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Abstract
We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-
time 1-counter Büchi automata is equivalent to the determinacy of (effective) analytic Gale-
Stewart games which is known to be a large cardinal assumption. We show also that the determ-
inacy of Wadge games between two players in charge of ω-languages accepted by 1-counter Büchi
automata is equivalent to the (effective) analytic Wadge determinacy. Using some results of set
theory we prove that one can effectively construct a 1-counter Büchi automaton A and a Büchi
automaton B such that: (1) There exists a model of ZFC in which Player 2 has a winning strategy
in the Wadge game W (L(A), L(B)); (2) There exists a model of ZFC in which the Wadge game
W (L(A), L(B)) is not determined. Moreover these are the only two possibilities, i.e. there are
no models of ZFC in which Player 1 has a winning strategy in the Wadge game W (L(A), L(B)).
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1 Introduction

Two-players infinite games have been much studied in Set Theory and in Descriptive Set
Theory, see [9, 8]. In particular, if X is a (countable) alphabet having at least two letters
and A ⊆ Xω, then the Gale-Stewart game G(A) is an infinite game with perfect information
between two players. Player 1 first writes a letter a1 ∈ X, then Player 2 writes a letter
b1 ∈ X, then Player 1 writes a2 ∈ X, and so on . . . After ω steps, the two players have
composed an infinite word x = a1b1a2b2 . . . of Xω. Player 1 wins the play iff x ∈ A, otherwise
Player 2 wins the play. The game G(A) is said to be determined iff one of the two players
has a winning strategy. A fundamental result of Descriptive Set Theory is Martin’s Theorem
which states that every Gale-Stewart game G(A), where A is a Borel set, is determined [9].

On the other hand, in Computer Science, the conditions of a Gale Stewart game may
be seen as a specification of a reactive system, where the two players are respectively a non
terminating reactive program and the “environment". Then the problem of the synthesis of
winning strategies is of great practical interest for the problem of program synthesis in reactive
systems. In particular, if A ⊆ Xω, where X is here a finite alphabet, and A is effectively
presented, i.e. accepted by a given finite machine or defined by a given logical formula, the
following questions naturally arise, see [15, 10]: (1) Is the game G(A) determined? (2) If
Player 1 has a winning strategy, is it effective, i.e. computable? (3) What are the amounts
of space and time necessary to compute such a winning strategy? Büchi and Landweber gave
a solution to the famous Church’s Problem, posed in 1957, by stating that in a Gale Stewart
game G(A), where A is a regular ω-language, one can decide who the winner is and compute
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a winning strategy given by a finite state transducer, see [16] for more information on this
subject. In [15, 10] Thomas and Lescow asked for an extension of this result where A is no
longer regular but deterministic context-free, i.e. accepted by some deterministic pushdown
automaton. Walukiewicz extended Büchi and Landweber’s Theorem to this case by showing
first in [18] that that one can effectively construct winning strategies in parity games played
on pushdown graphs and that these strategies can be computed by pushdown transducers.
Notice that later some extensions to the case of higher-order pushdown automata have been
established [1].

In this paper, we first address the question (1) of the determinacy of Gale-Stewart games
G(A), where A is a context-free ω-language accepted by a (non-deterministic) pushdown
automaton, or even by a 1-counter automaton. Notice that there are some context-free
ω-languages which are (effective) analytic but non-Borel and thus the determinacy of these
games cannot be deduced from Martin’s Theorem of Borel determinacy. On the other hand,
Martin’s Theorem is provable in ZFC, the commonly accepted axiomatic framework for Set
Theory in which all usual mathematics can be developped. But the determinacy of Gale-
Stewart games G(A), where A is an (effective) analytic set, is not provable in ZFC; Martin
and Harrington have proved that it is a large cardinal assumption equivalent to the existence
of a particular real, called the real 0], see [8, page 637]. We prove here that the determinacy
of Gale-Stewart games G(A), whose winning sets A are accepted by real-time 1-counter
Büchi automata, is equivalent to the determinacy of (effective) analytic Gale-Stewart games
and thus also equivalent to the existence of the real 0].

Next we consider Wadge games which were firstly studied by Wadge in [17] where he
determined a great refinement of the Borel hierarchy defined via the notion of reduction
by continuous functions. These games are closely related to the notion of reducibility by
continuous functions. For L ⊆ Xω and L′ ⊆ Y ω, L is said to be Wadge reducible to L′ iff
there exists a continuous function f : Xω → Y ω, such that L = f−1(L′); this is then denoted
by L ≤W L′. On the other hand, the Wadge game W (L,L′) is an infinite game with perfect
information between two players, Player 1 who is in charge of L and Player 2 who is in charge
of L′. And it turned out that Player 2 has a winning strategy in the Wadge game W (L,L′)
iff L ≤W L′. It is easy to see that the determinacy of Borel Gale-Stewart games implies
the determinacy of Borel Wadge games. On the other hand, Louveau and Saint-Raymond
have proved that this latter one is weaker than the first one, since it is already provable in
second-order arithmetic, while the first one is not. It is also known that the determinacy
of (effective) analytic Gale-Stewart games is equivalent to the determinacy of (effective)
analytic Wadge games, see [11]. We prove in this paper that the determinacy of Wadge
games between two players in charge of ω-languages accepted by 1-counter Büchi automata
is equivalent to the (effective) analytic Wadge determinacy, and thus also equivalent to the
existence of the real 0].

Then, using some recent results from [4] and some results of Set Theory, we prove that,
(assuming ZFC is consistent), one can effectively construct a 1-counter Büchi automaton A
and a Büchi automaton B such that: (1) There exists a model of ZFC in which Player 2 has
a winning strategy in the Wadge game W (L(A), L(B)); (2) There exists a model of ZFC in
which the Wadge game W (L(A), L(B)) is not determined. Moreover these are the only two
possibilities, i.e. there are no models of ZFC in which Player 1 has a winning strategy in the
Wadge game W (L(A), L(B)).

The paper is organized as follows. We recall some known notions in Section 2. We study
context-free Gale-Stewart games in Section 3 and context-free Wadge games in Section 4.
Some concluding remarks are given in Section 5.
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2 Recall of some known notions

We assume the reader to be familiar with the theory of formal (ω-)languages [14, 13].
We recall the usual notations of formal language theory.

If Σ is a finite alphabet, a non-empty finite word over Σ is any sequence x = a1 . . . ak,
where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length of x is k, denoted by |x|.
The empty word has is denoted by λ; its length is 0. Σ? is the set of finite words (including
the empty word) over Σ. A (finitary) language V over an alphabet Σ is a subset of Σ?.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . ., where for
all integers i ≥ 1, ai ∈ Σ. When σ = a1 . . . an . . . is an ω-word over Σ, we write σ(n) = an,
σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.

The usual concatenation product of two finite words u and v is denoted u.v (and sometimes
just uv). This product is extended to the product of a finite word u and an ω-word v: the
infinite word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language V over an

alphabet Σ is a subset of Σω, and its complement (in Σω) is Σω − V , denoted V −.
The prefix relation is denoted v: a finite word u is a prefix of a finite word v (respectively,

an infinite word v), denoted u v v, if and only if there exists a finite word w (respectively,
an infinite word w), such that v = u.w.

If L is a finitary language (respectively, an ω-language) over the alphabet Σ then the set
Pref(L) of prefixes of elements of L is defined by Pref(L) = {u ∈ Σ? | ∃v ∈ L u v v}.

We now recall the definition of k-counter Büchi automata which will be useful in the
sequel.

Let k be an integer ≥ 1. A k-counter machine has k counters, each of which containing a
non-negative integer. The machine can test whether the content of a given counter is zero
or not. And transitions depend on the letter read by the machine, the current state of the
finite control, and the tests about the values of the counters. Notice that in this model some
λ-transitions are allowed. During these transitions the reading head of the machine does not
move to the right, i.e. the machine does not read any more letter.

Formally a k-counter machine is a 4-tupleM=(K,Σ, ∆, q0), where K is a finite set of
states, Σ is a finite input alphabet, q0 ∈ K is the initial state, and ∆ ⊆ K × (Σ ∪ {λ}) ×
{0, 1}k ×K × {0, 1,−1}k is the transition relation. The k-counter machineM is said to be
real time iff: ∆ ⊆ K × Σ× {0, 1}k ×K × {0, 1,−1}k, i.e. iff there are no λ-transitions.

If the machineM is in state q and ci ∈ N is the content of the ith counter Ci then the
configuration (or global state) ofM is the (k + 1)-tuple (q, c1, . . . , ck).

For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ Nk such that cj = 0 for j ∈ E ⊆ {1, . . . , k}
and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ ∆ where ij = 0 for j ∈ E and ij = 1
for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk).
Thus the transition relation must obviously satisfy:

if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k} then jm = 0 or
jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations r =
(qi, ci1, . . . cik)i≥1 is called a run ofM on σ iff:

(1) (q1, c
1
1, . . . c

1
k) = (q0, 0, . . . , 0)

(2) for each i ≥ 1, there exists bi ∈ Σ∪{λ} such that bi : (qi, ci1, . . . cik) 7→M (qi+1, c
i+1
1 , . . . ci+1

k )
and such that a1a2 . . . an . . . = b1b2 . . . bn . . .

STACS’12
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For every such run r, In(r) is the set of all states entered infinitely often during r.

I Definition 1. A Büchi k-counter automaton is a 5-tuple M=(K,Σ, ∆, q0, F ), where
M′=(K,Σ, ∆, q0) is a k-counter machine and F ⊆ K is the set of accepting states. The
ω-language accepted byM is:

L(M) = {σ ∈ Σω | there exists a run r ofM on σ such that In(r) ∩ F 6= ∅}

The class of ω-languages accepted by Büchi k-counter automata is denoted BCL(k)ω.
The class of ω-languages accepted by real time Büchi k-counter automata will be denoted
r-BCL(k)ω. The class BCL(1)ω is a strict subclass of the class CFLω of context free
ω-languages accepted by Büchi pushdown automata.

We assume the reader to be familiar with basic notions of topology which may be found
in [9, 10, 14, 13]. There is a natural metric on the set Σω of infinite words over a finite
alphabet Σ containing at least two letters which is called the prefix metric and is defined as
follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer
n such that the (n+ 1)st letter of u is different from the (n+ 1)st letter of v. This metric
induces on Σω the usual Cantor topology in which the open subsets of Σω are of the form
W.Σω, for W ⊆ Σ?. A set L ⊆ Σω is a closed set iff its complement Σω − L is an open set.

For V ⊆ Σ? we denote Lim(V ) = {x ∈ Σω | ∃∞n ≥ 1 x[n] ∈ V } the set of infinite words
over Σ having infinitely many prefixes in V . Then the topological closure Cl(L) of a set
L ⊆ Σω is equal to Lim(Pref(L)). Thus we have also the following characterization of closed
subsets of Σω: a set L ⊆ Σω is a closed subset of the Cantor space Σω iff L = Lim(Pref(L)).

We now recall the definition of the Borel Hierarchy of subsets of Xω.

I Definition 2. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of the Borel
Hierarchy on the topological space Xω are defined as follows: Σ0

1 is the class of open subsets
of Xω, Π0

1 is the class of closed subsets of Xω, and for any countable ordinal α ≥ 2:
Σ0
α is the class of countable unions of subsets of Xω in

⋃
γ<α Π0

γ .
Π0
α is the class of countable intersections of subsets of Xω in

⋃
γ<α Σ0

γ .
A set L ⊆ Xω is Borel iff it is in the union

⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α, where ω1 is the first

uncountable ordinal.

There are also some subsets of Xω which are not Borel. In particular the class of Borel
subsets of Xω is strictly included into the class Σ1

1 of analytic sets which are obtained by
projection of Borel sets. The co-analytic sets are the complements of analytic sets.

I Definition 3. A subset A of Xω is in the class Σ1
1 of analytic sets iff there exist a finite

alphabet Y and a Borel subset B of (X×Y )ω such that x ∈ A↔ ∃y ∈ Y ω such that (x, y) ∈ B,
where (x, y) is the infinite word over the alphabet X × Y such that (x, y)(i) = (x(i), y(i)) for
each integer i ≥ 1.

We now recall the notion of completeness with regard to reduction by continuous functions.
For a countable ordinal α ≥ 1, a set F ⊆ Xω is said to be a Σ0

α (respectively, Π0
α, Σ1

1)-
complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α (respectively, E ∈ Π0
α,

E ∈ Σ1
1) iff there exists a continuous function f : Y ω → Xω such that E = f−1(F ).

We now recall the definition of classes of the arithmetical hierarchy of ω-languages, see
[14]. Let X be a finite alphabet. An ω-language L ⊆ Xω belongs to the class Σn if and only
if there exists a recursive relation RL ⊆ (N)n−1 ×X? such that:
L = {σ ∈ Xω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL},



O. Finkel 559

where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An
ω-language L ⊆ Xω belongs to the class Πn if and only if its complement Xω − L belongs
to the class Σn. The class Σ1

1 is the class of effective analytic sets which are obtained by
projection of arithmetical sets. An ω-language L ⊆ Xω belongs to the class Σ1

1 if and only
if there exists a recursive relation RL ⊆ N× {0, 1}? ×X? such that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}.

Then an ω-language L ⊆ Xω is in the class Σ1
1 iff it is the projection of an ω-language over

the alphabet X × {0, 1} which is in the class Π2. The class Π1
1 of effective co-analytic sets is

simply the class of complements of effective analytic sets.
Recall that the (lightface) class Σ1

1 of effective analytic sets is strictly included into the
(boldface) class Σ1

1 of analytic sets.
Recall that a Büchi Turing machine is just a Turing machine working on infinite inputs

with a Büchi-like acceptance condition, and that the class of ω-languages accepted by Büchi
Turing machines is the class Σ1

1 of effective analytic sets [2, 14]. On the other hand, one can
construct, using a classical construction (see for instance [7]), from a Büchi Turing machine
T , a 2-counter Büchi automaton A accepting the same ω-language. Thus one can state the
following proposition.

I Proposition 4. An ω-language L ⊆ Xω is in the class Σ1
1 iff it is accepted by a non

deterministic Büchi Turing machine, hence iff it is in the class BCL(2)ω.

3 Context-free Gale-Stewart games

We first recall the definition of Gale-Stewart games.

I Definition 5 ([8]). Let A ⊆ Xω, where X is a finite alphabet. The Gale-Stewart game
G(A) is a game with perfect information between two players. Player 1 first writes a letter
a1 ∈ X, then Player 2 writes a letter b1 ∈ X, then Player 1 writes a2 ∈ X, and so on . . .
After ω steps, the two players have composed a word x = a1b1a2b2 . . . of Xω. Player 1 wins
the play iff x ∈ A, otherwise Player 2 wins the play.

Let A ⊆ Xω and G(A) be the associated Gale-Stewart game. A strategy for Player 1 is a
function F1 : (X2)? → X and a strategy for Player 2 is a function F2 : (X2)?X → X. Player
1 follows the strategy F1 in a play if for each integer n ≥ 1 an = F1(a1b1a2b2 · · · an−1bn−1).
If Player 1 wins every play in which she has followed the strategy F1, then we say that the
strategy F1 is a winning strategy (w.s.) for Player 1. The notion of winning strategy for
Player 2 is defined in a similar manner.

The game G(A) is said to be determined if one of the two players has a winning strategy.
We shall denote Det(C), where C is a class of ω-languages, the sentence : “Every

Gale-Stewart game G(A), where A ⊆ Xω is an ω-language in the class C, is determined".

Notice that, in the whole paper, we assume that ZFC is consistent, and all results, lemmas,
propositions, theorems, are stated in ZFC unless we explicitely give another axiomatic
framework.

We can now state our first result.

I Proposition 6. Det(Σ1
1) ⇐⇒ Det(r-BCL(8)ω).

Proof. The implication Det(Σ1
1) =⇒ Det(r-BCL(8)ω) is obvious since r-BCL(8)ω ⊆ Σ1

1.

STACS’12



560 The Determinacy of Context-Free Games

To prove the reverse implication, we assume that Det(r-BCL(8)ω) holds and we show
that every Gale-Stewart game G(A), where A ⊆ Xω is an ω-language in the class Σ1

1, or
equivalently in the class BCL(2)ω by Proposition 4, is determined.

Let then L ⊆ Σω, where Σ is a finite alphabet, be an ω-language in the class BCL(2)ω.
Let E be a new letter not in Σ, S be an integer ≥ 1, and θS : Σω → (Σ ∪ {E})ω be the

function defined, for all x ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES
2
.x(3).ES

3
.x(4) . . . x(n).ES

n

.x(n+ 1).ES
n+1

. . .

We proved in [3] that if k = cardinal(Σ) + 2, S ≥ (3k)3 is an integer, then one can
effectively construct from a Büchi 2-counter automaton A1 accepting L a real time Büchi
8-counter automaton A2 such that L(A2) = θS(L). In the sequel we assume that we have
fixed an integer S ≥ (3k)3 which is even.

Notice that the set θS(Σω) is a closed subset of the Cantor space Σω. An ω-word
x ∈ (Σ ∪ {E})ω is in θS(Σω)− iff it has one prefix which is not in Pref(θS(Σω)). Let
L′ ⊆ (Σ ∪ {E})ω be the set of ω-words y ∈ (Σ ∪ {E})ω for which there is an integer n ≥ 1
such that y[2n − 1] ∈ Pref(θS(Σω)) and y[2n] /∈ Pref(θS(Σω)). It is easy to see that L′ is
accepted by a real time Büchi 2-counter automaton.

The class r-BCL(8)ω ⊇ r-BCL(2)ω is closed under finite union in an effective way, so
θS(L)∪L′ is accepted by a real time Büchi 8-counter automaton A3 which can be effectively
constructed from A2.

As we have assumed that Det(r-BCL(8)ω) holds, the game G(θS(L)∪L′) is determined,
i.e. one of the two players has a w.s. in the game G(θS(L) ∪ L′). We now show that the
game G(L) is itself determined.

We shall say that, during an infinite play, Player 1 “goes out" of the closed set θS(Σω) if
the final play y composed by the two players has a prefix y[2n] ∈ Pref(θS(Σω)) such that
y[2n+ 1] /∈ Pref(θS(Σω)). We define in a similar way the sentence “Player 2 goes out of the
closed set θS(Σω)".

Assume first that Player 1 has a w.s. F1 in the game G(θS(L) ∪ L′). Then Player
1 never “goes out" of the set θS(Σω) when she follows this w.s. because otherwise the
final play y composed by the two players has a prefix y[2n] ∈ Pref(θS(Σω)) such that
y[2n+ 1] /∈ Pref(θS(Σω)) and thus y /∈ θS(L) ∪ L′. Consider now a play in which Player 2
does not go out of θS(Σω). If player 1 follows her w.s. F1 then the two players remain in
the set θS(Σω). But we have fixed S to be an even integer. So the two players compose an
ω-word

θS(x) = x(1).ES .x(2).ES
2
.x(3).ES

3
.x(4) . . . x(n).ES

n

.x(n+ 1).ES
n+1

. . .

and the letters x(k) are written by player 1 for k an odd integer and by Player 2 for
k an even integer because S is even. Moreover Player 1 wins the play iff the ω-word
x(1)x(2)x(3) . . . x(n) . . . is in L. This implies that Player 1 has also a w.s. in the game G(L).

Assume now that Player 2 has a w.s. F2 in the game G(θS(L) ∪ L′). Then Player
2 never “goes out" of the set θS(Σω) when he follows this w.s. because otherwise the
final play y composed by the two players has a prefix y[2n − 1] ∈ Pref(θS(Σω)) such that
y[2n] /∈ Pref(θS(Σω)) and thus y ∈ L′ hence also y ∈ θS(L) ∪ L′. Consider now a play in
which Player 1 does not go out of θS(Σω). If player 2 follows his w.s. F2 then the two players
remain in the set θS(Σω). So the two players compose an ω-word

θS(x) = x(1).ES .x(2).ES
2
.x(3).ES

3
.x(4) . . . x(n).ES

n

.x(n+ 1).ES
n+1

. . .
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where the letters x(k) are written by player 1 for k an odd integer and by Player 2 for k an
even integer. Moreover Player 2 wins the play iff the ω-word x(1)x(2)x(3) . . . x(n) . . . is not
in L. This implies that Player 2 has also a w.s. in the game G(L). J

I Theorem 7. Det(Σ1
1) ⇐⇒ Det(CFLω) ⇐⇒ Det(BCL(1)ω).

Proof. The implications Det(Σ1
1) =⇒ Det(CFLω) =⇒ Det(BCL(1)ω) are obvious since

BCL(1)ω ⊆ CFLω ⊆ Σ1
1.

To prove the reverse implication Det(BCL(1)ω) =⇒ Det(Σ1
1), we assume that

Det(BCL(1)ω) holds and we are going to show that then every Gale-Stewart game G(L),
where L ⊆ Xω is an ω-language in the class r-BCL(8)ω is determined. Then Proposition 6
will imply that Det(Σ1

1) also holds. Let then L(A) ⊆ Γω, where Γ is a finite alphabet and A
is a real time Büchi 8-counter automaton.

We now recall the following coding which was used in the paper [3].
Let K be the product of the eight first prime numbers. An ω-word x ∈ Γω was coded by

the ω-word

hK(x) = A.CK .x(1).B.CK
2
.A.CK

2
.x(2).B.CK

3
.A.CK

3
.x(3).B . . . B.CK

n

.A.CK
n

.x(n).B . . .

over the alphabet Γ1 = Γ ∪ {A,B,C}, where A,B,C are new letters not in Γ. We are going
to use here a slightly different coding which we now define. Let then

h(x) = CK .C.A.x(1).CK2
.A.CK

2
.C.x(2).B.CK3

.A.CK
3
.C.A.x(3) . . .

. . . CK
2n

.A.CK
2n

.C.x(2n).B.CK2n+1
.A.CK

2n+1
.C.A.x(2n+ 1) . . .

We now explain the rules used to obtain the ω-word h(x) from the ω-word hK(x).
(1) The first letter A of the word hK(x) has been suppressed.
(2) The letters B following a letter x(2n+ 1), for n ≥ 1, have been suppressed.
(3) A letter C has been added before each letter x(2n), for n ≥ 1.
(4) A block of two letters C.A has been added before each letter x(2n+ 1), for n ≥ 1.

The reasons behind this changes are the following ones. Assume that two players alternatively
write letters from the alphabet Γ1 = Γ ∪ {A,B,C} and that they finally produce an ω-word
in the form h(x). Due to the above changes we have now the two following properties which
will be useful in the sequel.

(1) The letters x(2n+ 1), for n ≥ 0, have been written by Player 1, and the letters x(2n),
for n ≥ 1, have been written by Player 2.

(2) After a sequence of consecutive letters C, the first letter which is not a C has always
been written by Player 2.
We proved in [3] that, from a real time Büchi 8-counter automaton A accepting L(A) ⊆ Γω,
one can effectively construct a Büchi 1-counter automaton A1 accepting the ω-language
hK(L(A))∪hK(Γω)−. We can easily check that the changes in hK(x) leading to the cod-
ing h(x) have no influence with regard to the proof of this result in [3] and thus one
can also effectively construct a Büchi 1-counter automaton A2 accepting the ω-language
h(L(A))∪h(Γω)−.

On the other hand we can remark that all ω-words in the form h(x) belong to the
ω-language H ⊆ (Γ1)ω of ω-words y of the following form:

y = Cn1 .C.A.x(1).Cn2 .A.Cn
′
2 .C.x(2).B.Cn3 .A.Cn

′
3 .C.A.x(3) . . .

. . . Cn2n .A.Cn
′
2n .C.x(2n).B.Cn2n+1 .A.Cn

′
2n+1 .C.A.x(2n+ 1) . . .
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where for all integers i ≥ 1 the letters x(i) belong to Γ and the ni, n′i, are even non-null
integers.

An important fact is the following property of H which extends the same property
of the set h(Γω). Assume that two players alternatively write letters from the alphabet
Γ1 = Γ∪ {A,B,C} and that they finally produce an ω-word y in H in the above form. Then
we have the two following facts:

(1) The letters x(2n+ 1), for n ≥ 0, have been written by Player 1, and the letters x(2n),
for n ≥ 1, have been written by Player 2.

(2) After a sequence of consecutive letters C, the first letter which is not a C has always
been written by Player 2.

Let now V = Pref(H) ∩ (Γ1)?.C. So a finite word over the alphabet Γ1 is in V iff it is
a prefix of some word in H and its last letter is a C. It is easy to see that the topological
closure of H is

Cl(H) = H ∪ V.Cω.

Notice that an ω-word in Cl(H) is not in h(Γω) iff a sequence of consecutive letters C has
not the good length. Thus if two players alternatively write letters from the alphabet Γ1 and
produce an ω-word y ∈ Cl(H)− h(Γω) then it is Player 2 who has gone out of the set h(Γω)
at some step of the play. This will be important in the sequel.

It is very easy to see that the ω-language H is regular and to construct a Büchi automaton
H accepting it. Moreover it is known that the class BCL(1)ω is effectively closed under
intersection with regular ω-languages (this can be seen using a classical construction of a
product automaton). Thus one can also construct a Büchi 1-counter automaton A3 accepting
the ω-language h(L(A))∪[h(Γω)− ∩H].

We denote also U the set of finite words u over Γ1 such that |u| = 2n for some integer
n ≥ 1 and u[2n− 1] ∈ Pref(H) and u = u[2n] /∈ Pref(H).

Now we set:

L = h(L(A)) ∪ [h(Γω)− ∩H] ∪ V.Cω ∪ U.(Γ1)ω

We have already seen that the ω-language h(L(A))∪[h(Γω)− ∩H] is accepted by a Büchi
1-counter automaton A3. On the other hand the ω-language H is regular and it is accepted
by a Büchi automaton H. Thus the finitary language Pref(H) is also regular, the languages
U and V are also regular, and the ω-languages V.Cω and U.(Γ1)ω are regular. This implies
that one can construct a Büchi 1-counter automaton A4 accepting the language L.

By hypothesis we assume that Det(BCL(1)ω) holds and thus the game G(L) is determ-
ined. We are going to show that this implies that the game G(L(A)) itself is determined.

Assume firstly that Player 1 has a winning strategy F1 in the game G(L).
If during an infinite play, the two players compose an infinite word z, and Player 2 “does

not go out of the set h(Γω)" then we claim that also Player 1, following her strategy F1, “does
not go out of the set h(Γω)". Indeed if Player 1 goes out of the set h(Γω) then due to the above
remark this would imply that Player 1 also goes out of the set Cl(H): there is an integer n ≥ 0
such that z[2n] ∈ Pref(H) but z[2n+ 1] /∈ Pref(H). So z /∈ h(L(A)) ∪ [h(Γω)−∩H]∪ V.Cω.
Moreover it follows from the definition of U that z /∈ U.(Γ1)ω. Thus If Player 1 goes out of
the set h(Γω) then she looses the game.
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Consider now an infinite play in which Player 2 “does not go out of the set h(Γω)". Then
Player 1, following her strategy F1, “does not go out of the set h(Γω)". Thus the two players
write an infinite word z = h(x) for some infinite word x ∈ Γω. But the letters x(2n+ 1), for
n ≥ 0, have been written by Player 1, and the letters x(2n), for n ≥ 1, have been written by
Player 2. Player 1 wins the play iff x ∈ L(A) and Player 1 wins always the play when she
uses her strategy F1. This implies that Player 1 has also a w.s. in the game G(L(A)).

Assume now that Player 2 has a winning strategy F2 in the game G(L).
If during an infinite play, the two players compose an infinite word z, and Player 1 “does

not go out of the set h(Γω)" then we claim that also Player 2, following his strategy F2,
“does not go out of the set h(Γω)". Indeed if Player 2 goes out of the set h(Γω) and the
final play z remains in Cl(H) then z ∈ [h(Γω)− ∩H] ∪ V.Cω ⊆ L and Player 2 looses. If
Player 1 does not go out of the set Cl(H) and at some step of the play, Player 2 goes out of
Pref(H), i.e. there is an integer n ≥ 1 such that z[2n− 1] ∈ Pref(H) and z[2n] /∈ Pref(H),
then z ∈ U.(Γ1)ω ⊆ L and Player 2 looses.

Assume now that Player 1 “does not go out of the set h(Γω)". Then Player 2 follows his
w. s. F2, and then “never goes out of the set h(Γω)". Thus the two players write an infinite
word z = h(x) for some infinite word x ∈ Γω. But the letters x(2n+ 1), for n ≥ 0, have been
written by Player 1, and the letters x(2n), for n ≥ 1, have been written by Player 2. Player
2 wins the play iff x /∈ L(A) and Player 2 wins always the play when he uses his strategy F2.
This implies that Player 2 has also a w.s. in the game G(L(A)). J

Looking carefully at the above proof, we can obtain a stronger result:

I Theorem 8. Det(Σ1
1) ⇐⇒ Det(CFLω) ⇐⇒ Det(r-BCL(1)ω).

4 Context-free Wadge games

We first recall the notion of Wadge games.

I Definition 9 (Wadge [17]). Let L ⊆ Xω and L′ ⊆ Y ω. The Wadge game W (L,L′) is a
game with perfect information between two players, Player 1 who is in charge of L and Player
2 who is in charge of L′. Player 1 first writes a letter a1 ∈ X, then Player 2 writes a letter
b1 ∈ Y , then Player 1 writes a letter a2 ∈ X, and so on. The two players alternatively write
letters an of X for Player 1 and bn of Y for Player 2. After ω steps, Player 1 has written an
ω-word a ∈ Xω and Player 2 has written an ω-word b ∈ Y ω. Player 2 is allowed to skip, even
infinitely often, provided he really writes an ω-word in ω steps. Player 2 wins the play iff
[a ∈ L↔ b ∈ L′], i.e. iff: [(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ and b is infinite)].

Recall that a strategy for Player 1 is a function σ : (Y ∪ {s})? → X. And a strategy for
Player 2 is a function f : X+ → Y ∪ {s}. The strategy σ is a winning strategy for Player 1
iff she always wins a play when she uses the strategy σ, i.e. when the nth letter she writes is
given by an = σ(b1 . . . bn−1), where bi is the letter written by Player 2 at step i and bi = s if
Player 2 skips at step i. A winning strategy for Player 2 is defined in a similar manner.

The game W (L,L′) is said to be determined if one of the two players has a winning
strategy. In the sequel we shall denote W-Det(C), where C is a class of ω-languages, the
sentence: “All Wadge games W (L,L′), where L ⊆ Xω and L′ ⊆ Y ω are ω-languages in the
class C, are determined".

There is a close relationship between Wadge reducibility and games.
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I Definition 10 (Wadge [17]). Let X, Y be two finite alphabets. For L ⊆ Xω and L′ ⊆ Y ω,
L is said to be Wadge reducible to L′ (L ≤W L′) iff there exists a continuous function
f : Xω → Y ω, such that L = f−1(L′). L and L′ are Wadge equivalent iff L ≤W L′ and
L′ ≤W L. This will be denoted by L ≡W L′. And we shall say that L <W L′ iff L ≤W L′

but not L′ ≤W L.
The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
The equivalence classes of ≡W are called Wadge degrees.

I Theorem 11 (Wadge). Let L ⊆ Xω and L′ ⊆ Y ω where X and Y are finite alphabets.
Then L ≤W L′ if and only if Player 2 has a winning strategy in the Wadge game W (L,L′).

The Wadge hierarchy WH is the class of Borel subsets of a set Xω, where X is a finite
set, equipped with ≤W and with ≡W . Using Wadge games, Wadge proved that, up to the
complement and ≡W , it is a well ordered hierarchy which provides a great refinement of the
Borel hierarchy.

We can now state the following result on determinacy of context-free Wadge games.

I Theorem 12. Det(Σ1
1) ⇐⇒ W-Det(CFLω) ⇐⇒ W-Det(BCL(1)ω) ⇐⇒ W-Det(r-

BCL(1)ω).

Recall that, assuming that ZFC is consistent, there are some models of ZFC in which
Det(Σ1

1) does not hold. Therefore there are some models of ZFC in which some Wadge
games W (L(A), L(B)), where A and B are Büchi 1-counter automata, are not determined.
We are going to prove that this may be also the case when B is a Büchi automaton (without
counter). To prove this, we use a recent result of [4] and some results of set theory, so we
now briefly recall some notions of set theory and refer the reader to [4] and to a textbook
like [8] for more background on set theory.

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the axiom of choice
AC. The axioms of ZFC express some natural facts that we consider to hold in the universe
of sets. A model (V, ∈) of an arbitrary set of axioms A is a collection V of sets, equipped
with the membership relation ∈, where “x ∈ y" means that the set x is an element of the set
y, which satisfies the axioms of A. We often say “ the model V" instead of "the model (V,
∈)".

We say that two sets A and B have same cardinality iff there is a bijection from A onto
B and we denote this by A ≈ B. The relation ≈ is an equivalence relation. Using the axiom
of choice AC, one can prove that any set A can be well-ordered so there is an ordinal γ
such that A ≈ γ. In set theory the cardinal of the set A is then formally defined as the
smallest such ordinal γ. The infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . .
The continuum hypothesis CH says that the first uncountable cardinal ℵ1 is equal to 2ℵ0

which is the cardinal of the continuum.
If V is a model of ZF and L is the class of constructible sets of V, then the class L is a

model of ZFC + CH. Notice that the axiom V=L, which means “every set is constructible",
is consistent with ZFC because L is a model of ZFC + V=L.

Consider now a model V of ZFC and the class of its constructible sets L ⊆ V which is
another model of ZFC. It is known that the ordinals of L are also the ordinals of V, but the
cardinals in V may be different from the cardinals in L. In particular, the first uncountable
cardinal in L is denoted ℵL

1 , and it is in fact an ordinal of V which is denoted ωL
1 . It is

well-known that in general this ordinal satisfies the inequality ωL
1 ≤ ω1. In a model V of
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the axiomatic system ZFC + V=L the equality ωL
1 = ω1 holds, but in some other models of

ZFC the inequality may be strict and then ωL
1 < ω1.

The following result was proved in [4].

I Theorem 13. There exists a real-time 1-counter Büchi automaton A, which can be
effectively constructed, such that the topological complexity of the ω-language L(A) is not
determined by the axiomatic system ZFC. Indeed it holds that :

(1) (ZFC + V=L). The ω-language L(A) is an analytic but non-Borel set.
(2) (ZFC + ωL

1 < ω1). The ω-language L(A) is a Π0
2-set.

We now state the following new result. To prove it we use in particular the above
Theorem 13, the link between Wadge games and Wadge reducibility, the Π0

2-completeness of
the regular ω-language (0?.1)ω ⊆ {0, 1}ω, the Shoenfield’s Absoluteness Theorem, and the
notion of extensions of a model of ZFC.

I Theorem 14. 1 Let B be a Büchi automaton accepting the regular ω-language (0?.1)ω ⊆
{0, 1}ω. Then one can effectively construct a real-time 1-counter Büchi automaton A such
that:

(1) (ZFC + ωL
1 < ω1). Player 2 has a winning strategy F in the Wadge game W (L(A), L(B)).

But F cannot be recursive and not even hyperarithmetical.
(2) (ZFC + ωL

1 = ω1). The Wadge game W (L(A), L(B)) is not determined.

I Remark 15. Every model of ZFC is either a model of (ZFC + ωL
1 < ω1) or a model of (ZFC

+ ωL
1 = ω1). Thus there are no models of ZFC in which Player 1 has a winning strategy in

the Wadge game W (L(A), L(B)).

I Remark 16. In order to prove Theorem 14 we do not need to use any large cardinal axiom
or even the consistency of such an axiom, like the axiom of analytic determinacy.

5 Concluding remarks

We have proved that the determinacy of Gale-Stewart games whose winning sets are accepted
by (real-time) 1-counter Büchi automata is equivalent to the determinacy of (effective)
analytic Gale-Stewart games which is known to be a large cardinal assumption.

On the other hand we have proved a similar result about the determinacy of Wadge
games. We have also obtained an amazing result, proving that one can effectively construct
a real-time 1-counter Büchi automaton A and a Büchi automaton B such that the sentence
“the Wadge game W (L(A), L(B)) is determined" is actually independent from ZFC.

Notice that it is still unknown whether the determinacy of Wadge games W (L(A), L(B)),
where A and B are Muller tree automata (reading infinite labelled trees) , is provable within
ZFC or needs some large cardinal assumptions to be proved.

Acknowledgements I wish to thank the anonymous referees for useful comments on a
preliminary version of this paper.
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