm

LocalSearch(d) can therefore make at most log; ;2 = 10;?%i5) = O(61) improvements. <

By setting € = 1/el — 1/e, we would obtain a clean (1 — 1/e)-approximation algorithm.
However, since 1 — 1/el™ is very close to 1 — 1/e, the resulting § would be superpolynomial
in n, and so we would not obtain a polynomial-time algorithm. Instead, we use a partial
enumeration technique described by Khuller et al. [13]. Effectively, we try to “guess” a single
set in the optimal solution, and then run LocalSearch on a contracted instance containing
this set. We then iterate over all possible guesses.

» Definition 8. Let Z = (U, w, F,m) be an instance of maximum coverage, where U is the
universe, w is the weight function, F is a family of subsets of U, and m is a matroid defined
over F.
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Let A € F. The contracted instance Z|4 = (U|a,w|a, F|a, m|a) is defined as follows:
Ula=1,
wla = u s {w(u) u¢ A,
0 u € A,
Fla=F -4,
ma=m/A={SCF:S+Acm}.

Note that the definition of w|4 directly implies that

wla (Us) =w(Us\4) =w (Jsua) —ua). (8)

We can now formulate the new algorithm. Algorithm Approx simply runs LocalSearch(9)
on the instance Z|4 for each A € F, and returns the best resulting solution of the original
instance 7.

Algorithm 3 Approx(d)

for A€ F do
Let S4 be the result of running LocalSearch(d) on instance Z|4
end for
A« argmax,crw(JSaUA)
return Sy + A

» Theorem 9. If LocalSearch(d) has an approximation ratio of @ on matroids of rank n — 1
then Approx(0) has an approzimation ratio of 1/n+ (1 — 1/n)6 on matroids of rank n.

Proof. Let O be some optimal solution, and A € O be a set of maximum weight in O.
Submodularity implies that w(O) < 5o w(B) < nw(A), and so w(A) > w(O)/n. Since
O — A € m|4, we have w|a(|JSa) > 0 - w|a(JO\ A). From identity (8) we then have

w (U S4U A) = w(A) +wla (U SA)
> w(A) + 0 wla (UO\A)
= (1-0)w(A)+6 w (Uo)
1-6
z(n+9)w(U0). <
» Corollary 10. For some universal constant Cy and alln > 3, Algorithm Approx(Cs/(n?logn))

has an approzimation ratio of at least 1 —1/e.

Proof. Let Cy = 3C1, where (' is the constant defined in Corollary 6. The corollary implies
that LocalSearch(Cs/(n?logn)) has an approximation ratio of 1 —1/el*~11—1/3n. Theorem 9
implies that the approximation ratio of Approx(Cy/(n?logn)) is

Lo 1)1 1 ! W{”—§>1 1
n+ n el 3p - _e[”—1]+ n =

using the fact that el < ¢l = 3. <

Our final algorithm Approx(Cy/(n?logn)) makes s calls to LocalSearch. Each of these calls
makes at most O(n?logn) improvements, each taking time O(nsu). The final runtime is
thus O(n3s?u).

STACS’12
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