
HAL Id: hal-00678160
https://hal.science/hal-00678160

Submitted on 3 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Motion planning with pulley, rope, and baskets
Christian E.J. Eggermont, Gerhard J. Woeginger

To cite this version:
Christian E.J. Eggermont, Gerhard J. Woeginger. Motion planning with pulley, rope, and baskets.
STACS’12 (29th Symposium on Theoretical Aspects of Computer Science), Feb 2012, Paris, France.
pp.374-383. �hal-00678160�

https://hal.science/hal-00678160
https://hal.archives-ouvertes.fr

Motion planning with pulley, rope, and baskets∗

Christian E.J. Eggermont1 and Gerhard J. Woeginger1

1 Department of Mathematics and Computer Science, TU Eindhoven, P.O. Box
513, 5600 MB Eindhoven, Netherlands

Abstract
We study a motion planning problem where items have to be transported from the top room of
a tower to the bottom of the tower, while simultaneously other items have to be transported into
the opposite direction. Item sets are moved in two baskets hanging on a rope and pulley. To
guarantee stability of the system, the weight difference between the contents of the two baskets
must always stay below a given threshold.

We prove that it is Πp
2-complete to decide whether some given initial situation of the un-

derlying discrete system can lead to a given goal situation. Furthermore we identify several
polynomially solvable special cases of this reachability problem, and we also settle the computa-
tional complexity of a number of related questions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases planning and scheduling; computational complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2012.374

1 Introduction

The Oxford mathematician Charles Lutwidge Dodgson (1832–1898) is better known under
his pseudonym Lewis Carroll. He is the author of books like “Alice’s Adventures in Won-
derland” and “Through the Looking-Glass”, and he has constructed a multitude of mathem-
atical puzzles. One of Carroll’s most famous problems is called “The Captive Queen” ; see
for instance Wakeling [10]:

“A captive queen and her son and daughter were shut up in the top room of a very
high tower. Outside their window was a pulley with a rope around it, and a basket
fastened to each end of the rope of equal weight. They managed to escape with the
help of this and a weight they found in the room, quite safely. It would have been
dangerous for any of them to come down if they weighed 15 lbs more than the content
of the other basket, for they would do so too quick, and they also managed not to
weigh less either. The one basket coming down would naturally of course draw the
other basket up.
The queen weighed 195 lbs, daughter 105, son 90, and the weight 75 lbs. How did
they all escape safely?”

In the initial situation queen, daughter, son, and weight are all up the tower and none of
them is at the bottom of the tower. This situation is denoted Q,D, S,W ‖ ∅, and we use a
similarly intuitive notation for other situations. The schedule in Figure 1 solves the Captive
Queen problem in eleven steps.

∗ This research has been supported by the Netherlands Organisation for Scientific Research (NWO),
grant 639.033.403, and by DIAMANT (an NWO mathematics cluster)

© Christian E.J. Eggermont and Gerhard J. Woeginger;
licensed under Creative Commons License NC-ND

29th Symposium on Theoretical Aspects of Computer Science (STACS’12).
Editors: Christoph Dürr, Thomas Wilke; pp. 374–383

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.374
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C.E.J. Eggermont and G.J.Woeginger 375

1. The weight is sent down Q, D, S ‖ W

2. The son goes down, the weight comes up Q, D, W ‖ S

3. The daughter goes down, and the son comes up Q, S, W ‖ D

4. The weight goes down Q, S ‖ D, W

5. The queen goes down; daughter and weight come up D, S, W ‖ Q

6. The weight falls down D, S ‖ Q, W

7. The son goes down, the weight comes up D, W ‖ Q, S

8. The daughter goes down, and the son comes up S, W ‖ Q, D

9. The son sends down the weight S ‖ Q, D, W

10. The son goes down, the weight comes up W ‖ Q, D, S

11. The weight falls to the ground ∅ ‖ Q, D, S, W

Figure 1 A feasible schedule for Lewis Carroll’s Captive Queen problem.

Mathematical formulation

Motivated by the Captive Queen problem, we will investigate the following motion planning
problem. Let I be a set of items, and let w(i) be the positive integer weight of item i ∈ I.
A state of the system is specified by an item set J ⊆ I at the top of the tower (and with
the remaining items in I − J located at the bottom of the tower). For J ⊆ I we throughout
denote w(J) =

∑
j∈J w(j), and as usual we let w(∅) = 0. The system can move directly

from state J ⊆ I to state K ⊆ I if

|w(J ∩ (I −K))− w(K ∩ (I − J))| ≤ ∆, (1)

where the positive integer bound ∆ specifies the maximum allowed weight difference between
the two exchanged subsets in the baskets. We say that state K is reachable from state J ,
if there is a sequence of moves that transforms J into K. Since inequality (1) is symmetric
in J and K, reachability is a symmetric relation. The decision version of our mathematical
motion planning problem is defined as follows.

Problem: Captive-Queen
Instance: A set I of items; positive integer weights w(i) for i ∈ I; a positive integer
bound ∆; two subsets I0, I1 ⊆ I.
Question: Is the goal state I1 reachable from the initial state I0?

Although problem Captive-Queen does not cover all the algorithmic features of Carroll’s
problem, we think that it does cover the most important ones. Note that the weight of
75 lbs in Carroll’s problem constitutes an indestructible item that can fall down with the
basket without obeying constraint (1); in our problem formulation, however, there are no
such indestructible items.

We will also discuss the following variant of Captive-Queen where the number of moves
is a priori bounded by m.

STACS’12

376 Motion planning with pulley, rope, and baskets

Problem: Captive-Queen-with-few-Moves
Instance: A set I of items; integer weights w(i) for i ∈ I; a bound ∆; two subsets
I0, I1 ⊆ I; an integer bound m that is encoded in unary.
Question: Is there a sequence of at most m moves that transforms the initial state I0
into the goal state I1?

The following example illustrates that there exist YES-instances of Captive-Queen for
which every feasible schedule has exponential length.

I Example 1. Consider the item set I = {0, 1, . . . , n− 1} with weights w(i) = 2i for i ∈ I.
The difference bound is ∆ = 1, the initial state is I0 = ∅, and the goal state is I1 = I.

Let J1, . . . , J2n be an enumeration of all 2n subsets of I in order of increasing weight.
By considering the binary representation of w(Jj) and w(Jj+1), one sees that the system
can move from every state Jj to the successor state Jj+1. Since J1 = I0 and J2n = I1,
there consequently exists a sequence of 2n − 1 moves that transforms state I0 into state I1.
Since every move increases the weight of the current state by at most ∆ = 1, every feasible
schedule must have length at least 2n − 1.

Our results
We establish a number of results on the algorithmic and combinatorial behavior of the
motion planning problems introduced above. As our main result, we precisely pinpoint the
computational complexity of the Captive-Queen problem: it is Πp

2-complete and hence
located at the second level of the polynomial hierarchy (Section 3). The variant Captive-
Queen-with-few-Moves turns out to be NP-complete. Next we show that certain natural
special cases of Captive-Queen are polynomially solvable:

the case with super-increasing weight sequences (Section 4.1);
the case with divisible weight sequences (Section 4.2).

These special cases originate from the literature around the knapsack problem (see for
instance the books [6, 4]). In Section 5 we finally characterize the computational complexity
of several related algorithmic problems:

recognizing isolated states in a system;
deciding whether every state in a system is isolated;
deciding whether a system contains some isolated state;
deciding whether all states in a system are reachable from each other.

We also discuss the restriction of these problems to super-increasing weight sequences and
to divisible weight sequences.

2 Preliminaries and first observations

We consider some fixed instance of Captive-Queen with item set I, weights w(i), difference
bound ∆, and initial state I0 and goal state I1. Throughout the paper we will assume without
loss of generality that w(I0) ≤ w(I1) (and otherwise we simply swap I0 and I1).

The following (straightforward) lemma provides a concise characterization of the possible
moves between states.

I Lemma 2. There is a direct move from state J ⊆ I to state K ⊆ I if and only if

|w(J)− w(K)| ≤ ∆. (2)

C.E.J. Eggermont and G.J.Woeginger 377

Proof. This follows since the inequalities in (1) and (2) are equivalent. J
The weight spectrum W1 < W2 < · · · < Wk of the Captive-Queen instance enumerates

the weights of all the subsets of I in increasing order. The weight spectrum between w(I0)
and w(I1) is the piece Wa < · · · < Wb of the weight spectrum starting with Wa = w(I0)
and ending with Wb = w(I1). The maximum gap between two bounds Wa and Wb is the
maximum of the values Wj+1 −Wj taken over j = a, . . . , b− 1.

The standard dynamic programming algorithm for the Subset-Sum problem generates
(as a by-product) a sorted list of the sums of all subsets of a given set of integers; see for
instance Cormen & al [2]. This yields the following.

I Lemma 3. The weight spectrum can be computed in pseudo-polynomial time O(nW),
where n = |I| and W =

∑
i∈I w(i). J

The following observation is an immediate consequence of Lemma 2.

I Corollary 4. The following three statements are pairwise equivalent.

(i) The goal state I1 is reachable from the initial state I0.
(ii) The maximum gap in the weight spectrum between w(I0) and w(I1) is at most ∆.
(iii) For every integer V with w(I0) ≤ V < w(I1), there exists an item set J ⊆ I such

that V < w(J) ≤ V + ∆.

Lemma 3 and Corollary 4.(ii) together imply that Captive-Queen and Captive-
Queen-with-few-Moves are solvable in pseudo-polynomial time.

3 Hardness of the Captive-Queen

In this section we will establish Captive-Queen to be Πp
2-complete and Captive-Queen-

with-few-Moves to be NP-complete.
Corollary 4.(iii) shows that the Captive-Queen problem can be rewritten into an equi-

valent question of the form ∀x∃y P (x, y) where P (x, y) is a Boolean predicate that can
be evaluated in polynomial time. The complexity class Πp

2 represents problems of exactly
this particular form with a universal quantifier followed by an existential quantifier (see for
instance Section 17.2 in Papadimitriou [7]). Hence we derive the following statement.

I Lemma 5. Problem Captive-Queen lies in Πp
2. J

The main part of this section is dedicated to proving Πp
2-hardness of the Captive-Queen

problem. The proof is done by means of a polynomial time reduction from the following
quantified satisfiability problem, which was shown to be Πp

2-complete by Stockmeyer [9].

Problem: 2-Quantified 3-CNF-Sat

Instance: Two sets X = {x1, . . . , xs} and Y = {y1, . . . , ys} of Boolean variables. A
Boolean formula φ(X,Y) over X ∪ Y in conjunctive normal with clauses c1, . . . , ct
where every (disjunctive) clause cj consists of exactly three literals.

Question: Is ∀x1, . . . , xs ∃y1, . . . , ys φ(X,Y) true?

We pick an arbitrary instance of 2-Quantified 3-CNF-Sat, and we will construct a
corresponding instance of Captive-Queen from it. In our construction every item weight
is specified in terms of its decimal representation, which consists of 3s + 2t digits that are
partitioned into five parts; see Figure 2 for an illustration.

STACS’12

378 Motion planning with pulley, rope, and baskets

The verification-part consists of the t left-most digits in the decimal representation, and
the clause-part consists of the t digits immediately to the right of the verification-part.
In both parts the jth digit from the right (1 ≤ j ≤ t) is said to correspond to clause cj .
The Y -part consists of the next s digits. In this part the ith digit from the right (1 ≤
i ≤ s) corresponds to variable yi.
The X-part consists of the next s digits (immediately to the right of the Y -part). The
ith digit from the right (1 ≤ i ≤ s) corresponds to the Boolean variable xi.
The control-part consists of the remaining s digits in the decimal representation. For
technical reasons, we will mainly work with the s lowest bits in the binary representation
of the control-part (and we will ignore the remaining unused bits). The ith bit from the
right (1 ≤ i ≤ s) corresponds to the Boolean variable xi.

Verification
part Clause-part Y-part X-part Control

part

t 1 t 1 s 1 s 1 s 1
Figure 2 The division of the decimal representations into five parts.

Throughout we will use the term digits to specify the decimal representation of the
verification-part, clause-part, Y -part, and X-part, and we will use the term bits to specify
the binary representation of the control-part. Next, let us describe the 4s+ 3t+ 2 items in
the Captive-Queen instance together with their weights.

For every literal ` ∈ {xi, xi} there is a corresponding X-item X(`). The weight of X(`)
has a 1-digit in the position corresponding to variable xi in the X-part. If ` = xi is un-
negated, then there is a 1-bit in the position that corresponds to xi in the control-part
(whereas in case ` = xi is negated, this bit is not used). Furthermore, if literal ` occurs
in clause cj , then the weight has a 1-digit in the position corresponding to clause cj in
the verification-part. All other digits and bits are 0.
For every literal ` ∈ {yi, yi} there is a corresponding Y -item Y (`). Its weight has a
1-digit in the position corresponding to variable yi in the Y -part. If literal ` occurs in
clause cj , then the weight of Y (`) has a 1-digit in the position corresponding to clause
cj in its verification-part. All other digits and bits are 0.
For every clause cj there are three C-items Ck(cj) with k = 0, 1, 2. The weight of item
Ck(cj) has a 1-digit in the position corresponding to clause cj in the clause-part, and a
k-digit in the position corresponding to clause cj in the verification-part. All other digits
and bits are 0.
Finally there are two dummy items D0 and D1 whose weights are w(D0) = U − 1 and
w(D1) = U + 2s. The integer U in these weights is defined as follows: it has a 3-digit
in every position in the verification-part, a 1-digit in every position in the clause-part,
Y -part, and X-part, and an all-zero control-part.

We will throughout refer to the 4s+ 3t non-dummy items as XYC-items. To complete the
description of the Captive-Queen instance, we define the weight bound ∆ = 1, the initial
state I0 = {D0} with w(I0) = U − 1, and the goal state I1 = {D1} with w(I1) = U + 2s.

I Lemma 6. The constructed instance of Captive-Queen satisfies the following.

(i) If we add up the decimal representations of the weights of some subset J of XYC-
items, then there will be no carry-overs from lower positions to higher positions in

C.E.J. Eggermont and G.J.Woeginger 379

the verification-part, clause-part, Y -part, and X-part. Furthermore, there will be no
carry-over from the control-part to the X-part.

(ii) If w(I0) < V < w(I1) holds for some integer V , then the verification-part, clause-part,
Y -part, and X-part of V agree with the corresponding part of U . The control-part of
V lies between 0 and 2s − 1.

(iii) If w(I0) < w(J) < w(I1) holds for some item set J , then J contains no dummy items
and hence solely consists of XYC-items.

Proof. Statement (i) follows by looking into the digits and bits in our construction. Only
X-items X(xi) for un-negated literals have non-zero control-part, and these control-parts
altogether only add up to 2s−1. Every position in the decimal representation of verification-
part, clause-part, Y -part, or X-part is non-zero for at most five XYC-items. For statement
(ii), note that U ≤ V ≤ U + 2s − 1 and note that the control-part of U is 0.

For statement (iii), observe that all item weights in the instance are greater than 10s. If
set J contains dummy item D0 then it must also contain some other item, and this brings
w(J) above w(I1). And if J contains dummy item D1 then its weight is above w(I1). J

We now define a bijection between the 2s integers V with U ≤ V ≤ U + 2s − 1 on one
side and the 2s truth-settings of the Boolean variables in X = {x1, . . . , xs} on the other
side. Since 0 ≤ V − U ≤ 2s − 1, the binary representation of V − U consists of s bits.
Then the ith bit (counted from the right end) specifies the truth-value of variable xi in the
corresponding truth-setting TV (X). Vice versa, any truth-setting for X can be interpreted
as the binary representation of some integer where the value of xi specifies the ith bit. By
adding the value U to this integer, we get the number from the range U, . . . , U + 2s− 1 that
corresponds to the truth-setting.

The following two lemmas will be proved in the full version of this paper.

I Lemma 7. Let V be an integer with U ≤ V ≤ U + 2s − 1. If there exists an item set J
with w(J) = V , then there also exists a truth-setting T (Y) for the Boolean variables in Y ,
such that formula φ(X,Y) is true under the combined truth-setting TV (X) and T (Y).

I Lemma 8. Let V be an integer with U ≤ V ≤ U + 2s − 1. If there exists a truth-setting
T (Y) for the Boolean variables in Y such that formula φ(X,Y) is true under the combined
truth-setting TV (X) and T (Y), then there exists an item set J with w(J) = V .

Let us wrap things up. Assume that the constructed instance of Captive-Queen has
answer YES. By Corollary 4 this is the case if and only if for all integers V in the range
w(I0) < V < w(I1) there exists an item set J with w(J) = V . By Lemma 7 and Lemma 8
this is the case if and only if for all truth-settings TV (X) with U ≤ V ≤ U + 2s − 1 for the
variables in X, there exists a truth setting for the variables in Y such that formula φ(X,Y)
is true. And finally this exactly means that the considered instance of 2-Quantified 3-
CNF-Sat has answer YES. Together with Lemma 5 this yields the main result of the paper.

I Theorem 9. Problem Captive-Queen is Πp
2-complete. J

Our reduction establishes Πp
2-hardness of Captive-Queen for the special case where

∆ = 1. If we multiply all item weights in our construction by a factor f , then we also derive
Πp

2-hardness for the cases where ∆ = f .
Finally let us settle the complexity of Captive-Queen-with-few-Moves

I Theorem 10. Problem Captive-Queen-with-few-Moves is NP-complete.

STACS’12

380 Motion planning with pulley, rope, and baskets

Proof. The NP-certificate consists of the at most m intermediate states that the system
traverses while moving from the initial state to the goal state.

The NP-hardness proof is done by a reduction from the NP-hard Subset-Sum problem
(see Garey & Johnson [3]): Given a sequence q1, . . . , qn of positive integers and a positive
integer Q, is there an index-set N ⊆ {1, . . . , n} with q(N) = Q? Consider the item set
I = {1, . . . , n + 2} with w(i) = 2qi for 1 ≤ i ≤ n, and with w(n + 1) = 2Q − 1 and
w(n+ 2) = 2Q+ 1. The difference bound is ∆ = 1, the initial state is I0 = {n+ 1}, the goal
state is I1 = {n + 2}, and the bound on the number of moves is m = 2. The only way of
moving from I0 to I1 is through a state N ⊆ {1, . . . , n} with q(N) = Q. J

4 Two highly structured special cases

In this section we analyze special cases of Captive-Queen where the weight sequence
carries a strong combinatorial structure and therefore behaves nicely. We will show that
for these special cases the (otherwise difficult) problems Captive-Queen and Captive-
Queen-with-few-Moves become solvable in polynomial time. The following two auxiliary
tools T1 and T2 (for an item set I with weights w(i) for i ∈ I) form the main ingredients
for our algorithms.

T1. Compute the maximum gap in the weight spectrum between two given bounds
w(I0) and w(I1); this maximum gap is denoted by gap(I, w, I0, I1).
T2. Compute the largest value W with W ≤ d in the weight spectrum; the corres-
ponding value is denoted Wmax(I, w, d).

I Lemma 11. Consider a specially structured family of weight sequences for which the
tools T1 and T2 can be implemented in polynomial time. Then for this family also the
problems Captive-Queen and Captive-Queen-with-few-Moves can be solved in poly-
nomial time.

Proof. By Corollary 4.(ii) an instance of Captive-Queen has answer YES if and only
if gap(I, w, I0, I1) ≤ ∆. Furthermore, an instance of Captive-Queen-with-few-Moves
can be solved as follows. We let d0 = w(I0) and then compute the auxiliary values dj =
Wmax(I, w, dj−1 + ∆) for j = 1, . . . ,m. The instance has answer YES if and only if dm ≥
w(I1). J

4.1 The case with super-increasing weight sequences
In this section we consider item sets I = {1, . . . , n} whose weights are super-increasing
and hence satisfy the following inequalities. These conditions originate from the knapsack
literature; see for instance Magazine, Nemhauser & Trotter [5].

w(1) + w(2) + · · ·+ w(i− 1) < w(i) for i = 1, . . . , n. (3)

With every subset J ⊆ I we associate a binary number bin(J) = bnbn−1 . . . b2b1 whose
bits are defined as bi = 1 if i ∈ J and bi = 0 if i /∈ J . Furthermore we denote by J+

the subset with bin(J+) = bin(J) + 1 (in case J 6= I), and we denote by J− the subset
with bin(J−) = bin(J) − 1 (in case J 6= ∅). It is easy to see (and also well-known) that
w(J) < w(K) holds if and only if bin(J) < bin(K). Hence distinct subsets always have
distinct weights, and the weight spectrum consists of 2n pairwise distinct values. For any
set J ⊆ I with ∅ 6= J 6= I, the three numbers w(J−), w(J), w(J+) form three consecutive
values in the weight spectrum.

C.E.J. Eggermont and G.J.Woeginger 381

Now let us discuss the gap between two consecutive values w(J) and w(J+) (with J 6= I)
in the weight spectrum. Let k ∈ I be the smallest element that is not contained in J .
Since bin(J+) = bin(J) + 1, the set J+ results from J by adding element k to it while
simultaneously removing the elements 1, 2, . . . , k−1 from it. This yields that the gap length
w(J+)− w(J) equals

Gk := w(k)−
k−1∑
j=1

w(j). (4)

Next consider an input I, w, I0, I1 for tool T1. Let α be the largest element in the symmetric
difference of I0 and I1; then α /∈ I0 and α ∈ I1. Define an intermediate set I1/2 that agrees
with I0 and I1 on all elements above α, that contains α, and that contains none of the
elements below α. From now on we assume that I0 6= I−1/2 and I1 6= I1/2, as the cases
with equality are easily settled. The maximum gap between w(I0) and w(I1) either is the
maximum gap between w(I0) and w(I−1/2), or the w(I−1/2) and w(I1/2), or it is the maximum
gap between w(I1/2) and w(I1). Hence it is sufficient to determine these three gaps, and
then to output the value of the largest one.

In order to analyze the first gap, let β be the largest element with β /∈ I0 that is strictly
smaller than α. Since I−1/2 does contain β and also all the elements below β, the maximum
gap between w(I0) and w(I−1/2) equals maxk≤β Gk. The second gap between w(I−1/2) and
w(I1/2) equals Gα. For the third gap, let γ be the largest element with γ ∈ I1 that is
strictly smaller than α. Since I1/2 neither contains γ nor any of the elements below γ, the
maximum gap between w(I1/2) and w(I1) equals maxk≤γ Gk. This completes the polynomial
time algorithm for tool T1.

A polynomial time algorithm for tool T2 can be found in the literature (Magazine,
Nemhauser & Trotter [5]), and is based on a simple greedy approach. Consider a knapsack
of size d, and repeatedly pack the largest unpacked item weight into this knapsack. When no
further item fits into the knapsack, the overall weight in the knapsack equals Wmax(I, w, d).

I Theorem 12. Problems Captive-Queen and Captive-Queen-with-few-Moves can
be solved in polynomial time, if the weight sequence is super-increasing. J

4.2 The case with divisible weight sequences
In this section we consider item sets I = {1, . . . , n} whose weights satisfy the following
divisibility conditions. These conditions come from the knapsack and packing literature
where they have been investigated thoroughly; see for instance Pochet & Wolsey [8] and
Coffman, Garey & Johnson [1].

w(i) | w(i+ 1) for i = 1, . . . , n− 1. (5)

Our first goal is to design a polynomial time algorithm for tool T1. We distinguish two
cases. First assume that w(1) > 1. Then (5) implies that all item weights are divisible by
w(1). In this case we define new item weights w′(i) = w(i)/w(1), and observe that

gap(I, w, I0, I1) = w(1) · gap(I, w′, I0, I1). (6)

Next assume that w(1) = 1 holds, and define ` as the largest integer with w(`) = 1. Let
I ′ = {` + 1, . . . , n} contain the items of weight greater than 1, let w′ be the restriction of
the weights w from I to I ′, and let I ′0 = I0 ∩ I ′ and I ′1 = I1 ∩ I ′. Then

gap(I, w, I0, I1) = max {gap(I ′, w′, I ′0, I ′1)− `, 1} . (7)

STACS’12

382 Motion planning with pulley, rope, and baskets

Note that I ′ = ∅ in (7) yields gap(I, w, I0, I1) = 1. The two formulas in (6) and (7) yield
a recursive procedure for computing gap(I, w, I0, I1). The running time of the procedure is
polynomial, and with a little effort can even be made linear in n.

Tool T2 is available in the literature (Coffman, Garey & Johnson [1]), and follows the
same greedy approach as tool T2 for super-increasing weight sequences.

I Theorem 13. Problems Captive-Queen and Captive-Queen-with-few-Moves can
be solved in polynomial time, if the weight sequence is divisible. J

5 Analysis of four related problems

We will now discuss some further properties of the discrete system that underlies the
Captive-Queen problem. Recall that every state of the system corresponds to a subset of
items, and that the system can move from state J directly to state K if (1) respectively (2)
is satisfied. A state J is isolated, if there are no other states reachable from J . A system is
fully connected, if every state is reachable from every other state. Equivalently, a system is
fully connected if and only if the state ∅ is reachable from the state I.

Figure 3 lists four algorithmic problems that are formulated around isolated states and
fully connected systems. The full version of this paper will show that

Problem Isolated-State is coNP-complete;
Problem All-States-Isolated is coNP-complete;
Problem Some-State-Isolated can be decided in polynomial time;
Problem Fully-Connected can be solved in polynomial time.

Furthermore, the full version will show that all these problems are easy, if the weight
sequence is super-increasing (see Section 4.1) or divisible (see Section 4.2).

Problem: Isolated-State
Instance: An item set I; weights w(i) for i ∈ I; a bound ∆; a subset J ⊆ I.
Question: Is the state J isolated?

Problem: All-States-Isolated
Instance: An item set I; weights w(i) for i ∈ I; a bound ∆.
Question: Are all states in this system isolated?

Problem: Some-State-Isolated
Instance: An item set I; weights w(i) for i ∈ I; a bound ∆.
Question: Does this system contain some isolated state?

Problem: Fully-Connected
Instance: An item set I; weights w(i) for i ∈ I; a bound ∆.
Question: Is this system fully connected?

Figure 3 The algorithmic problems discussed in Section 5.

C.E.J. Eggermont and G.J.Woeginger 383

References
1 E.G. Coffman Jr., M.R. Garey, and D.S. Johnson (1987). Bin packing with divisible item

sizes. Journal of Complexity 3, 406–428.
2 T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein (2001). Introduction to Algorithms.

MIT Press.
3 M.R. Garey and D.S. Johnson (1979). Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco.
4 H. Kellerer, U. Pferschy, and D. Pisinger (2004). Knapsack problems. Springer Verlag,

Berlin.
5 M. Magazine, G.L. Nemhauser, and L.E. Trotter (1975). When the greedy solution solves

a class of knapsack problems. Operations Research 23, 207–217.
6 S. Martello and P. Toth (1990). Knapsack problems: Algorithms and computer implement-

ations. John Wiley & Sons, Chichester.
7 C.H. Papadimitriou(1994). Computational Complexity. Addison-Wesley.
8 Y. Pochet and L.A. Wolsey (1995). Integer knapsack and flow covers with divisible coeffi-

cients: Polyhedra, optimization and separation. Discrete Applied Mathematics 59, 57–74.
9 L.J. Stockmeyer (1977). The polynomial-time hierarchy. Theoretical Computer Science 3,

1–22.
10 E. Wakeling (1995). Rediscovered Lewis Carroll puzzles. Courier Dover Publications.
11 G.J. Woeginger and Z. Yu (1992). On the equal-subset-sum problem. Information Pro-

cessing Letters 42, 299–302.

STACS’12

	Introduction
	Preliminaries and first observations
	Hardness of the Captive-Queen
	Two highly structured special cases
	The case with super-increasing weight sequences
	The case with divisible weight sequences

	Analysis of four related problems

