
HAL Id: hal-00678112
https://hal.science/hal-00678112v1

Submitted on 12 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An optimization method for the reduction of
fertilization errors with centrifugal applicators

Jonas Koko, Teddy Virin

To cite this version:
Jonas Koko, Teddy Virin. An optimization method for the reduction of fertilization errors with
centrifugal applicators. 2007. �hal-00678112�

https://hal.science/hal-00678112v1
https://hal.archives-ouvertes.fr


An optimization method for the reduction of

fertilization errors with centrifugal

applicators

Jonas Koko1 and Teddy Virin2

Research Report LIMOS/RR-07-06

17 mars 2007
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Abstract

This paper discusses an optimization method for the spreading performed by centrifugal
spreaders in order to minimize adverse environmental effects owing to application errors.
A cost functional relying on a conventional simplified spread pattern model is proposed.
In order to take into account the mechanical limits of the device, constraints are intro-
duced. An augmented Lagrangian algorithm is implemented to compute an approximate
solution. Numerical experiments show that application errors can be significantly reduced
for parallel tracks within a main field body.

Keywords: Constrained nonlinear optimization, augmented Lagrangian, centrifugal spread-
ers.
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1 Introduction

The fertilizer spreading consists in supplying nutrients within arable land in order to
make up the soil deficiencies and thus permit a correct growth of the plants. According
to the soil and crops characteristics, agricultural engineers state prescribed doses.These
prescribed doses often take the form of dose maps. To get the distributed doses close to the
prescribed ones, centrifugal spreaders with dual spinning discs are the most used. While
the tractor progresses within the farmland along tramlines, fertilizer granulars contained
in the hopper of the spreader pour onto each rotating disc and are ejected by centrifugal
effect. The actual amount of applied fertilizers, usually called spread pattern, has an ir-
regular distribution shape which is often highlighted by the transverse distribution curve
calculated by summing the amounts along each travel direction.

Due to the spatial distribution heterogeneousness, the tractor equipped with the sprea-
der follows outward and return paths in order to obtain a uniform deposit from transverse
distributions summation for each successive travels. Thus, it is clear that transverse dis-
tributions play an important role in the fertilization strategy. Indeed, the device settings
rely on their best arrangements according to the different tractor trajectories that is to say
working widths. The working width is a concept widely used in the fertilization community
and corresponds to the distance between two consecutive overlapping lines. Furthermore,
when overlapping is optimal, these lines stand for symmetry axes and make two consecu-
tive tracks coincide. Most of the experiments and simulations undertaken in order to assess
fertilizer application accuracy or study device settings are only carried out by using this
method to assess performance of applicators like in [1, 8, 12, 6] and advised for example
by [11].

To reduce application errors, some works propose to find appropriate trajectories [5].
Unfortunately, this method is not suitable when tramlines are already settled by others
agricultural practices like sowing. Therefore, it is important to know how best arrange the
shape and the placement of the actual distributions (i.e. spread patterns) during spreading
with respect to the prescribed geometrical constraints in the field. This adjustment should
be continuously performed for each GPS position of the machine by changing its settings.

In this paper, we propose a new method for optimization of fertilizer application errors
achieved during spreading. Instead of using the usual method based on the best arrange-
ment of the transverse distribution advised by the different existing standards [1, 8], an
optimization algorithm, based on a spread pattern model proposed by [3, 10], is used.

This paper is organized as follows. The next section deals with the mathematical
modelling of the fertilizer application errors reduction problem. A space-time discretization
is proposed in section 3. The optimization algorithm is then described in section 4. The
section 5 illustrates numerical simulation results for parallel tramlines in a virtual field.

2 Mathematical modelling

Consider a polygonal two dimensional domain Ω and a time interval (0, T ). A generic
point of Ω is denoted by x. Consider a rectilinear path s(t) ∈ Ω, for all t ∈ (0, T ). For
any point x in Ω, let r(x, s(t)) be the distance between s(t) and x, and θ(x, s(t)) the angle

between the vector
−−−→
s(t)x and s(t). In order to simplify notations, we will consider r(x, t)

and θ(x, t) instead of r(x, s(t)) and θ(x, s(t)).
The spread pattern is currently defined by its medium radius and medium angle. The

first parameter (varying with the speed of disc) corresponds to the distance between the
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disc center and the spread pattern one, while the second (modifiable with the fertilizers
dropping point on the disc) states the angle between the travel direction and the straight
line passing through the disc center and the spatial distribution one.

Let us introduce the functions
– ρ1, ρ2 : (0, T ) −→ R, the medium radius of the left and right discs, respectively ;
– m1,m2 : (0, T ) −→ R, the mass flow rates, at time t, of the left and right discs,

respectively ;
– ϕ1, ϕ2 : (0, T ) −→ R, the medium angle, at time t, of the left and right discs,

respectively.
To simplify the notations, we set

m(t) =

(

m1(t)

m2(t)

)

, ρ(t) =

(

ρ1(t)

ρ2(t)

)

, ϕ(t) =

(

ϕ1(t)

ϕ2(t)

)

and

y(t) =







m(t)

ρ(t)

ϕ(t)






∈ R

6, ∀t ∈ [0, T ].

According to Colin [3], the spatial distribution patterns for the right and left discs, at
time t, are given by the functions qα : Ω× (0, T ) −→ R, 1 ≤ α ≤ 2, defined by

qα(x; y(t)) = κmα(t) · exp

(

−
(r(x, t)− ρα(t))2

2σ2
r

−
(θ(x, t)− ϕα(t))2

2σ2
θ

)

, (2.1)

where

κ =
1

2πσrσθ

. (2.2)

In (2.1) - (2.2), σr and σθ are known parameters and denote the standard deviation
concerning for the medium radius and the medium angle at time t, respectively. The
distribution pattern is then obtained by the function q : Ω× (0, T ) −→ R, defined by

q(x; y(t)) =

2
∑

α=1

qα(x; y(t)). (2.3)

From (2.3), the actual distributed dose u(x, t) at time t is given by the function

u(x; y(t)) =

∫ t

0
q(x; y(τ))dτ, ∀(x, t) ∈ Ω× (0, T ). (2.4)

If we (reasonably) assume that u(x; y(0)) = 0, then the actual distributed dose (2.4)
is the solution of the ordinary differential equation

∂

∂t
u(x; y(t)) = q(x; y(t)), ∀(x, t) ∈ Ω× (0, T ), (2.5)

u(x, y(0)) = 0, ∀x ∈ Ω. (2.6)

Our goal is to minimize the application error at the end time T of the process, that is,
the difference between the actual dose u(x; y(T )) and a prescribed dose u∗. That amounts
to minimizing the L2 error norm

E(y) =
1

2
‖u− u∗‖2L2(Ω) =

1

2

∫

Ω

(

u(x; y(T )) − u∗(x)
)2

dx. (2.7)
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Since y 7→ q(x; y) is continuous, then u is a continuous function of y. The functional
E is therefore continuous with respect to y.

In order to take into account the mechanical limits of the device, the functions m, ρ
and ϕ and their time derivative must be subjected to bound constraints. It is reasonable
to require that the unknown parameters m, ρ and ϕ be at least continuous functions. Let
C 0(0, T ) be the vector space of continuous functions and C 0,1(0, T ) the space of Lipschitz
functions on (0, T ). We define the set of admissible functions K by

K =
{

y ∈ (C 0,1(0, T ))6, |y`(t)| ≤ a`, |y
′

`(t)| ≤ b`, ` = 1, . . . , 6
}

, (2.8)

where a` and b` are given positive constants chosen such a way that K is non-empty. The
set of admissible functions K is a compact subset of the space of continuous functions
(C 0(0, T ))6. The problem of the reduction of fertilization errors now reads

Find y∗ ∈ K such that :

E(y∗) ≤ E(y), ∀y ∈ K . (2.9)

Remark 1. Since E is continuous and the set of admissible parameters K is compact, the
optimization problem has at least one solution in (C 0(0, T ))6.

Remark 2. In practice, sharp bounds can be used, i.e. |y`(t)| ≤ a` can be replaced by
a` ≤ y`(t) ≤ a`, ` = 1, . . . , 6.

Remark 3. In most cases, there exist several tramlines and the actual distributed dose for
all trajectories is then obtained by the summation of the applied dose qk for each k-indexed
path

u(x; y(t)) =

np
∑

k=1

∫ t

0
qk(x; y(τ))dτ (2.10)

where np is the number of paths.

3 Numerical approximation

In practice, the problem (2.9) is approximated by a finite dimensional problem through
a space-time discretization.

3.1 Finite dimensional optimization problem

The time discretization is performed by dividing the interval (0, T ) into n subintervals
of equal length δ = T/n. We set ti = iδ, yi = y(ti) and

y =













y0

y1

...

yn













.
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By using the trapezoidal rule in (2.4), the actual distributed dose map at the end time
un(x) := u(x; y(T )) is approximated by

un(x) =
δ

2
q(x; y0) + δ

n−1
∑

i=1

q(x; yi) +
δ

2
q(x; yn). (3.1)

The cost functional (2.7) becomes

Eδ(y) =
1

2

∫

Ω
(un(x)− u∗(x))2 dx (3.2)

We assume that the polygonal domain Ω can be entirely gridded into quadrilaterals
(i.e. parallelograms) Ωe with

Ω̄ =

Ph
⋃

e=1

Ωe,

where h > 0 is a size parameter. We also assume that un can be approximated, on a
parallelogram Ωe, by a bilinear polynomial un

h. Then the cost functional becomes

Eδh(y) =
1

2

Ph
∑

e=1

∫

Ωe

(un
h(x)− u∗(x))2 dx. (3.3)

The integral over a parallelogram can now be computed by a quadrature formula. Let
{xj

e}i=1,...,4 be the vertices of a parallelogram Ωe. Then element integral in (3.3) can be
approximated by

∫

Ωe

(un
h(x)− u∗(x))2 dx ≈

|Ωe|

4

4
∑

j=1

(

un
h(xj

e)− u∗(xj
e)
)2

(3.4)

where |Ωe| is the area of the parallelogram Ωe. From (3.3) and (3.4), it follows that the
finite dimensional cost functional is

Eδh(y) =
1

8

Ph
∑

e=1

4
∑

j=1

|Ωe|
(

un
h(xj

e)− u∗(xj
e)
)2

. (3.5)

By using the trapezoidal rule (3.1), we have implicitly assumed a linear approximation
of y. Then, the set of admissible functions (2.8) is approximated by the following finite
dimensional subset

Kδ =
{

y ∈ R
N ; |yi

`| ≤ a`,
1

δ
|yi+1

` − yi
`| ≤ b`; i = 0, . . . , n, ` = 1, . . . , 6

}

,

where we have set N = 6(n + 1).
We can now replace the constrained minimization problem (2.9) by the following finite

dimensional minimization problem

Find y∗ ∈ Kδ ⊂ R
N such that :

Eδh(y∗) ≤ Eδh(y), ∀y ∈ Kδ. (3.6)

The set Kδ is closed and bounded and therefore a compact subset of R
N . Thus, accor-

ding to the Weierstrass theorem, the problem (3.6) has at least one local minimum.
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3.2 Computing the gradient of the cost function

The approximate cost functional Eδh is a differentiable function and its gradient can be
computed straight from (3.5). But we can take advantage of the optimal control structure
of the problem. Indeed, y can be viewed as a control variable, and un(x) = u(x; yn) as a
state variable and (3.1) the state equation. Let us rewrite (3.1) as

Q(xj ; yn) =
n
∑

i=0

wiq(x
j; yi), j = 1, . . . m, (3.7)

where

wi =

{

δ/2 if i ∈ {0, n},

δ if i = 1, . . . , n− 1,

and m is the number of grid points in Ω. If we set un
j = un(xj), then the state equation

(3.1) becomes
un

j −Q(xj ; yn) = 0, j = 1, . . . ,m.

The adjoint variable pj = p(xj) is computed pointwise using the adjoint equation

pj = −
∂Eδh(y)

∂un
j

= −
∑

e∈Vj

|Ωe|

4

(

un
j − u∗(xj)

)

, j = 1, . . . ,m, (3.8)

where Vj is the index set of the parallelograms sharing the vertex xj . Following the adjoint-
state technique, since E does not depend explicitly on y, we have

∂Eδh(y)

∂yk
=

∂Eδh(y)

∂yk
+

m
∑

j=1

∂

∂yk

(

un
j −Q(xj ; yn)

)

· pj

=

m
∑

j=1

wk
∂q(xj ; yk)

∂yk

∑

e∈Vj

|Ωe|

4

(

un
j − u∗(xj)

)

,

using (3.7) and (3.8).

3.3 An augmented Lagrangian method

Various algorithms for solving the nonlinear optimization problem (3.6) exist (see e.g.
[2, 4, 7] and references therein). In this section, we focus on a solution method based on
the augmented Lagrangian.

Since box constraints are easy to manage, let us introduce the set of box constraints
K defined by

K =
{

y ∈ R
N ; |yi

`| ≤ a`, i = 0, . . . , n, ` = 1, . . . , 6
}

.

The problem (3.6) is of the form

minF (y) (3.9)

−bj ≤ hj(y) ≤ bj , j = 1, . . . ,M, (3.10)

y ∈ K ⊂ R
N , (3.11)
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where hj denotes the jth two-sided constraint, on the derivative, in Kδ, −bj and bj its
lower and upper bound, respectively.

A way to overcome the constraints (3.10) is to associate to them Lagrange multi-
pliers through a Lagrangian function. To avoid splitting each two-sided constraint in two
inequality constraints and consequently two associated Lagrange multipliers, we use an
augmented Lagrangian method for two-sided constraints due to [2]. The idea is to replace
(3.9)-(3.11) by the following equivalent problem

minF (y)

−bj ≤ hj(y)− vj ≤ bj, j = 1, . . . ,M

vj = 0, j = 1, . . . ,M,

y ∈ K ⊂ R
N .

Thus, we can construct the augmented Lagrangian with only the constraints vj = 0 to
obtain

minL (y,λ, r) = F (y) + λT v +
1

2

M
∑

j=1

rj |vj |
2 (3.12)

−bj ≤ hj(y)− vj ≤ bj , j = 1, . . . ,M (3.13)

y ∈ K ⊂ R
N , (3.14)

where λ ∈ R
M is the Lagrange multiplier vector and r = (rj), rj > 0, the vector of penalty

parameters. The fictitious unknown v is eliminated by a straightforward calculation and
the problem (3.12)-(3.14) becomes

minL (y,λ, r) = F (y) +
M
∑

j=1

cj(hj(y), λj , rj) (3.15)

y ∈ K, λ ∈ R
M , r > 0 (3.16)

where cj is defined by

cj(hj(y), λj , rj) =



















λj (hj(y)− bj) +
rj

2 (hj(y)− bj)
2 if z(hj(y), λj , bj) > 0

λj (hj(y) + bj) +
rj

2 (hj(y) + bj)
2 if z(hj(y), λj ,−bj) < 0

−
λ2

j

2rj
otherwise,

with
zj(hj(y), λj , ξ) = λj + r(hj(y)− ξ).

The problem (3.15)-(3.16) can be solved by the following augmented Lagrangian algo-
rithm.

Algorithm AL

• k ← 0. Initialization
λ0 ← 0, rj > 0, 0 < β < 1 and γ > 0 given

• k ≥ 0. Assuming λk and rk are known, compute yk, λk+1 and rk+1 as follows.
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– Minimization step
Find yk ∈ K such that

L (yk,λk, rk) ≤ L(y,λk, rk), ∀y ∈ K.

– Update Lagrange multipliers

λk+1
j =















λk
j + rk

j (hj(y
k)− bj) if z(hj(y

k), λk
j , bj) > 0

λk
j + rk

j (hj(y
k)− aj) if z(hj(y

k), λk
j ,−bj) < 0

0 otherwise,

– Update the penalty parameters

rk+1
j =

{

βrk
j if |cj(hj(y

k), λk
j , rk

j )| > γ|cj(hj(y
k−1), λk−1

j , rk−1
j )|

rk
j otherwise,

We iterate until the constraints violation is sufficiently ”small”, i.e.

M
∑

j=1

cj(hj(y
k), λk

j , r
k
j )2 < ε2. (3.17)

4 Numerical experiments

In this paper, we are only interested in optimization within the main field body and
not in the boundaries zones where more complex phenomena occur. A constant prescribed
dose fixed at 80 Kg/Ha is considered because, although if in some cases desired application
rates are constant, it is difficult to obtain an uniform deposit. The tractor speed is fixed
at V = 10Km/h. We consider a field Ω = (0, 12m) × (0, 100m) with two tramlines

– s1(t) = (0, V t), t ∈ (0, T ), the outward path ;
– s2(t) = (12, 100 − V (t− T )), t ∈ (T, 2T ), the return path.

The considered mechanical constraints are chosen in order to gather the characteristics of
the most used spreaders. The selected bound constraints are presented in Table 1. The
standard deviation parameters in (2.2) are σr = 0.85 and σθ = 19.3◦.

Lower bound Upper bound

Mass Flow Rate (Kg/min) 0 300

Medium Radius (m) 4 50

Medium Angle (◦) -80 80

Mass Flow Rate derivative (Kg/(min.s)) -0.5 0.5

Medium Radius derivative (m/s) -3 3

Medium Angle derivative (◦/s) -6 6

Tab. 1 – Bound constraints

The time interval is (0, 46.8s), discretized with the time step δ = 46.8/260 = 0.18s.
The number of unknowns is therefore 12× 261 = 3132. The space discretization is carried
out by dividing Ω into squares of size 1m × 1m, i.e. 1313 grid points. The augmented
Lagrangian algorithm is initialized with the following parameters : r0 = 1, γ = 0.25,
β = 10 and λ = 0. The starting solution is defined as follows
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Left Disc : mass flow rate = 8, medium radius = 9, medium angle = −15 ;

Right Disc : mass flow rate = 8, medium radius = 9, medium angle = 15.

We use the Limited memory BFGS (L-BFGS, see e.g. [9]) for the unconstrained mi-
nimization step (Step 2. in Algorithm AL of Section 3.3). The stopping criteria are
∥

∥∇yL(yk,λk, rk)
∥

∥ < 10−3 for L-BFGS and (3.17) with ε = 10−5. All computations were
carried out with Matlab software on a workstation (2.8 Ghz) running Windows XP.

With the above data (and after conversion in suitable units) Algorithm AL stopped
after only one augmented Lagrangian iteration. In the L-BFGS routine, the convergence
is reached after 389 iterations. As we can observed in Fig. 1, the application errors are
less than 1% compared to the standard working application errors tolerance of 15%. The
computed optimal parameters are shown in Fig. 2. They are relatively smooth and evolve
around an average value that is very close to the starting solution. We can also notice
some irregularities at the beginning at the end of the travel for the medium angle. These
little discrepancies show that instantaneous variations are necessary when the spreader
comes into the field and leave it.
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Fig. 1 – Computed dose map

5 Conclusion

We have proposed a new approach for the minimization of fertilizer application errors
with centrifugal spreaders. An optimization criterion has been formalized from a spread
pattern model studied in previous works. In order to take into account the mechani-
cal limits of the spreaders, constraints have been considered. To handle efficiently these
constraints, an augmented Lagrangian algorithm has been implemented within a Matlab
environment. For a constant prescribed application rate, we have obtained satisfactory
results. Furthermore, the optimal solution are very coherent with actual settings which
would be done by agricultural engineers. These solutions can then be used in the future
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Fig. 2 – Computed optimal parameters

as reference variables to control centrifugal spreaders. Further study is underway to im-
prove our model and algorithm (optimal control with a partial differential equation and
parallelization).
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Université Technologique de Compiègne, 1997.
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