
HAL Id: hal-00678162
https://hal.science/hal-00678162

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Linear Functions with Randomized Search
Heuristics - The Robustness of Mutation

Carsten Witt

To cite this version:
Carsten Witt. Optimizing Linear Functions with Randomized Search Heuristics - The Robustness
of Mutation. STACS’12 (29th Symposium on Theoretical Aspects of Computer Science), Feb 2012,
Paris, France. pp.420-431. �hal-00678162�

https://hal.science/hal-00678162
https://hal.archives-ouvertes.fr

Optimizing Linear Functions with Randomized
Search Heuristics – The Robustness of Mutation
Carsten Witt1

1 DTU Informatics, Technical University of Denmark

Abstract
The analysis of randomized search heuristics on classes of functions is fundamental for the under-
standing of the underlying stochastic process and the development of suitable proof techniques.
Recently, remarkable progress has been made in bounding the expected optimization time of
the simple (1+1) EA on the class of linear functions. We improve the best known bound in
this setting from (1.39 + o(1))en lnn to en lnn+O(n) in expectation and with high probability,
which is tight up to lower-order terms. Moreover, upper and lower bounds for arbitrary muta-
tions probabilities p are derived, which imply expected polynomial optimization time as long as
p = O((lnn)/n) and which are tight if p = c/n for a constant c. As a consequence, the standard
mutation probability p = 1/n is optimal for all linear functions, and the (1+1) EA is found to be
an optimal mutation-based algorithm. Furthermore, the algorithm turns out to be surprisingly
robust since large neighborhood explored by the mutation operator does not disrupt the search.

1998 ACM Subject Classification F.2 [Analysis of algorithms and problem complexity]

Keywords and phrases Randomized Search Heuristics, Evolutionary Algorithms, Linear Func-
tions, Running Time Analysis

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.420

1 Introduction

Consider the following modified Coupon Collector process. The n bins, initially all empty,
have weights. At each time step, go through the bins and flip the state (full/empty) of each
bin independently with probability 1/n. Then check whether the total weight of the full bins
has decreased compared to the previous time step. If so, restore the previous configuration,
otherwise keep the new one. How long does it take until all bins are full at the same time?

If all bins weigh the same, then an O(n logn) bound on the expected time follows along
the famous analysis of the Coupon Collector Problem. However, if the weights are different,
then the analysis becomes much more involved. In fact, this problem has been studied for
more than a decade in the analysis of randomized search heuristics (RSH) and is known as
the linear function problem there.

RSHs are general problem solvers that may be used when no problem-specific algorithm
is available. Famous examples are simulated annealing, evolutionary computation, tabu
search etc. In order to understand the working principles of RSHs, and to give theoretically
founded advice on the applicability of certain RSHs, rigorous analyses of the runtime of
RSHs have been conducted. This is a growing research area where many results have been
obtained in recent years. It started off in the early 1990’s [15] with the consideration of very
simple evolutionary algorithms such as the well-known (1+1) EA on very simple example
functions such as the well-known OneMax function. Later on, results regarding the runtime
on classes of functions were derived [9, 11, 19, 20, e. g.] and important tools for the analysis

© Carsten Witt;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 420–431

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.420
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Witt 421

were developed. Nowadays the state of the art in the field allows for the analysis of different
types of search heuristics on problems from combinatorial optimization [16].

Recently, the analysis of evolutionary algorithms on linear functions has experienced
a great renaissance. The first proof that the (1+1) EA optimizes any linear function in
expected time O(n logn) by Droste et al. [9] was highly technical since it did not yet explicitly
use the analytic framework of drift analysis [10], which allowed for a considerably simplified
proof of the O(n logn) bound, see He and Yao [12] for the first complete proof using the
method.1 Another major improvement was made by Jägersküpper [13], who for the first time
stated bounds on the implicit constant hidden in the O(n logn) term. This constant was
finally improved by Doerr et al. [6] to the bound (1.39 + o(1))en lnn using a clean framework
for the analysis of multiplicative drift [7]. The best known lower bound for general linear
functions with non-zero weights is en lnn − O(n) and was also proven by Doerr et al. [6],
building upon the OneMax function analyzed by Doerr et al. [3, 4].

The standard (1+1) EA flips each bit with probability p = 1/n but also different values
for the mutation probability p have been studied in the literature. Recently, it has been
proved by Doerr and Goldberg [5] that the O(n logn) bound on the expected optimization
time of the (1+1) EA still holds (also with high probability) if p = c/n for an arbitrary
constant c. This result uses the multiplicative drift framework mentioned above and a drift
function being cleverly tailored towards the particular linear function. However, the analysis
is also highly technical and does not yield explicit constants in the O-term. For p = ω(1/n),
no runtime analyses were known so far.

In this paper, we prove that the (1+1) EA optimizes all linear functions in expected
time en lnn+O(n), thereby closing the gap between the upper and the lower bound up to
terms of lower order. Moreover, we show a general upper bound depending on the mutation
probability p, which implies that the expected optimization time is polynomial as long as
p = O((lnn)/n) (and p = Ω(1/poly(n))). Since the expected optimization time is proved
to be superpolynomial for p = ω((lnn)/n), this implies a phase transition in the regime
Θ((lnn)/n). If the mutation probability is c/n for some constant c, the expected optimization
time is proved to be (1 ± o(1)) e

c

c n lnn. Altogether, we obtain that the standard choice
p = 1/n of the mutation probability is optimal for all linear functions. In fact, the lower
bounds turn out to hold for the large class of so-called mutation-based EAs, in which the
(1+1) EA with p = 1/n is found to be an optimal algorithm.

Our findings are interesting both from a theoretical and practical perspective. On the
theoretical side, it is noteworthy that ec

c is basically the expected waiting time for a mutation
step that changes only a single bit. Hence, the mutation operator (in conjunction with the
acceptance criterion) is surprisingly robust in the sense that steps flipping many bits do
neither help nor harm. On the practical side, the optimality of p = 1/n is remarkable since
this seems to be the choice that is most often recommended by researchers in evolutionary
computation [2]. Furthermore, the fact that the (1+1) EA is an optimal mutation-based
algorithm emphasizes that it reflects the working principles of more complex EAs and that
its runtime analysis can be crucial for obtaining results for more complex approaches.

The proofs of the upper bounds use the recent multiplicative drift theorem and a drift
function adapted towards both the linear function and the mutation probability. As a
consequence from our main result, we obtain the results by Doerr and Goldberg [5] with
less effort and explicit constants in front of the n lnn-term. All these bounds hold also with

1 Note, however, that not the original (1+1) EA but a variant rejecting offspring of equal fitness is studied
in that paper.

STACS’12

422 Optimizing Linear Functions with Randomized Search Heuristics

high probability, which follows from the recent tail bounds added to the multiplicative drift
theorem by Doerr and Goldberg [5]. The lower bounds are based on a new multiplicative
drift theorem for lower bounds. By deriving very exact results, we show that the research
area is maturing and provides for very strong and, at the same time, general tools.

This paper is structured as follows. Section 2 sets up definitions, notations and other
preliminaries. Section 3 summarizes and explains the main results. In Sections 4 and 5,
respectively, we prove an upper bound for general mutation probabilities and a refined result
for p = 1/n. Lower bounds are shown in Section 6. We finish with some conclusions. Due to
space limitations, several proofs had to be omitted from this paper.

2 Preliminaries

The (1+1) EA is a basic search heuristic for the optimization of pseudo-boolean functions
f : {0, 1}n → R. It reflects the typical behavior of more complicated evolutionary algorithms,
serves as basis for the study of more complex approaches and is therefore intensively
investigated in the theory of RSHs [1]. For the case of minimization, it is defined as
Algorithm 1.

Algorithm 1 (1+1) EA
t := 0.
choose uniformly at random an initial bit string x0 ∈ {0, 1}n.
repeat
create x′ by flipping each bit in xt independently with prob. p ≤ 1/2 (mutation).
xt+1 := x′ if f(x′) ≤ f(xt), and xt+1 := xt otherwise (selection).
t := t+ 1.

until forever.

The (1+1) EA can be considered a simple hill-climber where search points are drawn
from a stochastic neighborhood based on the mutation operator. The parameter p, where
0 < p ≤ 1/2, is often chosen as 1/n, which then is called standard mutation probability.
We call a mutation from xt to x′ accepted if f(x′) ≤ f(xt), i. e., if the new search point
is taken over; otherwise we call it rejected. In our theoretical studies, we ignore the fact
that the algorithm in practice will be stopped at some time. The runtime (synonymously,
optimization time) of the (1+1) EA is defined as the first random point in time t such that
the search point xt has optimal, i. e., minimum f -value. This corresponds to the number
of f -evaluations until reaching the optimum. In many cases, one is aiming for results on
the expected optimization time. Here, we also prove results that hold with high probability,
which means probability 1− o(1).

The (1+1) EA is also an instantiation of the algorithmic scheme that is called mutation-
based EA by Sudholt [17] and is displayed as Algorithm 2. It is a general population-based
approach that includes many variants of evolutionary algorithms with parent and offspring
populations as well as parallel evolutionary algorithms. Any mechanism for managing the
populations, which are multisets, is allowed as long as the mutation operator is the only
variation operator and follows the independent bit-flip property with probability 0 < p ≤ 1/2.
Again the smallest t such that xt is optimal defines the runtime. Sudholt has proved for
p = 1/n that no mutation-based EA can locate a unique optimum faster than the (1+1) EA
can optimize OneMax. We will see that the (1+1) EA is the best mutation-based EA on a
broad class of functions, also for different mutation probabilities.

C. Witt 423

Algorithm 2 Scheme of a mutation-based EA
for t := 0→ µ− 1 do
choose xt ∈ {0, 1}n uniformly at random.

end for
repeat
select a parent x ∈ {x0, . . . , xt} according to t and f(x0), . . . , f(xt).
create xt+1 by flipping each bit in x independently with probability p ≤ 1/2.
t := t+ 1.

until forever.

Throughout this paper, we deal with linear functions. A function f : {0, 1}n → R is
called linear if it can be written as f(xn, . . . , x1) = wnxn + · · ·+ w1x1 + w0. As common in
the analysis of the (1+1) EA, we assume w. l. o. g. that w0 = 0 and wn ≥ · · · ≥ w1 > 0 hold.
Search points are read from xn down to x1 such that xn, the most significant bit, is said
to be on the left-hand side and x1, the least significant bit, on the right-hand side. Since
it fits the proof techniques more naturally, we assume also w. l. o. g. that the (1+1) EA (or,
more generally, the mutation-based EA at hand) is minimizing f , implying that the all-zeros
string is the optimum. Our assumptions do not lose generality since we can permute bits
and negate the weights of a linear function without affecting the stochastic behavior of the
(1+1) EA/mutation-based EA.

The probably best-studied linear function is OneMax(xn, . . . , x1) = xn + · · ·+ x1, occa-
sionally also called the CountingOnes problem (which would be the more appropriate name
here since we will be minimizing the function). In this paper, we will see that on the one
hand, OneMax is not only the easiest linear function definition-wise but also in terms of
expected optimization time. On the other hand, the upper bounds obtained for OneMax
hold for every linear function up to lower-order terms. Hence, surprisingly the (1+1) EA is
basically as efficient on an arbitrary linear function as it is on OneMax. This underlines
the robustness of the randomized search heuristic and, in retrospect and for the future, is a
strong motivation to investigate the behavior of RSHs on the OneMax problem thoroughly.

Our proofs of the forthcoming upper bounds use the multiplicative drift theorem in its
most recent version (cf. [5] and [7]). The key idea of multiplicative drift is to identify a
time-independent relative progress called drift.

I Theorem 1 (Multiplicative Drift, Upper Bound). Let S ⊆ R be a finite set of positive
numbers with minimum 1. Let {X(t)}t≥0 be a sequence of random variables over S ∪ {0}.
Let T be the random first point in time t ≥ 0 for which X(t) = 0.

Suppose that there exists a δ > 0 such that

E(X(t) −X(t+1) | X(t) = s) ≥ δs

for all s ∈ S with Prob(X(t) = s) > 0. Then for all s0 ∈ S with Prob(X(0) = s0) > 0,

E(T | X(0) = s0) ≤ ln(s0) + 1
δ

.

Moreover, it holds that Prob(T > (ln(s0) + t)/δ)) ≤ e−t.

As an easy example application, consider the (1+1) EA on OneMax and let X(t) denote
the number of one-bits at time t. As worse search points are not accepted, X(t) is non-
increasing over time. We obtain E(X(t) −X(t+1) | X(t) = s) ≥ s(1/n)(1−1/n)n−1 ≥ s/(en),

STACS’12

424 Optimizing Linear Functions with Randomized Search Heuristics

in other words a multiplicative drift of at least δ = 1/(en), since there are s disjoint single-bit
flips that decrease the X-value by 1. Theorem 1 applied with δ = 1/(en) and ln(X(0)) ≤ lnn
gives us the upper bound en(lnn+ 1) on the expected optimization time, which is basically
the same as the classical method of fitness-based partitions [17, 18] or coupon collector
arguments [14] would yield.

On a general linear function, it is not necessarily a good choice to let X(t) count the
current number of one-bits. Consider, e. g., the well-known function BinVal(xn, . . . , x1) =∑n
i=1 2i−1xi. The (1+1) EA might replace the search point (1, 0, . . . , 0) by the better search

point (0, 1, . . . , 1), amounting to a loss of n−2 zero-bits. More generally, replacing (1, 0, . . . , 0)
by a better search point is equivalent to flipping the leftmost one-bit. In such a step, an
expected number of (n− 1)p zero-bits flip, which decreases the expected number of zero-bits
by only 1− (n− 1)p. The latter expectation (the so-called additive drift) is only 1/n for the
standard mutation probability p = 1/n and might be negative for larger p. Therefore, X(t)

is typically defined as X(t) := g(x(t)), where x(t) is the current search point at time t and
g(xn, . . . , x1) is another linear function called drift function or potential function. Doerr et al.
[7] use x1 + · · ·+ xn/2 + (5/4)(xn/2+1 + · · ·+ xn) as potential function in their application of
the multiplicative drift theorem. This leads to a good lower bound on the multiplicative drift
on the one hand and a small maximum value of X(t) on the other hand. In our proofs of
upper bounds in the Sections 4 and 5, it is crucial to define appropriate potential functions.

For the lower bounds in Section 6, we need the following variant of the multiplicative
drift theorem.

I Theorem 2 (Multiplicative Drift, Lower Bound). Let S ⊆ R be a finite set of positive
numbers with minimum 1. Let {X(t)}t≥0 be a sequence of random variables over S, where
X(t+1) ≤ X(t) for any t ≥ 0, and let smin > 0. Let T be the random first point in time t ≥ 0
for which X(t) ≤ smin. If there exist positive reals β, δ ≤ 1 such that for all s > smin and all
t ≥ 0 with Prob(X(t) = s) > 0 it holds that
1. E

(
X(t) −X(t+1) | X(t) = s

)
≤ δs,

2. Prob(X(t) −X(t+1) ≥ βs | X(t) = s) ≤ βδ/ln s,
then for all s0 ∈ S with Prob(X(0) = s0) > 0,

E
(
T | X(0) = s0

)
≥ ln(s0)− ln(smin)

δ
· 1− β

1 + β
.

The lower-bound version includes a condition on the maximum stepwise progress and
requires monotonicity since the upper bound can be very pessimistic otherwise. As a technical
detail, we allows for a positive target smin, which is required in our applications.

3 Summary of Main Results

We now list the main consequences from the lower bounds and upper bounds that we will
prove in the following sections.

I Theorem 3. On any linear function, the following holds for the expected optimization
time E(Tp) of the (1+1) EA with mutation probability p.
1. If p = ω((lnn)/n) or p = o(1/poly(n)) then E(Tp) is superpolynomial.
2. If p = Ω(1/poly(n)) and p = O((lnn)/n) then E(Tp) is polynomial.
3. If p = c/n for a constant c then E(Tp) = (1± o(1)) e

c

c n lnn.
4. E(Tp) is minimized for mutation probability p = 1/n if n is large enough.
5. No mutation-based EA has an expected optimization time that is smaller than E(T1/n)

(up to lower-order terms).

C. Witt 425

In fact, our forthcoming analyses are more precise; in particular, we do not state available
tails on the upper bounds above and leave them in the more general, but also more complicated
Theorem 4 in Section 4. The first statement of our summarizing Theorem 3 follows from
the Theorems 10 and 11 in Section 6. The second statement is proven in Corollary 6, which
follows from the already mentioned Theorem 4. The third statement takes together the
Corollaries 5 and 12. Since ec/c is minimized for c = 1, the fourth statement follows from
the third one in conjunction with Corollary 12. The fifth statement is also contained in the
Theorems 10 and 11.

It is worth noting that the optimality of p = 1/n apparently was never proven rigorously
before, not even for the case of OneMax2, where tight upper and lower bounds on the
expected optimization time were only available for the standard mutation probability [4, 17].
For the general case of linear functions, the strongest previous result said that p = Θ(1/n) is
optimal [9]. Our result on the optimality of the mutation probability 1/n is interesting since
this is the commonly recommended choice by practitioners.

4 Upper Bounds

In this section, we show a general upper bound that applies to any non-trivial mutation
probability.

I Theorem 4. On any linear function, the optimization time of the (1+1) EA with mutation
probability 0 < p ≤ 1/2 is at most

(1− p)1−n
(
nα2(1− p)1−n

α− 1 + α

α− 1
ln(1/p) + (n− 1) ln(1− p) + t

p

)
=: b(t)

with probability at least 1− e−t, and it is at most b(1) in expectation, where α > 1 can be
chosen arbitrarily (also depending on n).

Before we prove the theorem, we note two important consequences in more readable
form. The first one (Corollary 5) displays upper bounds for mutation probabilities c/n.
The second one (Corollary 6) is used in Theorem 3 above, which states a phase transition
from polynomial to superpolynomial expected optimization times at mutation probability
p = Θ((lnn)/n).

I Corollary 5. On any linear function, the optimization time of the (1+1) EA with mutation
probability p = c/n, where c > 0 is a constant, is bounded from above by (1+o(1))((ec/c)n lnn)
with probability 1− o(1) and also in expectation.

I Corollary 6. On any linear function, the optimization time of the (1+1) EA with mutation
probability p = O((lnn)/n) and p = Ω(1/poly(n)) is polynomial with probability 1− o(1) and
also in expectation.

The proof of Theorem 4 uses an adaptive potential function as in Doerr and Goldberg [5].
That is, the random variables X(t) used in Theorem 1 map the current search point of the
(1+1) EA via a potential function to some value in a way that depends also on the linear
function at hand. As a special case, if the given linear function happens to be OneMax,
X(t) just counts the number of one-bits at time t. The general construction shares some

2 However, a recent technical report extending Sudholt [17] shows the optimality of p = 1/n in the case
of OneMax using a different approach, see http://arxiv.org/abs/1109.1504.

STACS’12

http://arxiv.org/abs/1109.1504

426 Optimizing Linear Functions with Randomized Search Heuristics

similarities with the one in Doerr and Goldberg [5], but both construction and proof are
significantly less involved. Moreover, we can also consider p = ω(1/n).

Proof of Theorem 4. Let f(x) = wnxn + · · ·+ w1x1 be the linear function at hand. Define

γi :=
(

1 + αp

(1− p)n−1

)i−1

for 1 ≤ i ≤ n, and let g(x) = gnxn + · · · + g1x1 be the potential function defined by
g1 := 1 = γ1 and

gi := min
{
γi, gi−1 ·

wi
wi−1

}
for 2 ≤ i ≤ n. Note that the gi are non-decreasing w. r. t. i. Intuitively, if the ratio of wi
and wi−1 is too extreme, the minimum function caps it appropriately, otherwise gi and gi−1
are in the same ratio. We consider the stochastic process X(t) := g(a(t)), where a(t) is the
current search point of the (1+1) EA at time t. Obviously, X(t) = 0 if and only if f has been
optimized.

Let ∆t := X(t) −X(t+1). We will show below that

E(∆t | X(t) = s) ≥ s · p · (1− p)n−1 ·
(

1− 1
α

)
. (∗)

The initial value satisfies

X(0) ≤ gn + · · ·+ g1 ≤
n∑
i=1

γi ≤

(
1 + αp

(1−p)n−1

)n
− 1

αp(1− p)1−n ≤ enαp(1−p)
1−n

αp(1− p)1−n ,

which means

ln(X(0)) ≤ nαp(1− p)1−n + ln(1/p) + ln((1− p)n−1).

The multiplicative drift theorem (Theorem 1) yields that the optimization time T is bounded
from above by

ln(X0) + t

p(1− p)n−1(1− 1/α) ≤
α
(
nαp(1− p)1−n + ln(1/p) + ln((1− p)n−1) + t

)
(α− 1)p(1− p)n−1 = b(t)

with probability at least 1− e−t, and E(T) = b(1), which proves the theorem.
To show (∗), we fix an arbitrary current value s and an arbitrary search point a(t)

satisfying g(a(t)) = s . In the following, we implicitly assume X(t) = s but mostly omit this
for the sake of readability. We denote by I := {i | a(t)

i = 1} the index set of the one-bits
in a(t) and by Z := {1, . . . , n} \ I the zero-bits. We assume I 6= ∅ since there is nothing to
show otherwise. Denote by a′ the random (not necessarily accepted) offspring produced by
the (1+1) EA when mutating a(t) and by a(t+1) the next search point after selection. Recall
that a(t+1) = a′ if and only if f(a′) ≤ f(a(t)). In the following, we will use the event A that
a(t+1) = a′ 6= a(t) since obviously ∆t = 0 otherwise. Let I∗ := {i ∈ I | a′i = 0} be the random
set of flipped one-bits and Z∗ := {i ∈ Z | a′i = 1} be the set of flipped zero-bits in a′ (not
conditioned on A). Note that I∗ 6= ∅ if A occurs.

We need further definitions to analyze the drift carefully. For i ∈ I, we define k(i) :=
max{j ≤ i | gj = γj} as the most significant position to the right of i (possibly i itself)
where the potential function might be capping; note that k(i) ≥ 1 since g1 = γ1. Let

C. Witt 427

L(i) := {k(i), . . . , n} ∩ Z be the set of zero-bits left of (and including) k(i) and let R(i) :=
{1, . . . , k(i)− 1} ∩ Z be the remaining zero-bits. Both sets may be empty. For event A to
occur, it is necessary that there is some i ∈ I such that bit i flips to zero and∑

j∈I∗

wj −
∑

j∈Z∗∩L(i)

wj ≥ 0

since we are taking only zero-bits out of consideration. Now, for i ∈ I, let Ai be the event
that
1. i is the leftmost flipping one-bit (i. e., i ∈ I∗ and {i+ 1, . . . , n} ∩ I∗ = ∅) and
2.
∑
j∈I∗ wj −

∑
j∈Z∗∩L(i) wj ≥ 0.

If none of the Ai occurs, ∆t = 0. Furthermore, the Ai are mutually disjoint.
For any i ∈ I, ∆t can be written as the sum of the two terms

∆L(i) :=
∑
j∈I∗

gj −
∑

j∈Z∗∩L(i)

gj and ∆R(i) := −
∑

j∈Z∗∩R(i)

gj .

By the law of total probability and the linearity of expectation, we have

E(∆t) =
∑
i∈I

E(∆L(i) | Ai) · Prob(Ai) + E(∆R(i) | Ai) · Prob(Ai). (∗∗)

In the following, the bits in R(i) are pessimistically assumed to flip to 1 independently with
probability p each if Ai happens. This leads to E(∆R(i) | Ai) ≥ −p

∑
j∈R(i) gj .

In order to estimate E(∆L(i)), we carefully inspect the relation between the weights of
the original function and the potential function. By definition, we obtain gj/gk(i) = wj/wk(i)
for k(i) ≤ j ≤ i and gj/gk(i) ≤ wj/wk(i) for j > i whereas gj/gk(i) ≥ wj/wk(i) for j < k(i).
Hence, if Ai occurs then gj ≥ gk(i) ·

wj

wk(i)
for j ∈ I∗ (since i is the leftmost flipping one-bit)

whereas gj ≤ gk(i) ·
wj

wk(i)
for j ∈ L(i). Together, we obtain under A(i) the nonnegativity of

the random variable ∆L(i):

∆L(i) | Ai =
∑

j∈I∗|Ai

gj −
∑

j∈(Z∗∩L(i))|Ai

gj

≥
∑

j∈I∗|Ai

gk(i) ·
wj
wk(i)

−
∑

j∈(Z∗∩L(i))|Ai

gk(i) ·
wj
wk(i)

≥ 0

using the definition of Ai.
Now let Si := {|Z∗ ∩ L(i)| = 0} be the event that no zero-bit from L(i) flips. Using the

law of total probability, we obtain that

E(∆L(i) | Ai) · Prob(Ai) = E(∆L(i) | Ai ∩ Si) · Prob(Ai ∩ Si)
+ E(∆L(i) | Ai ∩ Si) · Prob(Ai ∩ Si).

Since ∆L(i)|Ai ≥ 0, the conditional expectations are non-negative. We bound the second
term on the right-hand side by 0. In conjunction with (∗∗), we get

E(∆t) ≥
∑
i∈I

E(∆L(i) | Ai ∩ Si) · Prob(Ai ∩ Si) + E(∆R(i) | Ai) · Prob(Ai).

Obviously, E(∆L(i) | Ai ∩ Si) ≥ gi. We estimate Prob(Ai ∩ Si) ≥ p(1− p)n−1 since it is
sufficient to flip only bit i and Prob(Ai) ≤ p since it is necessary to flip this bit. Further

STACS’12

428 Optimizing Linear Functions with Randomized Search Heuristics

above, we have bounded E(∆R(i) | Ai). Taking everything together, we get

E(∆t) ≥
∑
i∈I

p(1− p)n−1gi − p2
∑
j∈R(i)

gj


≥
∑
i∈I

p(1− p)n−1 gi
gk(i)

γk(i) − p2
k(i)−1∑
j=1

γj

 .

The term for i equals

p(1− p)n−1 gi
gk(i)

(
1 + αp

(1− p)n−1

)k(i)−1
−
p2 ·

((
1 + αp

(1−p)n−1

)k(i)−1
− 1
)

(
αp

(1−p)n−1

)
≥
(

1− 1
α

)
p(1− p)n−1 gi

gk(i)

(
1 + αp

(1− p)n−1

)k(i)−1
=
(

1− 1
α

)
p(1− p)n−1gi,

where the inequality uses gi ≥ gk(i). Hence,

E(∆t) ≥
∑
i∈I

(
1− 1

α

)
p(1− p)n−1gi =

(
1− 1

α

)
p(1− p)n−1g(a(t)),

which proves (∗), and, therefore, the theorem. �

5 Refined Upper Bound for Mutation Probability 1/n

In this section, we consider the standard mutation probability p = 1/n and refine the result
from Corollary 5. More precisely, we obtain that the lower order-terms are O(n). The proof
is shorter and uses a simpler potential function.

I Theorem 7. On any linear function, the expected optimization time of the (1+1) EA with
p = 1/n is at most en lnn+2en+O(1), and the probability that the optimization time exceeds
en lnn+ (1 + t)en+O(1) is at most e−t.

6 Lower Bounds

In this section, we state lower bounds that prove the results from Theorem 4 to be tight up
to lower-order terms for a wide range of mutation probabilities. Moreover, we show that the
lower bounds hold for the very large class of mutation-based algorithms (Algorithm 2). Recall
that a list of the most important consequences is given above in Theorem 3. For technical
reasons, we split the proof of the lower bounds into two main cases, namely p = O(n−2/3−ε)
and p = Ω(nε−1) for any constant ε > 0. The proofs go back to OneMax as a worst case, as
outlined in the following subsection.

6.1 OneMax as Easiest Linear Function
Doerr et al. [6] show with respect to the (1+1) EA with standard mutation probability 1/n
that OneMax is the “easiest” function from the class of functions with unique global optimum,
which comprises the class of linear functions. More precisely, the expected optimization time
on OneMax is proved to be smallest within the class.

C. Witt 429

We will generalize this result to p ≤ 1/2 with moderate additional effort. In fact, we will
relate the behavior of an arbitrary mutation-based EA on OneMax to the (1+1) EAµ in
a similar way to Sudholt [17, Section 7]. The latter algorithm, displayed as Algorithm 3,
creates search points uniformly at random from time 0 to time µ − 1 and then chooses a
best one from these to be the current search point at time µ− 1; afterwards it works as the
standard (1+1) EA. Note that we obtain the standard (1+1) EA for µ = 1. Moreover, we will
only consider the case µ = poly(n) in order to bound the running time of the initialization.
This makes sense since a unique optimum (such as the all-zeros string for OneMax) is with
overwhelming probability not found even when drawing 2

√
n random search points.

Algorithm 3 (1+1) EAµ
for t := 0→ µ− 1 do
choose xt ∈ {0, 1}n uniformly at random.

end for
xt := arg min{f(x) | x ∈ {x0, . . . , xt}} (breaking ties uniformly).
repeat
create x′ by flipping each bit in xt independently with prob. p.
xt+1 := x′ if f(x′) ≤ f(xt), and xt+1 := xt otherwise.
t := t+ 1.

until forever.

Our analyses need the monotonicity statement from Lemma 8 below, which is similar to
Lemma 11 in Doerr et al. [6] and whose proof is already sketched in Droste et al. [8, Section 5].
Note, however, that Doerr et al. [6] only consider p = 1/n and have a stronger statement for
this case. More precisely, they show Prob(|mut(a)|1 = j) ≥ Prob(|mut(b)|1 = j), which does
not hold for large p. Here and hereinafter, |x|1 denotes the number of ones in a bit string x.
I Lemma 8. Let a, b ∈ {0, 1}n be two search points satisfying |a|1 < |b|1. Denote by mut(x)
the random string obtained by mutating each bit of x independently with probability p. Let
0 ≤ j ≤ n be arbitrary. If p ≤ 1/2 then Prob(|mut(a)|1 ≤ j) ≥ Prob(|mut(b)|1 ≤ j).

The following theorem is a generalization of Theorem 9 by Doerr et al. [6] to the
case p ≤ 1/2 instead of p = 1/n. However, we not only generalize to higher mutation
probabilities, but also also consider the more general class of mutation-based algorithms.
Finally, we prove stochastic ordering, while Doerr et al. [6] inspect only the expected
optimization times. Still, many ideas of the original proof can be taken over and be combined
with the proof of Theorem 5 in Sudholt [17].
I Theorem 9. Consider a mutation-based EA A with population size µ and mutation
probability p ≤ 1/2 on any function with unique global optimum. Then the optimization
time of A is stochastically at least as large as the optimization time of the (1+1) EAµ on
OneMax.

6.2 Large Mutation Probabilities
It is not too difficult to show that mutation probabilities p = Ω(nε−1), where ε > 0 is an
arbitrary constant, make the (1+1) EA (and also the (1+1) EAµ) flip too many bits for it to
optimize linear functions efficiently.
I Theorem 10. On any linear function, the optimization time of an arbitrary mutation-based
EA with µ = poly(n) and p = Ω(nε−1) for some constant ε > 0, is bounded from below by
2Ω(nε) with probability 1− 2−Ω(nε).

STACS’12

430 Optimizing Linear Functions with Randomized Search Heuristics

6.3 Small Mutation Probabilities

We now turn to mutation probabilities that are bounded from above by roughly 1/n2/3. Here
quite precise lower bounds can be obtained.

I Theorem 11. On any linear function, the expected optimization time of an arbitrary
mutation-based EA with µ = poly(n) and p = O(n−2/3−ε) is bounded from below by (1− o(1))·
(1− p)−n(1/p) min{lnn, ln(1/(p3n2))}.

As a consequence from Theorem 11, we obtain that the bound from Theorem 4 is tight
(up to lower-order terms) for the (1+1) EA as long as ln(1/(p3n2)) = lnn − o(lnn). This
condition is weaker than p = O((lnn)/n). If p = ω((lnn)/n) or p = o(1/poly(n)), then
Theorem 11 in conjunction with Theorem 10 imply superpolynomial expected optimization
time. Thus, the bounds are tight for all p that allow polynomial optimization times.

We state another important consequence, implying the statement from Theorem 3 that
using the (1+1) EA with mutation probability 1/n is optimal for any linear function.

I Corollary 12. On any linear function, the expected optimization time of a mutation-based
EA with µ = poly(n) and p = c/n, where c > 0 is a constant, is bounded from below by
(1 − o(1))((ec/c)n lnn). If p = ω(1/n) or p = o(1/n), the expected optimization time is
ω(n lnn).

Finally, we remark that the expected optimization time of the (1+1) EA with p = 1/n
on OneMax is known to be en lnn−Θ(n) [4]. Hence, in conjunction with the Theorems 7
and 9, we obtain for p = 1/n that the expected optimization time of the (1+1) EA varies by
at most an additive term Θ(n) within the class of linear functions.

Conclusions

We have presented new bounds on the expected optimization time of the simple (1+1) EA
on the class of linear functions. The results are now tight up to lower-order terms, which
applies to any mutation probability p = O((lnn)/n). This means that 1/n is the optimal
mutation probability on any linear function. We have for the first time studied the case
p = ω(1/n) and proved a phase transition from polynomial to exponential running time in
the regime Θ((lnn)/n). The lower bounds show that OneMax is the easiest linear function,
and they apply not only to the (1+1) EA but also to the large class of mutation-based EAs.
They so exhibit the (1+1) EA as optimal mutation-based algorithm on linear functions. The
upper bounds hold with high probability. The analyses shed light on the working principles
of randomized search heuristics on simple problems and prove that they can be surprisingly
robust with respect to their parametrization. As proof techniques, we have used and further
developed multiplicative drift analysis in conjunction with adaptive potential functions. In
the future, we are confident to see these techniques applied to the analysis of other RSHs.

Acknowledgments

The author thanks Benjamin Doerr, Timo Kötzing, Per Kristian Lehre, Dirk Sudholt and
Carola Winzen for insightful discussions and useful suggestions. Moreover, he thanks Daniel
Johannsen for pointing out a simplification of the proof of Theorem 4.

C. Witt 431

References
1 Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics – Foundations

and Recent Developments. World Scientific Publishing, 2011.
2 Thomas Bäck. Optimal mutation rates in genetic search. In Proc. of ICGA ’93, pages 2–8.

Morgan Kaufmann, 1993.
3 Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Quasirandom evolutionary algorithms.

In Proc. of GECCO ’10, pages 1457–1464. ACM Press, 2010.
4 Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Sharp bounds by probability-

generating functions and variable drift. In Proc. of GECCO ’11, pages 2083–2090. ACM
Press, 2011.

5 Benjamin Doerr and Leslie Ann Goldberg. Adaptive drift analysis. Algorithmica, 2012. To
appear; preprint: http://arxiv.org/abs/1108.0295.

6 Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Drift analysis and linear functions
revisited. In Proc. of CEC ’10, pages 1–8. IEEE Press, 2010.

7 Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. In
Proc. of GECCO ’10, pages 1449–1456. ACM Press, 2010.

8 Stefan Droste, Thomas Jansen, and Ingo Wegener. A natural and simple funtions which is
hard for all evolutionary algorithms. In Proc. of IECON ’00, pages 2704–2709, 2000. DOI:
10.1109/IECON.2000.972425.

9 Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolution-
ary algorithm. Theoretical Computer Science, 276:51–81, 2002.

10 Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with
applications. Advances in Applied Probability, 13(3):502–525, 1982.

11 Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms.
Artificial Intelligence, 127:57–85, 2001.

12 Jun He and Xin Yao. A study of drift analysis for estimating computation time of evolu-
tionary algorithms. Natural Computing, 3(1):21–35, 2004.

13 Jens Jägersküpper. A blend of markov-chain and drift analysis. In Proc. of PPSN ’08,
volume 5199 of LNCS, pages 41–51. Springer, 2008.

14 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

15 Heinz Mühlenbein. How genetic algorithms really work: I. Mutation and hillclimbing. In
Proc. of PPSN ’92, pages 15–26. Elsevier, 1992.

16 Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial Opti-
mization – Algorithms and Their Computational Complexity. Natural Computing Series.
Springer, 2010.

17 Dirk Sudholt. General lower bounds for the running time of evolutionary algorithms. In
Proc. of PPSN ’10, volume 6238 of LNCS, pages 124–133. Springer, 2010. Extended version:
http://arxiv.org/abs/1109.1504.

18 Ingo Wegener. Methods for the analysis of evolutionary algorithms on pseudo-Boolean
functions. In Ruhul Sarker, Masoud Mohammadian, and Xin Yao, editors, Evolutionary
Optimization. Kluwer Academic Publishers, 2001.

19 Ingo Wegener and Carsten Witt. On the analysis of a simple evolutionary algorithm on
quadratic pseudo-boolean functions. Journal of Discrete Algorithms, 3(1):61–78, 2005.

20 Ingo Wegener and Carsten Witt. On the optimization of monotone polynomials by simple
randomized search heuristics. Combinatorics, Probability & Computing, 14(1-2):225–247,
2005.

STACS’12

http://arxiv.org/abs/1108.0295
http://arxiv.org/abs/1109.1504

	Introduction
	Preliminaries
	Summary of Main Results
	Upper Bounds
	Refined Upper Bound for Mutation Probability 1/n
	Lower Bounds
	OneMax as Easiest Linear Function
	Large Mutation Probabilities
	Small Mutation Probabilities

