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In this paper we consider the k-edge connected subgraph problem from a polyhedral point of view. We introduce further classes of valid inequalities for the associated polytope, and describe sufficient conditions for these inequalities to be facet defining. We also devise separation routines for these inequalities, and discuss some reduction operations that can be used in a preprocessing phase for the separation. Using these results, we develop a Branch-and-Cut algorithm and present some computational results.

Introduction

One of the main concerns when designing telecommunication networks is to compute network topologies that provide a sufficient degree of survivability. Survivable networks must satisfy some connectivity requirements that is, networks that are still functional after the failure of certain links. As pointed out in [START_REF] Ko | Heuristics for designing highly survivable communication networks[END_REF] (see also [START_REF] Kerivin | Design of Survivable Networks : A Survey[END_REF]), the topology that seems to be very efficient (and needed in practice) is the uniform topology, that is to say that corresponding to networks that survive after the failure of k -1 or less edges, for some k ≥ 2. The 2-connected topology (k = 2) provides an adequate level of survivability since most failure usually can be repaired relatively quickly. However, for many applications, it may be necessary to provide a higher level of connectivity. In this paper, we consider this variant of the survivable network design problem.

A graph G = (V, E) is called k-edge connected (where k is a positive integer) if for every pair of nodes i, j ∈ V , there are at least k edge-disjoint paths between i and j. Given a graph G = (V, E) and a weight function w on E that associates with an edge e ∈ E the weight w(e) ∈ R, the k-edge connected subgraph problem (kECSP for short) is to find a k-edge connected spanning subgraph H = (V, F ) of G such that e∈F w(e) is minimum.

The kECSP is N P -hard for k ≥ 2 ( [START_REF] Garey | Computer and Intractability : A Guide to the Theory of N P -completness[END_REF]). When k = 1, the kECSP is nothing but the minimum spanning tree problem, and can be solved in polynomial time. The kECSP has been extensively studied when k = 2 [START_REF] Barahona | On two-connected subgraph polytopes[END_REF][START_REF] Fonlupt | Critical extreme points of the 2-edge connected spanning subgraph polytope[END_REF][START_REF] Frederickson | On the relationship between the biconnectivity augmentations and traveling salesman problem[END_REF][START_REF] Kerivin | Design of Survivable Networks : A Survey[END_REF][START_REF] Kerivin | 1,2)-survivable networks : Facets and Branch-and-Cut[END_REF][START_REF] Ko | Heuristics for designing highly survivable communication networks[END_REF][START_REF] Mahjoub | Two-edge Connected spanning subgraphs and polyhedra[END_REF][START_REF] Mahjoub | On perfectly Two-edge connected subgraphs and polyhedra[END_REF][START_REF] Monma | Minimum weight twoconnected spanning networks[END_REF]. It has, however, received a little attention when k ≥ 3.

In this paper we consider the k-edge connected subgraph problem from a polyhedral point of view. We introduce further classes of valid inequalities for the associated polytope, and describe sufficient conditions for these inequalities to be facet defining. We also devise separation routines for these inequalities, and discuss some reduction operations that can be used in a preprocessing phase for the separation. Using these results, we develop a Branch-and-Cut algorithm and present some computational results.

Given a graph G = (V, E) and an edge subset F ⊆ E, the 0-1 vector x F ∈ R E such that x F (e) = 1 if e ∈ F and x F (e) = 0 if e ∈ E \ F is called the incidence vector of F . The convex hull of the incidence vectors of the edge sets of the k-edge connected subgraphs of G, denoted by kECSP(G), is called the k-edge connected subgraph polytope of G.

Let G = (V, E) be a graph. Given w : E → R and F a subset of E, w(F ) will denote e∈F w(e). For W ⊆ V , we let W = V \ W . If W ⊂ V is a node subset of G, then the set of edges that have only one node in W is called a cut and denoted by δ(W ). We will write δ(v) for δ({v}). If x F is the incidence vector of the edge set F of a k-edge connected spanning subgraph of G, then x F satisfies the following inequalities :

x(e) ≥ 0 for all e ∈ E, (1) x(e) ≤ 1 for all e ∈ E, (2) x(δ(W )) ≥ k for all W ⊂ V, W = V, W = ∅.

(

Conversely, any integer solution of the system defined by inequalities (1)-( 3) is the incidence vector of the edge set of a k-edge connected subgraph of G. Constraints (1) and ( 2) are called trivial inequalities and constraints (3) are called cut inequalities.

We will denote by P (G, k) the polytope given by inequalities (1)- [START_REF] Baïou | Steiner 2-edge connected subgraph polytopes on series-parallel graphs[END_REF].

The kECSP has been studied by Grötschel and Monma [START_REF] Grötschel | Integer polyhedra arising from certain network design problems with connectivity constraints[END_REF] and Grötschel et al. [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] within the framework of a more general survivability model. In particular, Grötschel and Monma [START_REF] Grötschel | Integer polyhedra arising from certain network design problems with connectivity constraints[END_REF] studied the dimension of the polytope associated with that model as well as some basic facets. It follows from their results that kECSP is full dimensional if G is (k + 1)-edge connected. In [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF], Grötschel et al. studied further facets and polyhedral aspects of that model and devised cutting plane algorithms along with some computational results are discussed. A complete survey of that model and related network design problems can be found in [START_REF] Kerivin | Design of Survivable Networks : A Survey[END_REF].

In [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF], Chopra studies the k-edge connected subgraph problem for k odd when multiple copies of an edge may be used. In particular, he characterizes the associated polyhedron for outerplanar graphs (a graph is outerplanar if it can be drawn in the plane on a cycle with none crossing chords). This polyhedron has been previously studied by Cornuéjols et al. [START_REF] Cornuéjols | The traveling salesman problem on a graph and some related polyhedra[END_REF]. They showed that if a graph is series-parallel (a graph is series-parallel if it can be obtained from a single edge by iterative application of the two operations : (i) addition of a parallel edge, and (ii) subdivision of an edge) and k = 2, then the polyhedron is completely described by the nonnegativity and cut inequalities. In [START_REF] Biha | k-edge connected polyhedra on seriesparallel graphs[END_REF], Didi Biha and Mahjoub give a complete description of kECSP(G) for all k when G is series-parallel. In particular, they show that if G is series-parallel and k is even, then kECSP(G) = P (G, k). Didi Biha and Mahjoub study in [START_REF] Biha | The k-edge connected subgraph problem I : Polytopes and critical extreme points[END_REF] the extreme points of P (G, k). They introduce an ordering on the fractional extreme points of P (G, k) and describe some structural properties of the minimal extreme points with respect to that ordering. Using these results, they give sufficient conditions for P (G, k) to be integral.

Much work has been done on 2ECSP(G). In [START_REF] Mahjoub | Two-edge Connected spanning subgraphs and polyhedra[END_REF], Mahjoub shows that if G is series-parallel then 2ECSP(G) is completely described by the trivial and cut inequalities. This has been generalized by Baïou and Mahjoub [3] to the Steiner 2-edge connected subgraph polytope, and Didi Biha and Mahjoub [START_REF] Biha | Steiner k-edge connected subgraph polyhedra[END_REF] to the Steiner kedge connected subgraph polytope for k even. Mahjoub [START_REF] Mahjoub | Two-edge Connected spanning subgraphs and polyhedra[END_REF] introduces a general class of valid inequalities for 2ECSP(G). Boyd and Hao [START_REF] Boyd | An integer polytope related to the design of survivable communication network[END_REF] describe a class of "comb inequalities" which are valid for 2ECSP(G). This class, as well as that introduced by Mahjoub [START_REF] Mahjoub | Two-edge Connected spanning subgraphs and polyhedra[END_REF], are special cases of a more general class of inequalities given by Grötschel et al. [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] for the general survivable network polytope. In [START_REF] Barahona | On two-connected subgraph polytopes[END_REF], Barahona and Mahjoub characterize the polytope 2ECSP(G) for the class of Halin graphs. Kerivin et al. [START_REF] Kerivin | 1,2)-survivable networks : Facets and Branch-and-Cut[END_REF] describe a general class of valid inequalities for 2ECSP(G) that generalizes the so-called F -partition inequalities [START_REF] Mahjoub | Two-edge Connected spanning subgraphs and polyhedra[END_REF]. They also develop a Branchand-Cut algorithm for the 2ECSP, based on these inequalities and trivial and cut inequalities. In [START_REF] Bienstock | On the structure of minimum weight k-connected networks[END_REF], Bienstock et al. describe structural properties of the optimal solution of kECSP when the weight function satisfies the triangle inequalities (i.e. w(e 1 ) ≤ w(e 2 ) + w(e 3 ) for every three edges e 1 , e 2 , e 3 defining a triangle). In particular, they show that every node of a minimum weight k-edge connected subgraph have degree k or k + 1. This generalizes results given by Monma et al. [START_REF] Monma | Minimum weight twoconnected spanning networks[END_REF] for the case when k = 2. In [START_REF] Coullard | Linear time algorithm for the 2-connected Steiner subgraph problem on special classes of graphs[END_REF][START_REF] Coullard | The Dominant of the 2connected Steiner subgraph polytope for W 4 -free graphs[END_REF], Coullard et al. study the Steiner 2-node connected subgraph problem. They devise in [START_REF] Coullard | Linear time algorithm for the 2-connected Steiner subgraph problem on special classes of graphs[END_REF] a linear time algorithm for this problem on some special classes of graphs. And in [START_REF] Coullard | The Dominant of the 2connected Steiner subgraph polytope for W 4 -free graphs[END_REF], they characterize the dominant of the polytope associated with this problem on the graphs which do not have K 4 (the wheel on four nodes) as a minor. In [START_REF] Fonlupt | The traveling salesman problem in graphs with some excluded minors[END_REF], Fonlupt and Naddef characterize the class of graphs for which the system given by inequalities ( 1) and ( 3), when k = 2, defines the convex hull of the incidence vectors of the tours of G (a tour is a cycle going at least once through each node).

The paper is organised as follows. In the following section we introduce some classes of valid inequalities and describe sufficient conditions for these inequalities to be facet defining. In Section 3, we discuss some graph reduction operations. In Section 4, we describe separation routines for the inequalities described in Section 2 and develop a Branch-and-Cut algorithm for the kECSP. Our computational results are presented in Section 5, and finally some concluding remarks are given in Section 6.

In the rest of this section we give more definitions and notations. The graphs we consider are finite, undirected, loopless and connected. A graph is denoted by G = (V, E) where V is the node set and E is the edge set. If e ∈ E is an edge with endnode u and v, we also write uv to denote e. Given a node subset W , the cut δ(W ) is said to be proper if |W | ≥ 2 and |V \ W | ≥ 2. If W and W are two disjoint subsets of V , [W, W ] will denote the set of edges of G having one endnode in W and the other one in W . If π = (V 1 , ..., V p ), p ≥ 2, is a partition of V , then we denote by δ(π) the set of edges having their endnodes in different sets. For all F ⊆ E, V (F ) will denote the set of nodes of the edges of F . For W ⊂ V , we denote by E(W ) the set of edges of G having both endnodes in W and G[W ] the subgraph induced by W . Given an edge e = uv ∈ E, contracting e consists in deleting e, identifying the nodes u and v and in preserving all adjacencies. Contracting a node subset W consists in identifying all the nodes of W and preserving the adjacencies. Given a partition π = (V 1 , ..., V p ), p ≥ 2, we will denote by G π the subgraph induced by π that is the graph obtained from G by contracting the sets V i , for i = 1, ..., p. Note that the edge set of G π is the set δ(V 1 , ..., V p ). Given a solution x ∈ P (G, k), an inequality ax ≥ α is said to be tight for x if ax = α.

Facets of kECSP(G)

In this section we present three classes of valid inequalities for kECSP(G). We describe some conditions for these inequalities to be facet defining. Separation procedures for these inequalities will be described in Section 4. 1 for k = 3 and p even).

Odd path inequalities

Let G = (V, E) be a (k + 1)-edge connected graph and π = (W 1 , W 2 , V 1 , ..., V 2p ) a partition of V with p ≥ 2. Let I 1 = {4r, 4r + 1, r = 1, ..., p 2 -1} and I 2 = {2, ..., 2p -1} \ I 1 . We say that π induces an odd path configuration if 1) |[V i , W j ]| = k -1 for (i, j) ∈ (I 1 × {1}) ∪ (I 2 × {2}), 2) |[W 1 , W 2 ]| ≤ k -1, 3) δ(V i ) = [V i , W 1 ] ∪ [V i-1 , V i ] ∪ [V i , V i+1 ] (resp. δ(V i ) = [V i , W 2 ] ∪ [V i-1 , V i ] ∪ [V i , V i+1 ]) if i ∈ I 1 (resp. i ∈ I 2 ) (see Figure
Let C = 2p-1 i=1 [V i , V i+1 ]. As [V l , V t ] = ∅, if |l -t| > 1, for l, t ∈ {1, ..., 2p}, C can be
seen as an odd path of extremities V 1 and V 2p in the graph G π . With an odd path configuration we associate the inequality

x(C) ≥ p. (4) 
Inequalities of type (4) will be called odd path inequalities.

V 1 V 3 V 2 V 4 W 2 W 1 V 5 V 6 V 2p V 2p-1
Fig. 1 -An odd path configuration with k = 3 and p even.

We have the following.

Theorem 2.1 Inequalitiy (4) is valid for kECSP(G).

Proof. As |[V i , W j ]| = k -1 and x(δ(V i )) ≥ k is valid for kECSP(G), for (i, j) ∈ (I 1 × {1}) ∪ (I 2 × {2}), we have x([V 2s-1 , V 2s ]) + x([V 2s , V 2s+1 ]) ≥ 1 for s = 1, ..., p -1, (5) x([V 2s , V 2s+1 ]) + x([V 2s+1 , V 2s+2 ]) ≥ 1 for s = 1, ..., p -1. (6) 
By multiplying each inequality (5) (resp. inequality [START_REF] Boyd | An integer polytope related to the design of survivable communication network[END_REF]), corresponding to s ∈ {1, ..., p -1} by p-s p (resp. s p ) and summing these inequalities, we obtain

i∈I x([V i , V i+1 ]) + i∈I p -1 p x([V i , V i+1 ]) ≥ p -1, (7) 
where I = {2, 4, 6, ..., 2p -2} and I = {1, ..., 2p -1} \ I.

By considering the cut inequality induced by

W 1 ∪ V 1 ∪ ( i∈I 1 V i ) (resp. W 1 ∪ V 1 ∪ ( i∈I 1 V i ) ∪ V 2p ) if p is odd (resp. even) we have x([W 1 , W 2 ]) + i∈I x([V i , V i+1 ]) ≥ k. As |[W 1 , W 2 ]| ≤ k -1, it follows that 1 p i∈I x([V i , V i+1 ]) ≥ 1 p . (8) 
By summing inequalities [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF] and [START_REF] Cornuéjols | The traveling salesman problem on a graph and some related polyhedra[END_REF] and rounding up the right hand side, we get inequality [START_REF] Barahona | On two-connected subgraph polytopes[END_REF].

In what follows, we give sufficient conditions for inequality (4) to be facet defining.

Theorem 2.2 Inequality (4) defines a facet for kECSP(G) if the following hold.

1) The subgraphs

G[W 1 ], G[W 2 ] and G[V i ], for i = 1, ..., 2p, are (k + 1)-edge connec- ted ; 2) |[W 1 , W 2 ]| = k -1, |[V 1 , W 1 ]| = k and |[V 2p , W 1 ]| = k (resp. |[V 2p , W 2 ]| = k) if p is even (resp. odd).
Proof. We will show the result for p even, the proof is similar if p is odd. Let e i be a fixed edge of

[V i , V i+1 ], for i = 1, ..., 2p -1. Let E 0 = p s=1 [V 2s-1 , V 2s ], E 1 = p-1 s=1 [V 2s , V 2s+1 ], E = δ(π) \ (E 0 ∪ E 1 ), Ẽ = E \ (E 0 ∪ E 1 ∪ E) and E = E ∪ Ẽ.
Inequality (4) can be written as

x(E 0 ) + x(E 1 ) ≥ p. (9) 
Suppose that conditions 1) and 2) above hold and let us denote inequality (9) by ax ≥ α. Let F = {x ∈ kECSP(G) | ax = α}. Let S = E ∪ {e 2s-1 , s = 1, ..., p}. Clearly, S induces a k-edge connected subgraph of G and x S satisfies [START_REF] Coullard | Linear time algorithm for the 2-connected Steiner subgraph problem on special classes of graphs[END_REF] with equality. This implies that F is a proper face of kECSP(G). Now suppose that there exists a facet defining inequality bx ≥ β such that F ⊆ {x ∈ kECSP(G) | bx = β}. We will show that ax ≥ α and bx ≥ β are equivalent. As G is (k + 1)-edge connected and thus, kECSP(G) is full dimensional, it suffices to show that b = ρa with ρ > 0.

To this end, first observe, from conditions 1) and 2) that S f = S \ {f }, for f ∈ Ẽ induces a k-edge connected subgraph of G. Moreover, x S f satisfies (9) with equality. Hence, ax S f = α and then bx S f = β. This implies that b(f 

) = bx S -bx S f = 0. Now, let e ∈ [V 2s-1 , V 2s ] \ {e 2s-1 }
From ( 10) and (11), it follows that b(e) = ρ for all e ∈ E 0 ∪ E 1 , for some ρ ∈ R * .

Let e ∈ [V i , W j ] for (i, j) ∈ (I 1 × {1}) ∪ (I 2 × {2}) and S 6 = (S 2 \ {e 1 }) ∪ {e i-1 } (resp. S 6 = (S 2 \ {e 1 }) ∪ {e i }) if i is even (resp. odd).
It is not hard to see that S 6 and S 6 \ {e} induce k-edge connected subgraphs of G and that their incidence vector satisfy ax ≥ α with equality. Hence, b(e) = bx S 6bx S 6 = 0.

For all e ∈ [W 1 , W 2 ], the edge set S 7 = S \ {e} induces a k-edge connected subgraph of G and satisfies ax ≥ α with equality. Hence ax S 7 = α and bx S 7 = bx S = β. Thus, we obtain b(e) = 0 for all e ∈ [W 1 , W 2 ].

All together, we have then shown that

b(e) = ρ if e ∈ E 0 ∪ E 1 , 0 if not.
Thus, b = ρa with ρ ∈ R. Since bx ≥ β defines a facet of kECSP(G), one should have that ρ > 0, which terminates the proof of the theorem.

Lifting procedure for odd path inequalities

In what follows we are going to describe a lifting procedure for the odd path inequalities. This will permit to extend these inequalities to a more general class of valid inequalities.

A general lifting procedure for inequalities (4) can be described as follows (see [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF]). Consider a graph G = (V, E) and a valid inequality ax ≥ α for kECSP(G). Let G = (V, E ) be a graph obtained from G by adding an edge e, that is E = E ∪ {e}. Then the inequality ax + a(e)x(e) ≥ α

is valid for kECSP(G ) where a(e) = α-γ with γ = min{ax | x ∈ kECSP(G ) and x(e) = 1}. Moreover, if ax ≥ α is facet defining for kECSP(G), then inequality ( 12) is also facet defining for kECSP(G ). Note that if more than one edge have to be added to G, then their lifting coefficients will depend on the order in which they will be added to G. Moreover, if edges e 1 , ..., e k-1 , e k , ..., e t are added to G in this order and a(e k ) is the lifting coefficient of e k with respect to this order, then a(e k ) ≤ a (e k ) where a (e k ) is the lifting coefficient of e k in any order e i 1 , ..., e i k-1 , ..., e it such that i l = l for l = 1, ..., k -1 and i s = k for some s > k.

Theorem 2.3 Let G = (V, E) be a graph and π = (W 1 , W 2 , V 1 , ..., V 2p ), p ≥ 2, a partition of V which induces an odd path configuration. Let C, I 1 and I 2 be defined as in Section 2.1. Let U 1 = i∈I 1 V i , U 2 = i∈I 2 V i and W = U 2 ∪ V 2p (resp. W = U 2 )
if p is odd (resp. even). If G = (V, E ∪ L) is a graph obtained from G by adding an edge set L, then the following inequality is valid for kECSP(G )

x(C) + e∈L a(e)x(e) ≥ p, (13) 
with

a(e) =                                    1 if e ∈ ( j=1,2 [W j , U 1 ∪ U 2 ] ∪ [W 1 , W 2 ]) ∩ L or e ∈ ( j=1,2p [V j , U 1 ∪ U 2 ] ∪ [([V 1 , V 2p ∪ W 2 ] ∪ [V 2p , W 1 ∪ W 2 ]) ∩ δ(W )]) ∩ L; 2 if e ∈ [V i , V j ] ∩ L, i, j ∈ {2, .
.., 2p -1} with i < j and i even, j odd;

λ if e ∈ [V i , V j ] ∩ L with i, j ∈ {2, .
.., 2p -1}, i < j and i odd or i and j have same parity; 0 otherwise, where λ is the lifting coefficient obtained using the lifting procedure above. Moreover, we have 1 ≤ λ ≤ 2.

Proof. Easy.

Observe that the lifting coefficients of the edges other than those between two subsets V i and V j such that i, j ∈ {2, ..., 2p -1}, i < j, i is odd or i and j have the same parity do not depend on the order of their adding in G. Inequalities (13) will be called lifted odd path inequalities. As it will turn out, these inequalities are very useful for our Branch-and-Cut algorithm.

F -partition inequalities

In [START_REF] Mahjoub | Two-edge Connected spanning subgraphs and polyhedra[END_REF], Mahjoub introduced a class of valid inequalities for 2ECSP(G) as follows.

Let (V 0 , V 1 , ..., V p ), p ≥ 2, be a partition of V and F ⊆ δ(V 0 ) with |F | odd. By adding the inequalities x(δ(V i )) ≥ 2 for i = 1, ..., p, (14) 
-x(e) ≥ -1 for e ∈ F, (15) x 
(e) ≥ 0 for e ∈ δ(V 0 ) \ F, (16) 
we obtain 2x(∆) ≥ 2p -|F | where ∆ = δ(V 0 , V 1 , ..., V p ) \ F .
Dividing by 2 and rounding up the right hand side lead to

x(∆) ≥ p - |F | -1 2 . (17) 
Inequalities ( 17) are called F -partition inequalities. These inequalities can be straightforwardly extended for all k ≥ 2. In fact, in a similar way, one can show that given a partition (V 0 , V 1 , ..., V p ), p ≥ 2, of V and F ⊆ δ(V 0 ), the inequality

x(δ(V 0 , V 1 , ..., V p ) \ F ) ≥ kp -|F | 2 , (18) 
is valid for kECSP(G). Note here that |F | can be either odd or even. Also note that if kp and |F | have the same parity, then the corresponding inequality ( 18) is implied by the cut and the trivial inequalities.

In what follows, we describe sufficient conditions for inequalities [START_REF] Fonlupt | The traveling salesman problem in graphs with some excluded minors[END_REF] to be facet defining. Theorems 2.4 and 2.5 describe these conditions for k odd and k even, respectively. 2 for an illustration with k = 5 and l = 2).

Theorem 2.4 Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let π = (W, V 1 , ..., V 2l+1 , U 1 , ..., U 2l+1 ), l ≥ 2 if k = 3 and l ≥ 1 if k ≥ 5, be a partition of V such that 1) G[W ], G[V i ], G[U i ], i = 1, ..., 2l + 1, are (k + 1)-edge connected ; 2) |[W, V i ]| ≥ k -2 for i = 1, ..., 2l + 1 ; 3) |[U i , U i+1 ]| ≥ k-1 2 , i = 1, ..., 2l + 1 (the indices are modulo 2l + 1) ; 4) |[V i , V i+1 ]| ≥ 1, i = 1, ..., 2l + 1 (the indices are modulo 2l + 1) ; 5) |[V i , U i ]| ≥ 1 and |[V i , U i-1 ]| ≥ 1, i = 1, ..., 2l + 1 (for convenience we will let U 0 = U 2l+1 ) (See Figure
Let F i be an edge subset of [W, V i ] such that |F i | = k -2, i = 1, ..., 2l + 1 and let F = 2l+1 i=1 F i . Then the F -partition inequality x(δ(π) \ F ) ≥ l(k + 2) + k 2 + 1 ( 19 
)
induced by π and F , defines a facet of kECSP(G).

edge of δ(π) \ F edge of F U 1 V 1 V 2 U 2 V 3 W V 5 U 3 V 4 U 4 U 5 Fig. 2 -An F -partition configuration with k = 5
Proof. First observe that, by conditions 1) -5), G is (k + 1)-edge connected and hence kECSP(G) is full dimensional. Let us denote inequality [START_REF] Frederickson | On the relationship between the biconnectivity augmentations and traveling salesman problem[END_REF] by ax ≥ α and let F = {x ∈ kECSP(G) | ax = α}. Clearly, F is a proper face of kECSP(G). Now suppose that there exists a facet defining inequality bx ≥ β such that F ⊆ {x ∈ kECSP(G) | bx = β}. We will show that there exists ρ > 0 such that b = ρa. Let e i be an edge of [V i , V i+1 ], i = 1, ..., 2l + 1 (the indices are modulo 2l + 1) and f i and

f i be edges of [V i , U i-1 ] and [V i , U i ], respectively, for i = 1, ..., 2l + 1. Note that U 0 = U 2l+1 . Let T i be an edge subset of [U i , U i+1 ] of k-1
2 edges, for i = 1, ..., 2l + 1 (the indices are modulo 2l + 1).

Let E 0 be the set of edges not in F and having both endnodes in the same element of π. First, we will show that b(e) = 0, for all e ∈ E 0 ∪ F . To this end, let i 0 ∈ {1, ..., 2l + 1} and consider the edge sets

E 1 = {e i 0 +2r , r = 0, ..., l} ∪ {f i , i = 1, ..., 2l + 1} ∪ ( 2l+1 i=1 T i ), E 2 = E 1 ∪ F ∪ E 0 .
It is not hard to see that E 2 induces a k-edge connected subgraph of G. Note that there is k +1 edges incident to V i 0 in E 2 . Now, observe that for any edge e ∈ F i 0 , we have that E 2 = E 2 \ {e} also induces a k-edge connected subgraph of G. As x E 2 and x E 2 belong to F, it follows that bx E 2 = bx E 2 = β, implying that b(e) = 0 for all e ∈ F i 0 . As i 0 is arbitrarily chosen, we obtain that b(e) = 0 for all e ∈ F . Moreover, as the subgraphs induced by W , V 1 , ..., V 2l+1 , U 1 , ... , U 2l+1 are all (k + 1)-edge connected, the subgraph induced by E 2 \ {e} for all e ∈ E 0 is also k-edge connected. This yields as before b(e) = 0 for all e ∈ E 0 . Thus, b(e) = 0 for all e ∈ F ∪ E 0 .

Next, we will show that b(e) = ρ for all e ∈ δ(π) \ F , for some ρ ∈ R. Let g i be a fixed edge of T i and let T i = T i \ {g i }, i = 1, ..., 2l + 1. Consider the edge sets (20) for some ρ ∈ R.

E 3 = {f i , f i , i = 1, ..., 2l + 1} ∪ ( l i=1 T 2i ) ∪ T 2l+1 ∪ ( l-1 i=0 T 2i+1 ), E 4 = E 3 ∪ F ∪ E 0 , E 4 = (E 4 \ g 2l+1 ) ∪ {g 1 }. Note that g 1 / ∈ T 1 and

Now let

E 5 = (E 4 \ {f 1 }) ∪ {e 2l+1 }.
Clearly, E 5 induces a k-edge connected subgraph of G and x E 5 belongs to F, implying that bx E 4 = bx E 5 = β. Hence b(f 1 ) = b(e 2l+1 ). In a similar way, we can show that b(f 2l+1 ) = b(e 2l+1 ). As f 1 , f 2l+1 and e 2l+1 are arbitrary edges of

[U 2l+1 , V 1 ], [V 2l+1 , U 2l+1 ] and [V 2l+1 , V 1 ], respectively, we obtain that b(e) = ρ 2l+1 for all e ∈ [U 2l+1 , V 1 ] ∪ [V 2l+1 , U 2l+1 ] ∪ [V 2l+1 , V 1 ]. By exchanging the roles of V 2l+1 , V 1 , U 2l+1 and V i , V i+1 , U i , for i = 1, ..., 2l, we obtain by symmetry that b(e) = ρ i for all e ∈ [U i , V i ] ∪ [V i , V i+1 ] ∪ [V i+1 , U i ], (21) 
i = 1, ..., 2l + 1 (the indices are modulo 2l + 1), for some ρ i ∈ R.

Consider the edge set

E 5 = (E 5 \ {f 1 }) ∪ {e 1 }.
Obviously, E 5 induces a k-edge connected subgraph of G. As x E 4 and x E 5 belong to F, it follows, in a similar way, that b(e 1 ) = b(f 1 ). From [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF], we have that ρ 1 = ρ 2l+1 . By symmetry, it then follows that ρ i = ρ j for i, j = 1, ..., 2l + 1, i = j, and therefore

b(e) = ρ for all e ∈ [U i , V i ] ∪ [V i , V i+1 ] ∪ [V i+1 , U i ], (22) 
for i = 1, ..., 2l + 1 (the indices are modulo 2l + 1), for some ρ ∈ R.

Let e ∈ ([V 2l+1 , W ] \ F 2l+1 ) ∪ [V 2l+1 , V j ], j ∈ {1, ..., 2l + 1} \ {1, 2l, 2l + 1}. It is not hard to see that E 6 = (E 4 \ {f 2l+1 }) ∪ {e} induces a k-edge connected subgraph of G and that x E 6 ∈ F. This implies that bx E 6 = bx E 4 = β and hence b(e) = b(f 2l+1 ).
By [START_REF] Gomory | Multi-Terminal Network Flows[END_REF], we then obtain that b(e) = ρ for all e ∈ ([

V 2l+1 , W ] \ F 2l+1 ) ∪ [V 2l+1 , V i ] for i ∈ {1, ..., 2l + 1} \ {1, 2l, 2l + 1}
. By exchanging the roles of V 2l+1 and V i , i = 1, ..., 2l, we obtain by symmetry that b(e) = ρ for all e ∈ ([V i , W ]\F i )∪[V i , V j ], i = 1, ..., 2l+1 and j ∈ {1, ..., 2l + 1} \ {i -1, i, i + 1} (the indices are taken modulo 2l + 1 and

V 0 = V 2l+1 ).
For any edge e between U 2l+1 and either W , U j , j ∈ {1, ..., 2l + 1} \ {1, 2l, 2l + 1}, or V t , t ∈ {1, ..., 2l + 1} \ {1, 2l + 1}, the edge set

E 7 = (E 4 \ {f 2l+1 , f 1 }) ∪ {e, e 2l+1 } induces a k-edge connected subgraph of G. Since x E 4 and x E 7 belong to F we have that bx E 7 = b E 4 = β and b(f 2l+1 ) + b(f 1 ) = b(e) + b(e 2l+1 ). As by (22), b(f 2l+1 ) = b(f 1 ) = b(e 2l+1 ) = ρ , we get b(e) = ρ . By exchanging the roles of U 2l+1 and U i , i = 1, ..., 2l we obtain that b(e) = ρ for all e ∈ [U i , W ] ∪ [U i , U j ] ∪ [U i , V t ], i = 1, ..., 2l + 1, j ∈ {1, ..., 2l + 1} \ {i, i + 1} and t ∈ {1, ..., 2l + 1} \ {i -1, i, i + 1}.
As x E 2 and x E 4 belong to F, we have that bx E 2 = bx E 4 = β. Thus, from ( 20) and ( 22), we obtain that ρ = ρ = ρ, for some ρ ∈ R.

All together we obtain that

b(e) = ρ if e ∈ E \ (E 0 ∪ F ), 0 if not.
Thus, b = ρa with ρ ∈ R. Since bx ≥ β defines a facet of kECSP(G), one should have ρ > 0, which ends the proof of the theorem.

In what follows, we describe sufficient conditions for inequalities [START_REF] Fonlupt | The traveling salesman problem in graphs with some excluded minors[END_REF] to be facet defining when k is even. Consider a graph G = (V, E) and an even integer k = 2q with q ≥ 1, a generalized odd-wheel configuration is given by an integer l ≥ 1, a set of positive integers {p 1 , ..., p 2l+1 } and a partition π

= (V 0 , V s i , i = 1, ..., 2l + 1, s = 0, ..., p i ) of V such that 1) G[V 0 ] and G[V s i ] are (k + 1)-edge connected, for s = 1, ..., p i and i = 1, ..., 2l + 1 ; 2) |[V 0 i , V 0 i+1 ]| ≥ 2q, for i = 1, ..., 2l + 1 (the indices are modulo 2l + 1) ; 3) |[V s i , V s+1 i ]| ≥ 2q
, for s = 0, ..., p i and i = 1, ..., 2l + 1 (for convenience we will let 3). Let F 0 i be an edge subset of [V 0 , V p i i ] of q (resp. q -1) edges if q is odd (resp. even)

V p i +1 i = V 0 ) ; 4) [V s i , V t i ] = ∅,
and

F = 2l+1 i=1 F 0 i . edges of δ(π) \ F edges of F V 0 1 V0 V 2 3 V 0 4 V 1 4 V 2 4 V 2 2 V 1 2 V 0 2 V 0 5 V 1 5 V 2 5 V 1 1 V 1 3 V 0 3 Fig. 3 -A generalized odd-wheel configuration with k = 4
With a generalized odd-wheel configuration with q odd (resp. even) we associate the following F -partition inequality induced by the partition π and F

x(δ(π) \ F ) ≥ q 2l+1 i=1 p i + ql + q + 1 2 (resp. x(δ(π) \ F ) ≥ q 2l+1 i=1 p i + (q + 1)l + q + 2 2 ). ( 23 
)
Inequality of type (23) will be called generalized odd-wheel inequality. We have the following theorem given without proof, the proof follows the same lines as that of Theorem 2.4.

Theorem 2.5 Inequalities (23) define facets of kECSP(G).

SP -partition inequalities

In [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF], Chopra introduces a class of valid inequalities for the kECSP when the graph G is outerplanar, k is odd, and each edge can be used more than once. Let G = (V, E) be an outerplanar graph and k ≥ 1 an odd integer. He showed that if π = (V 1 , ..., V p ), p ≥ 2, is a partition of V , then the inequality

x(δ(V 1 , ..., V p )) ≥ k 2 p -1 (24) 
is valid for kECSP(G).

Didi Biha and Mahjoub [START_REF] Biha | k-edge connected polyhedra on seriesparallel graphs[END_REF] extended this result for a general graph and when each edge can be used at most once. They showed that if G is a graph and π = (V 1 , ..., V p ), p ≥ 2, is a partition of V such that G π is series-parallel, then inequality [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] is valid for kECSP(G). They called inequalities (24) SP -partition inequalities. They also described necessary conditions for inequality [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] to be facet defining and showed that if G is series-parallel and k is odd then kECSP(G) is defined by the trivial, cut inequalities and SP -partition inequalities. More necessary conditions for inequalities [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] to be facet defining are given in [START_REF] Diarrassouba | Etude polyédrale du problème du sous-graphe k-arête connexe dans les graphes outerplanaires et série-parallèles[END_REF]. In particular, Diarrassouba and Slama [START_REF] Diarrassouba | Etude polyédrale du problème du sous-graphe k-arête connexe dans les graphes outerplanaires et série-parallèles[END_REF] show the following.

Theorem 2.6 [START_REF] Diarrassouba | Etude polyédrale du problème du sous-graphe k-arête connexe dans les graphes outerplanaires et série-parallèles[END_REF] Let G = (V, E) be a (k + 1)-edge connected graph and k ≥ 3 an odd integer. Let π = (V 1 , ..., V p ), p ≥ 2, be a partition of V such that G π is seriesparallel. If the SP -partition inequality induced by π defines a facet of kECSP(G) different from trivial inequalities then

1) |[V i , V i+1 ]| ≥ k 2 , for i = 1, ..., p (the indices are modulo p) ; 2) G π is outerplanar.
In what follows, we shall give some sufficient conditions for inequalities [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] to be facet defining.

Theorem 2.7 Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let π = (V 1 , ..., V p ), p ≥ 2, be a partition of V such that G π is outerplanar. Then the SPpartition inequality induced by π is facet defining for kECSP(G) if the following conditions hold

1) G[V i ] is (k + 1)-edge connected for i = 1, ..., p ; 2) |[V i , V i+1 ]| ≥ k
2 , i = 1, ..., p (the indices are modulo p) (See Figure 4 for an illustration with k = 3). Let T i be an edge subset of [V i , V i+1 ], i = 1, ..., p (the indices are modulo p) of k+1 2 edges and let T i = T i \ {g i }, where g i is a fixed edge of T i . Consider

V 1 V 2 V 6 V 4 V 3 V 5
E 0 = p i=1 E(V i ), E 1 = ( i 0 -1 i=1 T i ) ∪ ( p i=i 0 +1 T i ) ∪ T i 0 , for some i 0 ∈ {1, ..., p}, E 2 = E 1 ∪ E 0 .
Note that g i 0 /

∈ T i 0 and hence g i 0 / ∈ E 2 , and

g i 0 +1 ∈ E 2 . It is not hard to see that E 2 and E 2 = (E 2 \{g i 0 +1 })∪{g i 0 } induce k-edge connected subgraphs of G and that x E 2 and x E 2 belong to F. Thus, we have that bx E 2 = bx E 2 = β and that b(g i 0 ) = b(g i 0 +1
). As g i 0 and g i 0 +1 are arbitrary edges of T i 0 and T i 0 +1 , respectively, it follows that b(e) = b(e ) for all e ∈ T i 0 and e ∈ T i 0 +1 . Moreover, since T i 0 and T i 0 +1 are arbitrary subsets of [V i 0 , V i 0 +1 ] and [V i 0 +1 , V i 0 +2 ], respectively, we obtain b(e) = b(e ) for all e ∈ [V i 0 , V i 0 +1 ] and e ∈ [V i 0 +1 , V i 0 +2 ], i 0 = 1, ..., p. Consequently, by symmetry, we have that b(e) = ρ, for all e ∈ [V i , V i+1 ], i = 1, ..., p (the indices are modulo p), for some ρ ∈ R.

Now let e ∈ [V i 0 , V j 0 ], i 0 , j 0 ∈ {1, ..., p} with |i 0j 0 | > 1. Note that the indices are modulo p and that, for convenience, we will let T 0 = T p , T -1 = T p-1 and T 0 = T p . Consider

E 3 = ( i 0 -2 i=1 T i ) ∪ ( p i=i 0 +1 T i ) ∪ (T i 0 -1 ∪ T i 0 ) ∪ {e}, E 4 = E 3 ∪ E 0 . E 4 = (E 4 \ {e}) ∪ {g i 0 }
One can easily check that E 4 and E 4 induce k-edge connected subgraphs of G. Since x E 4 and x E 4 belong to F, it follows that bx 4 = bx E 4 = β and that b(e) = b(g i 0 ) = ρ. Thus, we obtain b(e) = ρ, for all e ∈ [V i 0 , V j 0 ], i 0 , j 0 ∈ {1, ..., p} with |i 0j 0 | > 1.

Consider now the edge set

E 5 = E 2 \ {e}, for some e ∈ E 0 .
Since G[V i ], i = 1, ..., p, are (k + 1)-edge connected, E 5 induces a k-edge connected subgraph of G. As x E 2 and x E 5 belong to F, we have that bx E 2 = bx E 5 = β, and thus b(e) = 0, for all e ∈ E 0 .

All together, we obtain

b(e) = ρ if e ∈ E \ E 0 , 0 if not.
Thus, we get b = ρa with ρ ∈ R. Since bx ≥ β defines a facet of kECSP(G) different from the trivial inequalities, we have that ρ > 0, which ends the proof of the Theorem. Chopra [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF] described a lifting procedure for inequalities [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF]. Let G = (V, E) be a graph and k ≥ 3 an odd integer. Let G = (V, E ∪ L) be a graph obtained from G by adding an edge set L. Let π = (V 1 , ..., V p ) be a partition of V such that G π is series-parallel. Then the following inequality is valid for kECSP(G )

x(δ G (V 1 , ..., V p )) + e∈L∩δ G (V 1 ,...,Vp) a(e)x(e) ≥ k 2 p -1, (25) 
where a(e) is the length (in terms of edges) of a shortest path in G π between the endnodes of e, for all e ∈ L ∩ δ G (V 1 , ..., V p ). We will call inequality (25) lifted SPpartition inequality. Chopra [START_REF] Chopra | The k-edge connected spanning subgraph polyhedron[END_REF] also showed, when G is outerplanar, that inequality (25) defines a facet of kECSP(G ) if G is maximal outerplanar, that is adding one edge e in G lets the resulting graph not outerplanar. This procedure can be easily extended to the case when each edge can be used at most once.

Reduction operations

In this section, we are going to describe some graph reduction operations. These are based on the concept of critical extreme points of P (G, k) introduced by Fonlupt and Mahjoub [START_REF] Fonlupt | Critical extreme points of the 2-edge connected spanning subgraph polytope[END_REF] for k = 2 and extended by Didi Biha and Mahjoub [START_REF] Biha | The k-edge connected subgraph problem I : Polytopes and critical extreme points[END_REF] for k ≥ 3.

Before giving these operations, we shall first introduce some notations and definitions. Let G = (V, E) be a graph and k ≥ 2 an integer. If x is a solution of P (G, k), we will denote by E 0 (x), E 1 (x) and E f (x) the sets of edges e ∈ E such that x(e) = 0, x(e) = 1 and 0 < x(e) < 1, respectively. We also denote by C d (x) the set of degree tight cuts δ(u) such that δ(u) ∩ E f (x) = ∅, and by C p (x) the set of proper tight cuts δ(W ) with δ(W ) ∩ E f (x) = ∅. Let x be an extreme point of P (G, k). Thus, there is a set of cuts C * p (x) ⊆ C p (x) such that x is the unique solution of the system

S(x)       
x(e) = 0 for all e ∈ E 0 (x);

x(e) = 1
for all e ∈ E 1 (x);

x(δ(u)) = k for all δ(u) ∈ C d (x); x(δ(W )) = k for all δ(W ) ∈ C * p (x).
Suppose that x is fractional. Let x be a solution obtained by replacing some (but at least one) fractional components of x by 0 or 1 (and keeping all the other components of x unchanged). If x is a point of P (G, k), then it can be written as a convex combination of extreme points of P (G, k). If y is such an extreme point, then y is said to be dominated by x, and we write x y. Note that if x dominates y,

then {e ∈ E | 0 < y(e) < 1} ⊂ {e ∈ E | 0 < x(e) < 1}, {e ∈ E | x(e) = 0} ⊆ {e ∈ E | y(e) = 0} and {e ∈ E | x(e) = 1} ⊆ {e ∈ E | y(e) = 1}
. The relation defines a partial ordering on the extreme points of P (G, k). The minimal elements of this ordering (i.e. the extreme points x for which there is no extreme point y such that x y) correspond to the integer extreme points of P (G, k). The minimal extreme points of P (G, k) are called extreme points of rank 0. An extreme point x is said to be of rank p, if x only dominates extreme points of rank ≤ p -1 and if it dominates at least one extreme point of rank p -1. We notice that if x is an extreme point of rank 1 and if we replace one fractional component of x by 1, keeping unchanged the other integral components, we obtain a feasible solution x of P (G, k) which can be written as a convex combination of integer extreme points of P (G, k). [START_REF] Biha | The k-edge connected subgraph problem I : Polytopes and critical extreme points[END_REF] introduced the following reduction operations with respect to a solution x of P (G, k). θ 1 : delete an edge e ∈ E such that x(e) = 0 ;
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θ 2 : contract a node subset W ⊆ V such that G[W ] is k-edge connected and x(e) = 1
for all e ∈ E(W ) ; Starting from a graph G and a solution x ∈ P (G, k) and applying θ 1 , θ 2 , θ 3 , θ 4 , we obtain a reduced graph G and a solution x ∈ P (G , k). It is not hard to see that x is an extreme point of P (G , k) if and only if x is an extreme point of P (G, k). Didi Biha and Mahjoub [START_REF] Biha | The k-edge connected subgraph problem I : Polytopes and critical extreme points[END_REF] showed the following results. Lemma 3.1 [START_REF] Biha | The k-edge connected subgraph problem I : Polytopes and critical extreme points[END_REF] x is an extreme point of rank 1 of P (G , k) if and only if x is an extreme point of rank 1 of P (G, k). Lemma 3.2 [START_REF] Biha | The k-edge connected subgraph problem I : Polytopes and critical extreme points[END_REF] Let G = (V, E) be a graph, k ≥ 2 an integer and x an extreme point of P (G, k) of rank 1. Suppose that C * p (x) = ∅. Then the graph induced by E f (x) is an odd cycle C ⊆ E such that 1) x(e) = 1 2 for all e ∈ C ; 2) x(δ(u)) = k for all u ∈ V (C).

An extreme point x of P (G, k) will be said to be critical if x is of rank 1 and if none of the operations θ 1 , θ 2 , θ 3 , θ 4 can be applied to x.

Operations θ 1 , θ 2 , θ 3 , θ 4 can be used in a Branch-and-Cut algorithm for the kECSP. As it will turn out, they can be used in a preprocessing phase for the separation and may be very effective in solving the problem.

A Branch-and-Cut algorithm for the kECSP

In this section, we describe a Branch-and-Cut algorithm for the kECSP. Our aim is to address the algorithmic applications of the theoritical results presented in the previous sections and describe some strategic choices made in order to solve that problem. So, let us assume that we are given a graph G = (V, E) and a weight vector w ∈ R E associated with the edges of G. Let k ≥ 3 be the connectivity requirement for each node of V .

Grötschel et al. [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] introduced a class of valid inequalities for kECSP(G) called partition inequalities that generalizes the cut inequalities. Let π = (V 1 , ..., V p ), p ≥ 3, be a partition of V . The partition inequality induced by π is given by

x(δ(V 1 , ..., V p )) ≥ kp 2 . ( 26 
)
Clearly, if kp is even, then inequality ( 26) is redundant with respect to the cut inequalities. Grötschel et al. [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] gave sufficient conditions for the partition inequalities [START_REF] Gusfield | Very simple method for all pairs network flow analysis[END_REF] to be facet defining.

Given a fractional solution x of P (G, k), we let G = (V , E ) and x be obtained by repeated applications of operations θ 1 , θ 2 , θ 3 , θ 4 with respect to x. As pointed out above, x is an extreme point of P (G , k) if and only if x is an extreme point of P (G, k). Moreover, we have the following lemmas which can be easily seen. for all e ∈ (E \ E ) ∩ δ G (π), 0 otherwise.

= (V 0 , V 1 ..., V p ), p ≥ 2, (resp. π = (V 1 , ..., V p ), p ≥ 3) of V . Let π = (V 0 , V 1 , ..., V p ), p ≥ 2, (resp. π = (V 1 , ..., V p ), p ≥ 
Then ax ≥ α is valid for kECSP(G). Moreover, if a x ≥ α is violated by x , then ax ≥ α is violated by x. 

= (W 1 , W 2 , V 1 , ..., V 2p ), p ≥ 2 (resp. π = (V 1 , ..., V p ), p ≥ 3). Let π = (W 1 , W 2 , V 1 , ..., V 2p ), p ≥ 2 (resp. π = (V 1 , ..., V p ), p ≥ 
3), be the partition of V obtained by expanding the elements of π . Let ax ≥ α be the corresponding lifted odd path inequality (resp. lifted SP -partition inequality) obtained from a x ≥ α by application of the lifting procedure described in Section 2.2 (resp. Section 2.4) for the edges of E \ E . Then ax ≥ α is violated by x if a x ≥ α is violated by x . Lemmas 4.1 and 4.2 show that looking for an odd path, F -partition, SP -partition or a partition inequality violated by x reduces to looking for such inequality violated by x on G . Note that this procedure can be applied for any solution of P (G, k) and, in consequence, may permit to separate fractional solutions which are not necessarily extreme points of P (G, k). In consequence, for more efficiency, our separation procedures will be performed on the reduced graph G . The violated inequalities generated in G with respect to x are lifted to violated inequalities in G with respect to x using Lemmas 4.1 and 4.2.

We now describe the framework of our algorithm. To start the optimization we consider the following linear program given by the degree cuts associated with the vertices of the graph G together with the trivial inequalities, that is

Min e∈E w(e)x(e) x(δ(u)) ≥ k for all u ∈ V, 0 ≤ x(e) ≤ 1
for all e ∈ E.

The optimal solution y ∈ R E of this relaxation of the kECSP is feasible for the problem if y is an integer vector that satisfies all the cut inequalities. Usually, the solution y is not feasible for the kECSP, and thus, in each iteration of the Branchand-Cut algorithm, it is necessary to generate further inequalities that are valid for the kECSP but violated by the current solution y. For this one has to solve the so-called separation problem. This consists, given a class of inequalities, in deciding whether the current solution y statisfies all the inequalities of this class, and if not, in finding an inequality that is violated by y. An algorithm solving this problem is called a separation algorithm. The Branch-and-Cut algorithm uses the inequalities previously described and their separations are performed in the following order 1. cut inequalities ;

2. SP -partition inequalities ;

3. odd path inequalities ;

4. F -partition inequalities ;

5. partition inequalities.

We remark that all inequalities are global (i.e. valid for all the Branch-and-Cut tree) and several inequalities may be added at each iteration. Moreover, we go to the next class of inequalities only if we haven't found any violated inequalities. Our strategy is to try to detect violated inequalities at each node of the Branch-and-Cut tree in order to obtain the best possible lower bound and thus limit the generated nodes. Generated inequalities are added by sets of 200 or less inequalities at a time. Now we describe the separation procedures used in our Branch-and-Cut algorithm. All these procedures are applied on G with weights (y (e), e ∈ E ) associated with its edges where y is the restriction on E to the current LP-solution y (G and y are obtained by repeated applications of operations θ 1 , θ 2 , θ 3 , θ 4 ).

The separation of the cut inequalities (3) can be performed by computing minimum cuts in G . This can be done in polynomial time using Gomory-Hu algorithm [START_REF] Gomory | Multi-Terminal Network Flows[END_REF]. This algorithm produces the so-called Gomory-Hu tree with the property that for all pairs of nodes s, t ∈ V , the minimum (s, t)-cut in the tree is also a minimum (s, t)-cut in the graph G . Actually, we use the algorithm developed by Gusfield [START_REF] Gusfield | Very simple method for all pairs network flow analysis[END_REF] which requires |V | -1 maximum flow computations. The maximum flow computations are handled by the efficient Goldberg and Tarjan algorithm [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] that runs in O(m n log n 2 m ) time where m and n are the number of edges and nodes of G , respectively. Thus, our separation algorithm for the cut inequalities is exact and

runs in O(m n 2 log n 2 m ) time.
In what follows, we consider the separation procedure of the odd path inequalities (4). For this, we need the following lemma.

Lemma 4.3 Let x ∈ R E be a fractional solution of P (G, k) and π = (W 1 , W 2 , V 1 , ..., V 2p ), p ≥ 2, a partition of V , which induces an odd path configuration. If each edge set [V i , V i+1 ], i = 1, ..., 2p -1, contains an edge with fractional value and x([V i-1 , V i ]) + x([V i , V i+1 ]) ≤ 1, for i = 2, ..., 2p -1,
then the odd path inequality induced by π is violated by x.

Proof. As x([V i-1 , V i ]) + x([V i , V i+1 ]) ≤ 1, i = 2, ..., 2p -1, we have that x([V 2s-1 , V 2s ]) + x([V 2s , V 2s+1 ]) ≤ 1, s = 1, ..., p -1, (27) x 
([V 2s , V 2s+1 ]) + x([V 2s+1 , V 2s+2 ]) ≤ 1, s = 1, ..., p -1. (28) 
By multiplying inequality (27) by p-s p and inequality (28) by s p and summing the resulting inequalities, we obtain

i∈I x([V i , V i+1 ]) + i∈I p -1 p x([V i , V i+1 ]) ≤ p -1, (29) 
where I = {2, 4, 6, ..., 2p -2} and

I = {1, 2, ..., 2p -1} \ I. Since each set [V i , V i+1 ], i = 1, ..., 2p-1, contains an edge with fractional value, we have that x([V i , V i+1 ]) < 1, for i ∈ I. Hence, it follows that i∈I x([V i , V i+1 ]) < p. (30) 
By multiplying inequality (30) by 1 p and summing the resulting inequality and inequality [START_REF] Kerivin | 1,2)-survivable networks : Facets and Branch-and-Cut[END_REF], we obtain

2p-1 i=1 x([V i , V i+1 ]) < p,
and the result follows.

inequality, induced by π and an edge set F ⊆ δ(V 0 ) such that |F | and kp have different parities is violated by x if the following inequality holds

|F | -x(F ) + x(δ(V 0 ) \ F ) < 1. (31) 
Proof. As x(δ(V i )) = k, i = 1, ..., p, we have that

p i=1 x(δ(V i )) = 2x(δ(V 1 , ..., V p )) + x(δ(V 0 )) = kp.
This together with (31) yield

-2x(F ) + 2x(δ(V 0 )) + 2x(δ(V 1 , ..., V p )) < kp -|F | + 1,
and thus, the statement follows.

The heuristic is based on Lemma 4.4. It starts by determining all the nodes u of V such that y (δ(u)) = k and δ(u) contains at least one edge with fractional value. In fact, it is this kind of nodes which may lead to violated F -partition inequalities. Let {v 1 , ..., v p } be the set of such nodes. We consider the partition (V 0 , V 1 , ..., V p ) such that V i = {v i }, for i = 1, ..., p, and V 0 = V \ {v 1 , ..., v p } and we choose the edges of F in a similar way as in the first heuristic. If inequality [START_REF] Mahjoub | Two-edge Connected spanning subgraphs and polyhedra[END_REF] holds with respect to F and V 0 , then, by Lemma 4.4, the F -partition inequality corresponding to (V 0 , V 1 , ..., V p ) and F is violated by y .

Before presenting our last heuristic, let us first remark that a partition (V 0 , V 1 , ..., V p ) and an edge set F ⊆ δ(V 0 ) may induces a violated F -partition inequality if y (δ(V 0 )) is high and the edges of F are among those of δ(V 0 ) with high values. Our heuristic tries to find such a partition For this, we compute a Gomory-Hu tree in G with the weights (1y (e), e ∈ E ) associated with its edges. Then from each proper cut δ(W ) with V \ W = {v 1 , ..., v p }, p ≥ 2, obtained from the Gomory-Hu tree, we consider the partition π = (V 0 , V 1 , ..., V p ) such that V i = {v i }, for i = 1, ..., p, and V 0 = W . The edge set F is chosen in a similar way as in the previous heuristics. Since the computation of the Gomory-Hu tree can be done in O(m n 2 log n 2 m ) time, the heuristic runs in O(m n 2 log n 2 m ).

These three heuristics are applied in the Branch-and-Cut algorithm in that order. Now we turn our attention to the separation of the SP -partition inequalities [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF]. These inequalities can be separated in polynomial time using the algorithm of Baiou et al. [START_REF] Baïou | Separation of partition inequalities[END_REF] when G is series-parallel. This algorithm is based on submodular functions. Recently, Didi Biha et al. [START_REF] Biha | On the separation of partition inequalities[END_REF] devised a pure combinatorial algorithm for the separation of SP -partition inequalities when the graph is series-parallel. For our purpose we devised a heuristic to separate inequalities [START_REF] Grötschel | Polyhedral approches to network survivability[END_REF] in the general case. This heuristic is based on Theorems 2.6 and 2.7. The main idea of the heuristic is to determine a partition π = (V 1 , ..., V p ), p ≥ 3, of V which induces an outerplanar graph such that

|[V i , V i+1 ]| ≥ k
2 , for i = 1, ..., p (the indices are modulo p) (see Figure 4), and for every consecutive sets V i and V j , the edge set [V i , V j ] contains at least one edge with fractional value. To this end, we look in G for a path

Γ = {v 1 v 2 , v 2 v 3 , ..., v p-2 v p-1 }, p ≥ 3 such that |[v i , v i+1 ]| ≥ k 2 and [v i , v i+1 ]
contains one or more edges with fractional value, for i = 1, ..., p -2. We then let V i = {v i }, i = 1, ..., p -1, and V p = V \ {v 1 , ..., v p-1 }. Afterwards, we check by a simple heuristic if the graph G π is outerplanar. Finally, we check if the SP -partition inequality induced by π is violated by y or not. If the graph G π is not outerplanar or the SP -partition inequality induced by π is not violated by y , we apply again this procedure by looking for an other path. In order to avoid the detection of the same path, we label the nodes we met during the search of the previous paths, so that they won't be considered in the search of a new path. This process continue until either we find a violated SP -partition inequality or all the nodes of V are labeled. The heuristic can be implemented to run in O(m n ) time. Now we discuss the separation of the partition inequalities [START_REF] Gusfield | Very simple method for all pairs network flow analysis[END_REF]. First observe that if π = (V 1 , ..., V p ) is a partition of V , with p ≥ 3 and odd, such that y (δ(V i )) = k, for i = 1, ..., p, then the partition inequality induced by π is violated by y . Thus, one can devise a heuristic to separate inequalities [START_REF] Gusfield | Very simple method for all pairs network flow analysis[END_REF] which consists in finding a partition π = (V 1 , ..., V p ), with p ≥ 3 and odd, such that y (δ(V i )) is as small as possible, for i = 1, ..., p. To do this, we compute a Gomory-Hu tree, say T, in G with the weights (y (e), e ∈ E ) associated with its edges. After that, we contract disjoint node subsets that induce proper tight cuts in T. Let V 1 , ..., V t be these sets and {v t+1 , ..., v p } = V \ ( t i=1 V i ). We then consider the partition (V 1 , ..., V t , {v t+1 }, ..., {v p }) and check whether or not the corresponding partition inequality is violated by y . This algorithm leads to an O(m n 2 log n 2 m ) time complexity.

To store the generated inequalities, we create a pool whose size increases dynamically. All the generated inequalities are put in the pool and are dynamic, i.e. they are removed from the current LP when they are not active. We first separate inequalities from the pool. If all the inequalities in the pool are satisfied by the current LP-solution, we separate the classes of inequalities in the order given above.

Another important issue in the effectiveness of the Branch-and-Cut algorithm is the computation of a good upper bound at each node of the Branch-and-Cut tree. To do this, if the separation procedures do not generate any violated inequality and the current solution y is still fractional, then we transform y into a feasible solution of the kECSP, say ŷ, by rounding up to 1 all the fractional components of y. We then try to reduce the weight of the solution thus obtained by removing from the subgraph H = (V, Ê) induced by ŷ some unecessary edges that is, edges which do not affect the k-edge connectedness of H. To this end, we remove from Ê each edge e = uv such that |δ(u) ∩ Ê| ≥ k + 1 and |δ(v) ∩ Ê| ≥ k + 1. We then check if the resulting edge set, say Ê , induces a k-edge connected subgraph of G by computing a Gomory-Hu tree. If there exists in Ê a cut δ(W ), W ⊆ V , containing less than k edges, then we add in Ê edges of [W, V \ W ] \ δ(W ) that have been previously removed from Ê as many as necessary in order to satisfy the cut δ(W ). We do this until the graph (V, Ê ) induces a k-edge connected subgraph of G. Note that we add to each violated cut the edges having the smallest weights.

Computational results

The Branch-and-Cut algorithm described in the previous section has been implemented in C++, using ABACUS 2.4 alpha [START_REF]ABACUS -A Branch-And CUt System[END_REF][START_REF] Thienel | ABACUS -A Branch-And-CUt System[END_REF] to manage the Branch-and-Cut tree, and CPLEX 9.0 [11] as LP-solver. It was tested on a Pentium IV 3.4 Ghz with 1 Gb of RAM, running under Linux. We fixed the maximum CPU time to 5 hours. The test problems were obtained by taking TSP test problems from the TSPLIB library [START_REF] Tsplib | [END_REF]. The test set consists in complete graphs whose edge weights are the rounded euclidian distance between the edge's vertices. The tests were performed for k = 3, 4, 5. In all our experiments, we have used the reduction operations described in the previous sections, unless otherwise specified. Each instance is given by its name followed by an extension representing the number of nodes of the graph. The other entries of the various tables are : NCut : number of generated cut inequalities ; NSP : number of generated SP -partition inequalities ; NOP : number of generated odd path inequalities ; NFP : number of generated F -partition inequalities ; NP : number of generated partition inequalities ; COpt : weight of the optimal solution obtained ; Gap : the relative error between the best upper bound (the optimal solution if the problem has been solved to optimality) and the lower bound obtained at the root node of the Branch-and-Cut tree ; NSub : number of subproblems in the Branch-and-Cut tree ; TT : total CPU time in hours :min :sec.

The instances indicated with "*" are those whose CPU time exceeded 5 hours. For these instances, the gap is indicated in italic.

Our first series of experiments concerns the kECSP for k = 3. The instances we have considered have graphs with 14 to 318 nodes. The results are summarized in Table 1. It appears from Table 1 that all the instances have been solved to the optimality within the time limit except the last five instances. We have that four instances (burma14, gr21, fri26, brazil58) have been solved in the cutting plane phase (i.e. no branching is needed). For most of the other instances, the gap is less than 1%. We also observe that our separation procedures detect a large enough number of SP -partition and F -partition inequalities and seem to be quite efficient.

Our next series of experiments concerns the kECSP with k = 4, 5. The results are given in inequalities are redundant with respect to the cut inequalities (3). Thus, they are not included in the resolution process for k = 4 and therefore do not appear in Table 2.

First observe that for k = 4, the CPU time for all the instances is relatively small and most of the instances have been solved in less than 1 minute. We can also observe that 23 instances over 27 are solved in the cutting plane phase. Moreover, a few number of odd path inequalities are generated. However a large enough number of F -partition inequalities is detected. Thus, these later inequalities seem to be very effective for solving the kECSP when k is even. This also shows that the kECSP is easier to solve when k is even, what is also confirmed by the results of Table 3 for k = 5. In fact, the instance pr264 has been solved for k = 4 in second, whereas it could not be solved to optimality for k = 5 after 5 hours. The same observation can be done for pr439. Also, we can remark that the CPU time for all the instances when k = 5 is higher than that when k = 4. For instance, the test problem d198 has In order to evaluate the impact of the reduction operations θ 1 , θ 2 , θ , θ 4 on the separation procedures, we tried to solve the kECSP, for k = 3, without using them. The results are given in Table 4 Tab. 4 -Results for k = 3 without reduction operations.

As it appears from Tables 1 and4, the CPU time increased for the majority of the instances when the reduction operations are not used. In particular, for the instance pr107 we did not reach the optimal solution after 5 hours, whereas it has been solved to optimality after 1h 26mn. Almost, the CPU time for the instances ch130 and d198, for example, increased from 1 hour to more than 4 hours. Moreover, we remark that when using the reduction operations, we generate more SP -partition, F -partition and partition inequalities and fewer nodes in the Branch-and-Cut tree. This implies that our separation heuristics are less efficient without the reduction operations. Thus, it seems that the reduction operations play an important role in the resolution of the problem. They permit to strengthen much more the linear relaxation of the problem and accelerate its resolution.

We also tried to mesure the effect of the different non-basic classes of inequalities (i.e. inequalities other than cut and trivial inequalities). For this, we have first considered a Branch-and-Cut algorithm for the kECSP with k = 3 using only the cut constraints. In this case, we could not solve any of the instances having more than 52 nodes. Even more, after less than 10 minutes of CPU time, the Branch-and-Cut tree gets a very big size and the resolution process stops. To illustrate this, we take for example the instance brazil58. For this instance, the Branch-and-Cut tree contained 11769 nodes after 10 minutes when the Branch-and-Cut algorithm used only the cut inequalities, whereas it has been solved without branching when using the other classes of inequalities.

Finally, we tried to evaluate separately the efficiency of each class of the non-basic inequalities. For this, we also considered the case when k = 3. We have seen that all the classes of inequalities have a big effect on the resolution of the problem. In particular, the SP -partition inequalities seem to play a central role. This can be seen by considering the instance d198. This instance has been solved in 1h 04mn using all the constraints. However, without the SP -partition inequalities, we could not reach the optimal solution after 5 hours. We also remarked that the gap increased when one of these classes of inequalities is not used in the Branch-and-Cut algorithm.

Concluding remarks

In this paper, we have studied the k-edge connected subgraph problem with high connectivity requirement that is when k ≥ 3. We have presented some classes of valid inequalities and have described some conditions for these inequalities to be facet defining for the associated polytope. We also discussed separation heuristics for these inequalities. Using these results, we have devised a Branch-and-Cut algorithm for the problem. This algorithm uses some reduction operations.

Our computational results have shown that the odd path, the F -partition, the SP -partition and the partition inequalities are very effective for the problem when k is odd. They have also shown the importance of the F -partition inequalities for the even case. We could also mesure the importance of our separation heuristics. In particular, our heuristics to separate the SP -partition and F -partition inequalities have appeared to be very efficient. In addition, the reduction operations have been essential for having a good performance of the Branch-and-Cut algorithm. In fact, they permitted to considerably reduce the size of the graph supporting a fractional solution and to accelerate the separation process.

These experiments also showed that the kECSP is easier to solve when k is even and that, for the same parity of k, the problem becomes easier to solve when k increases.

One of the separation heuristic devised for the F -partition inequalities is based on a partial characterization of the critical extreme points of the linear relaxation of the k-edge connected subgraph polytope. It would be very interesting to have a complete characterization of these points. This may yield the identification of new facet defining inequalities for the problem. It may also permit to devise more appropriate separation heuristics for the inequalities given in this paper.

In many real instances, we may consider node-connectivity instead of edgeconnectivity. The study presented in this paper may be very usefull for the k-node connected subgraph problem for which we require k node-disjoint paths between every pair of nodes.

In addition to the survivability aspect, one can consider the capacity dimensioning of the network. These issues have been mostly treated separately in the literature. It would be interesting to extend the study developed in this paper to the more general capacitated survivable network design model.

  for some s ∈ {1, ..., p}. Let S 1 = (S \ {e 2s-1 }) ∪ {e}. The set S 1 induces a k-edge connected subgraph of G and ax S 1 = α. It then follows that bx S 1 = β, implying that b(e) = ρ 2s-1 for all e ∈ [V 2s-1 , V 2s ], for s = 1, ..., p, for some ρ 2s-1 ∈ R * . (10) Similarly, for an edge e ∈ [V 2s , V 2s+1 ] \ {e 2s }, for some s ∈ {1, ..., p -1}, one can consider the edge sets S 2 = E ∪ ( p-1 i=1 {e 2i }) ∪ {e 1 } and S 3 = (S 2 \ {e 2s }) ∪ {e}. Since S 2 and S 3 induce k-edge connected subgraphs of G and ax S 2 = ax S 3 = α, it follows that bx S 2 = bx S 3 and then b(e) = ρ 2s for all e ∈ [V 2s , V 2s+1 ], for s = 1, ..., p -1, for some ρ 2s ∈ R * . Consider the edge sets S 4 = (S 2 \ {e 1 }) ∪ {e 2s-1 } and S 5 = (S 2 \ {e 1 , e 2s }) ∪ {e 2s-1 , e 2s+1 } for some s ∈ {1, ..., p -1}. It is clear that S 4 and S 5 induce k-edge connected subgraphs of G and that ax S 4 = ax S 5 = α. We have that bx S 4 = bx S 5 = β, yielding b(e 1 ) = b(e 2s ) = b(e 2s+1 ).

  E 4 = β and therefore we get b(g 2l+1 ) = b(g 1 ). As g 1 and g 2l+1 are arbitrary edges of T 1 and T 2l+1 , respectively, it follows that b(e) = b(e ) for all e ∈ T 1 and e ∈ T 2l+1 . Moreover, we have that T 1 and T 2l+1 are arbitrary subsets of [U 1 , U 2 ] and [U 2l+1 , U 1 ], respectively. This implies that b(e) = b(e ) for all e ∈ [U 1 , U 2 ] and e ∈ [U 2l+1 , U 1 ]. Consequently, by symmetry, we get b(e) = ρ for all e ∈ [U i , U i+1 ], i = 1, ..., 2l + 1 (the indices are modulo 2l + 1)
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 4 Fig. 4 -An outerplanar configuration with k = 3

θ 3 :

 3 contract a node subset W ⊆ V such that |W | ≥ 2, |W | ≥ 2, |δ(W )| = k and E(W ) contains at least one edge with fractional value ; θ 4 : contract a node subset W ⊆ V such that |W | ≥ 2, |W | ≥ 2, G[W ] is k 2 -edge connected, |δ(W )| = k + 1 and x(e) = 1 for all e ∈ E(W ).

Lemma 4 . 1

 41 Let a x ≥ α be an F -partition inequality (resp. partition inequality) valid for kECSP(G ) induced by a partition π

3 )

 3 be the partition of V obtained by expanding the subsets V i of π . Let ax ≥ α be an inequality such that a(e) =    a (e) for all e ∈ E , 1

Lemma 4 . 2

 42 Let a x ≥ α be an odd path inequality (resp. SP -partition inequality) valid for kECSP(G ) induced by a partition π

  thus g 1 / ∈ E 4 , and that g 2l+1 ∈ E 4 . One can easily check that E 4 and E 4 both induce k-edge connected subgraphs of G. Moreover, we have that x E 4 and x E 4 belong to F. Thus, bx E 4 = bx

  Table 2 for k = 4 and Table3for k = 5. The instances considered have graphs with 52 to 561 nodes. Note that for k = 4, the SP -partition and partition

		Instance NCut NOP NFP	COpt Gap NSub	TT
		berlin52	5	0	2 18295 0.00	1 :00 :01
		pr76			3	0	4 266395 0.00	1 :00 :01
		kroA100	10	0	11 51221 0.00	1 :00 :47
		kroB100	9	5	123 53597 0.08	21 :00 :09
	Instance rd100 NCut NSP NOP NFP NP 10 1 91 19130 0.00 COpt	Gap NSub 1 :00 :05	TT
	burma14 eil101		4	3 0	0 0	0 60	4 1453 0.00 5530	0.00 1 :00 :02 1 0 :00 :01
	ulysses16 lin105		5	7 20	1 1	15 5 36353 0.00 7 11412	0.39 1 :00 :01 3 0 :00 :11
	gr21	pr107		5	6 29	1 0	0 0 98381 0.00 2 4740	0.00 1 :00 :01 1 0 :00 :01
	fri26	gr120		9	5 6	0 0	0 36 16400 0.00 0 1543	0.00 1 :00 :02 1 0 :00 :01
	bayg29	bier127	14	16 16	2 0	33 0 282207 0.00 2 2639	0.19 1 :00 :01 7 0 :00 :01
	dantzig42 ch130		41	31 12	6 0	90 18 132 14854 0.00 1210	0.68 1 :00 :05 71 0 :00 :07
	att48	ch150		34	34 12	5 2	60 70 15854 0.00 9 17499	0.56 1 :00 :02 61 0 :00 :06
	berlin52 kroA150 36	31 13	12 0	97 27 64249 0.00 6 12601	0.45 1 :00 :02 33 0 :00 :03
	brazil58 kroB150 46	42 20	2 0	36 29 42527 4 62710 0.00	0.00 1 :00 :01 1 0 :00 :05
	eil76	rat195		9	12 0	3 0	298 37	2 5750 0.00 876	0.06 1 :00 :13 7 0 :00 :03
	pr76	d198	130 207 43	72 2231 54 187283 0 71 35404 0.01	1.50 6767 0 :35 :32 3 :00 :16
	rat99	gr202		41	26 13	13 3	341 23 220 94841 0.02 2029	0.38 3 :01 :28 41 0 :00 :47
	kroA100 pr226	170 197 91	31 1207 57 36337 0 6 183537 0.00	0.97 4201 0 :54 :06 1 :00 :04
	kroB100 gr229	130 114 24	37 2	830 47 37179 15 318565 0.00	0.73 1 :00 :03 723 0 :08 :00
	rd100	pr264	101	74 59	11 1	418 18 13284 7 122941 0.00	0.43 1 :00 :06 171 0 :03 :37
	eil101	a280		86	72 3	21 3604 15 0 180 6317 0.00 1016	0.55 1109 0 :17 :41 1 :01 :00
	lin105	pr299	179 198 30	47 0	829 68 25530 427 117559 0.00	0.69 1031 0 :22 :39 1 :00 :20
	pr107	lin318	201 190 28	34 0	674 114 70852 2 105000 0.00	0.84 2071 1 :26 :49 1 :00 :06
	gr120	rd400		50	45 21	6 2	588 17 11442 232 36676 0.00	0.19 1 :07 :39 99 0 :11 :15
	bier127 pr439		46	59 78	4 3	276 13 198184 61 264975 0.02	0.15 19 :02 :52 11 0 :01 :55
	ch130	si535	121 132 0	30 1355 40 10400 0 4 53604 0.00	0.55 1693 1 :05 :05 1 :00 :39
	ch150	pa561		92	93 10	19 1	588 22 11027 306 6724 0.00	0.41 1 :08 :37 193 0 :20 :31
	kroA150	155 143	41	845 47 44718	0.53 1205 1 :16 :35
	kroB150	130 110	16 Tab. 2 -Results for k = 4. 952 48 43980	0.31	437 0 :38 :43
	rat195			24	19	3	514	1	3934	0.06	7 0 :08 :21
	d198		171 105	23	617 59 25624	0.21	159 1 :04 :19
	gr202			77	69	14	558 22 65729	0.11	69 0 :13 :16
	*pr226		364 248	35	162 41	-9.02	261 5 :00 :00
	*gr229		179 245	23 1568 94	-1.00 1219 5 :00 :00
	*pr264		275 181	145	668 62	-12.29	69 5 :00 :00
	*a280		142	84	56 2539 59	-2.69	459 5 :00 :00
	*lin318		189 147	15	610 58	-4.94	25 5 :00 :00
		Tab. 1 -Results for k = 3 with reduction operations.

  .

	Instance NCut NSP NOP NFP NP	COpt Gap NSub	TT
	berlin52	31	28	19	44	4 12601 0.44	15 :00 :04
	brazil58	50	27	1	28 31 42527 0.22	3 :00 :07
	eil76	9	6	3	102	2	876 0.00	1 :00 :01
	pr76	103 168	65 1378 37 187283 1.60 3483 :38 :46
	rat99	41	19	10	223 17	2029 0.32	61 :01 :29
	kroA100	193 234	47 1765 70 36337 1.42 7575 :13 :38
	kroB100	141 142	36	899 38 37179 0.98 1337 :45 :34
	rd100	103	84	15	445 21 13284 0.40	233 :11 :40
	eil101	77	58	26 2527 12	1016 0.38	801 :18 :50
	lin105	161 158	50	569 53 25530 0.61	547 :34 :25
	*pr107	218 221	136 1101 104	-0.81 4447 :00 :00
	gr120	42	38	6	252 15 11442 0.18	93 :05 :38
	bier127	58	56	9	240 12 198184 0.16	17 :04 :43
	ch130	141 147	38 1590 45 10400 0.52 2459 :10 :31
	ch150	90	76	15	391 23 11027 0.39	107 :21 :07
	kroA150	155 135	23	705 56 44718 0.55 1107 :08 :37
	kroB150	150 141	22 1006 43 43980 0.31	535 :55 :20
	rat195	23	18	7	898	1	3934 0.01	19 :19 :23
	d198	192 118	25	720 50 25624 0.27	585 :03 :16
	gr202	73	62	13	278 23 65729 0.05	37 :37 :31

Using Lemma 4.3 we can devise a separation procedure for inequalities [START_REF] Barahona | On two-connected subgraph polytopes[END_REF]. The idea is to find a partition π = (W 1 , W 2 , V 1 , ..., V 2p ), p ≥ 2, which induces an odd path configuration that satisfies the conditions of Lemma 4.3. The procedure works as follows. We first look, using a greedy method, for a path Γ = {e 1 , ..., e 2p-1 }, p ≥ 2, in G such that the edges e 1 , ..., e 2p-1 have fractional values and y (e i-1 )+y (e i ) ≤ 1, for i = 2, ..., 2p-1. If v 1 , ..., v 2p are the nodes of Γ taken in this order when going through Γ, we let V i = {v i }, i = 1, ...2p, and T 1 = (

(resp. even) where I 1 and I 2 are as defined in Section 2.1. In order to determine W 1 and W 2 , we compute a minimum cut separating T 1 and

) thus obtained induces an odd path configuration, then, by Lemma 4.3, the corresponding odd path inequality is violated by y . If not, we apply again that procedure by looking for an other path. In order to avoid the detection of the same path, we label the edges of the previous paths, so that they won't be considered in the search of a new path. This procedure continue until either a violated odd path inequality is found or all the edges having fractional values are labeled. The routine that permits to look for an odd path runs in O(m n ) time.

To compute the minimum cut separating T 1 and T 2 , we use Goldberg and Tarjan algorithm [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF]. Since this algorithm runs in O(m n log n 2 m ) time our procedure is implemented to run in O(m 2 n log n 2 m ) time. In the lifting procedure for inequalities [START_REF] Barahona | On two-connected subgraph polytopes[END_REF] given in Section 2.2 we have to compute a coefficient λ for some edges e ∈ E\E . Since the computation of this coefficient is itself a hard problem, and λ ≤ 2, we consider 2 as lifting coefficient rather than λ for those edges. Now we discuss our separation procedure for the F -partition inequalities [START_REF] Fonlupt | The traveling salesman problem in graphs with some excluded minors[END_REF]. These inequalities can be separated in polynomial time using the algorithm of Baïou et al. [START_REF] Baïou | Separation of partition inequalities[END_REF] when k is even and the edge set F is fixed. For the general case, we devised three heuristics to separate them.

Our first heuristic is based on Lemma 3.2. As pointed out in Lemma 3.2, for some extreme points of P (G, k) of rank one, that is those extreme points x ∈ P (G, k) such that C * p (x) = ∅, the edges with fractional values form an odd cycle C such that x(e) = 1 2 , for all e ∈ C and x(δ(u)) = k, for all u ∈ V (C). The heuristic works as follows. It starts by determining a node set {v 1 , ..., v p }, p ≥ 3, that induces an odd cycle in G . Then we let V i = {v i }, for i = 1, ..., p, and V 0 = V \ {v 1 , ..., v p }. We choose the edges of F among those of δ(V 0 ) having values greater than 1 2 and in such a way that |F | and kp have different parities (if such an edge set F is empty then we look for an other partition). The node set {v 1 , ..., v p } is obtained by a simple labeling procedure. Hence, the heuristic runs in a linear time.

Before introducing our second heuristic, we first give the following lemma. been solved in 1h 50mn when k = 5, whereas only 16 seconds were needed to solve it when k = 4.

Compared to Table 1, Tables 2 and3 also show that, for the same parity of k, the kECSP becomes easier to solve when k increases. In fact, with k = 3, we could not solve to optimality instances with more than 202 nodes, whereas for k = 5, we could solve larger instances.

The results for k = 3, 4, 5 can also be compared to those obtained by Kerivin et al. [START_REF] Kerivin | 1,2)-survivable networks : Facets and Branch-and-Cut[END_REF] for the 2ECSP. It turns out that for the same instances, the problem has been easier to solve for k = 2 than for k = 3. However, for k = 4 the problem appeared to be easier to solve than for k = 2. This shows again that the case when k is odd is harder to solve than that when k is even and that the problem becomes easier when k increases with the same parity.