
HAL Id: hal-00678053
https://hal.science/hal-00678053

Submitted on 12 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New effective neighborhoods for the permutation flow
shop problem

Laurent Deroussi, Michel Gourgand, Sylvie Norre

To cite this version:
Laurent Deroussi, Michel Gourgand, Sylvie Norre. New effective neighborhoods for the permutation
flow shop problem. 2006. �hal-00678053�

https://hal.science/hal-00678053
https://hal.archives-ouvertes.fr

New effective neighborhoods

for the

permutation flow shop problem

Laurent Deroussi

1
 Michel Gourgand Sylvie Norre

Research Report LIMOS/RR-06-09

29 Novembre 2006

1
 deroussi@moniut.univ-bpclermont.fr

 New effective neighborhoods for the permutation flow shop problem

Abstract

We propose an extension of the Taillard’s implementation, which allows to remove efficiently

the less well inserted jobs in a permutation. We describe then six new neighborhoods for the

permutation flow shop problem. Computational results show clearly that at least three of them

are better than the insertion move. Their application into a simple metaheuristic is very

effective, since a new upper bound has been found for a hard Taillard’s instance.

Keywords: Flow-Shop Problem, Metaheuristic, Neighborhood.

Résumé

Dans ce papier, nous proposons une extension de l’implémentation de Taillard, qui permet de

déterminer efficacement quelle est la pièce la moins bien insérée dans un ordonnancement.

Nous décrivons alors six nouveaux systèmes de voisinage pour le problème du flow-shop de

permutation. Les résultats expérimentaux obtenus montrent clairement qu’au moins trois

d’entre eux sont plus performants que le mouvement d’insertion classiquement utilisé dans la

littérature. Leur application dans une métaheuristique simple (une recherche locale itérée)

confirme l’efficacité de notre approche, puisqu’une nouvelle borne supérieure a été trouvée

sur une des instances de Taillard.

Mots-clés: Flow-Shop, Métaheuristiques, Systèmes de voisinage

 Page 1

New effective neighborhoods
for the permutation flow shop problem

Abstract. We propose an extension of the Taillard’s implementation, which allows to remove

efficiently the less well inserted jobs in a permutation. We describe then six new

neighborhoods for the permutation flow shop problem. Computational results show clearly

that at least three of them are better than the insertion move. Their application into a simple

metaheuristic is very effective, since a new upper bound has been found for a hard Taillard’s

instance.

Keywords: Flow-Shop Problem, Metaheuristic, Neighborhood.

1. Introduction

The permutation flow shop problem (PFSP) is one of the most studied scheduling problems.

A set { }1,...,J n= of n independent jobs has to be processed on a set { }1,...,M m= of m

machines in the order given by the indexation of the machines. The processing time for job i

on machine j is denoted ijp . The objective is to find the job permutation { }1 2, ,..., nπ π π π=

(in the PFSP, the processing sequence of the jobs is the same for all machines) which

minimizes a given criterion, for example the makespan (maxC). More formally, the studied

problem is classified as a | |
max

F prmu C problem according to the | |α β γ –notation introduced

by Graham et al. (1979).

If ijt is the completion time for job i on machine j , the makespan can be computed as

follows:

1 11 1t dπ π=

11 1 1i i i
t t dπ π π−

= + , for 2,...,i n=

1 1 1, 1j j jt t dπ π π−= + , for 2,...,j m=

()
1, 1 ,,

i i i ij j j jt max t t dπ π π π−−= + , for 2,...,i n= ; for 2,...,j m=

Cmax = tπn m

This problem is known to be NP-hard in general (Rinnooy Kan, 1976). Only small instances

can be exactly solved. Researchers have mainly focused their energies towards heuristic

approaches. Constructive methods provide a good solution in a short time. Among them

(Campbell et al., 1970; Dannenbring, 1977), it is commonly recognized that the best of them

is the NEH heuristic (Nawaz et al., 1983). These solutions could be improved by a

metaheuristic approach such as simulated annealing (Osman and Potts, 1989; Ogbu and

Smith, 1990), tabu search (Widmer and Hertz, 1989; Taillard, 1990; Reeves, 1993; Nowicki

and Smutniki, 1996; Grabowski and Wodecki, 2004), iterated local search (Stützle, 1998;

Ruiz and Stützle, 2006) and genetic algorithm (Reeves, 1995; Reeves and Yamada, 1998).

All these metaheuristics are based on the notion of neighborhood. A neighborhood is

generally defined by a basic move allowing to slightly modify a solution. Three types of

moves are considered in the literature for the flow shop problem: (i) swap two consecutive

jobs at position i and 1i + (swap move), (ii) exchange jobs at positions i and j (exchange

 New effective neighborhoods for the permutation flow shop problem

 Page 2

move), (iii) remove job at position i and insert it at position j (insertion move). Local search

based on swap move is very fast, but yields local minima with a low quality. Exchange moves

and insertion moves give comparable solutions, but it is possible to speed up the exploration

of the insertion neighborhood by using the data structure proposed by (Taillard, 1990). So, the

whole insertion neighborhood of a solution can be evaluated in ()2O n m , as fast as for the

swap neighborhood. Further, (Nowicki and Smutnicki, 1996) define the critical path concept,

which allows to reduce the size of the insertion neighborhood, and to speed up yet its

evaluation. Nevertheless, according to (Reeves and Yamada, 1998) and (Ruiz and Stützle,

2006), the use of critical paths adds a significant degree of complexity.

As a result of these neighborhood considerations, the insertion move is regarded as the best

choice for the PFSP. Despite its efficiency, it remains a very simple move when compared

with the sophisticated LK move (Lin and Kernigham, 1973) for the traveling salesman

problem (TSP). Moreover, it is showed that for TSP, LK moves are much more efficient than

simple moves (swap, exchange, insertion or 2-opt moves). Our main motivation lies in this

fact. In order to reach a state-of-the-art level, researchers have developed for the PFSP

complex techniques for the reduction of the insertion neighborhood size. Cannot we propose

more complex (and more efficient) moves for this problem?

To answer this question, we draw our inspiration from the LK move, and we adapt it for the

PFSP. Basically, the LK move can be seen as a recursive move, in which, at each step, we

remove an edge of the current tour, and we add another edge (according to given criteria).

This idea could be adapted to the PSFP, by designing a recursive move, in which a step

consists in removing a job, for reinserting it elsewhere. Owing to the Taillard’s

implementation, we know how to insert efficiently a job in the permutation. In order to apply

this idea, we also need to remove efficiently a job from a permutation.

This paper is organised as follows. In section 2, we propose to extend the Taillard’s

implementation for the case of job remove. In section 3, we describe the three classical moves

for the PFSP and we propose six new moves. Section 4 gives a description of the iterated

local search metaheuristic. In section 5, we present a complete experimental comparison of

the proposed moves. We conclude in section 6 by some remarks and guidelines for further

works.

2. Extension of the Taillard’s implementation

2.1. Recall for efficient job insertion

We will first recall in algorithm 1 the Taillard’s implementation, which allows to know the

best position for inserting a given job (indexed k) in a partial permutation of 1k − jobs. More

precisely, it allows to compute the k makespans obtained by inserting job k at the thi

position (1 i k≤ ≤) in ()O km (as for the makespan calculation).

2.2. Proposition for efficient job remove

Once the earliest completion times and the tails are determined, it is easy to compute all

makespans obtained by removing any one of the jobs. We present in algorithm 2 the extension

of the Taillard’s implementation in the case of a job remove.

We can note that the two first steps are the same, just excepted for the bound of the variable i

(the partial permutation contains 1k − jobs in algorithm 1, and k jobs in algorithm 2).

 Page 3

Obviously, the calculation of iM ′ has a complexity of ()O km . Consequently, it is possible to

compute the k makespans of step 3 in ()O km .

Algorithm 1. The Taillard’s implementation for fast job insertion.

1. Compute the earliest completion time ije of the
thi job on the thj machine; the

starting time of the first job on the first machine is 0.

 0 0je = ; 0 0ie = ; (), 1 1,max ,ij i j i j ije e e d− −= + for 1, , 1i k= −… , 1, ,j m= …

2. Compute the tail ijq , i.e. the duration between the starting time of the
thi job

on the thj machine and the end of the operations.

 0kjq = ; , 1 0i mq + = ; (), 1 1,max ,ij i j i j ijq q q d+ += + for 1, ,1i k= − … , , ,1j m= …

3. Compute the earliest relative completion time ijf on the
thj machine of job k

inserted at the thi position.

 0 0if = ; (), 1 1,max ,ij i j i j kjf f e d− −= + for 1, ,i k= … , 1, ,j m= …

4. The value of the partial makespan iM when adding job k at the thi position

is:

 ()
1,...,
maxi ij ij
j m

M f q
=

= + for 1, ,i k= …

Algorithm 2. Proposed implementation for fast job remove.

1. Compute the earliest completion time ije of the
thi job on the thj machine; the

starting time of the first job on the first machine is 0.

 0 0je = ; 0 0ie = ; (), 1 1,max ,ij i j i j ije e e d− −= + for 1, ,i k= … , 1, ,j m= …

2. Compute the tail ijq , i.e. the duration between the starting time of the
thi job

on the thj machine and the end of the operations.

 1, 0k jq + = ; , 1 0i mq + = ; (), 1 1,max ,ij i j i j ijq q q d+ += + for , ,1i k= … , , ,1j m= …

3. The value of the partial makespan iM ′ when removing the job at the thi

position is:

 ()1, 1,
1,...,
maxi i j i j
j m

M e q− +
=

′ = + for 1, ,i k= …

2.3. Criteria for the choice of the removed job

In the case of job insertion, the best possible choice of the insertion position is obviously the

position p that minimizes the makespan, i.e. the position p such that ()
1..
minp i
i k

M M
=

= . The

same criterion can also be chosen in the case of job remove (we suppress the job at the thp

position, such that ()
1..
minp i
i k

M M
=

′= ; we denote this criterion the absolute remove). But doing

that, we may choose in priority jobs with high sum of processing times to the detriment of

others. For this reason, we propose also a relative remove, which consists in maximizing the

gain of makespan relatively to the sum of processing times of the removed job. The relative

remove can be stated as follows: remove the job at the thp position, such that

 New effective neighborhoods for the permutation flow shop problem

 Page 4

1..

1..

max i
p

i k
ij

j m

M M
M

p=

=

 
′− 

=  
 
 
∑

, where M is the makespan of the permutation before removing the

job. Preliminary results have shown the superiority of the relative remove. So, we will only

consider the latter in the following of this paper.

In the next section, we use Taillard’s implementation and its extension for describing existing

moves (swap, exchange and insertion) and for proposing new moves.

3. Neighborhoods for the PFSP

The description of standard and new moves uses the following subroutines:

(), ,insert p iπ : this subroutine inserts the job i at the position p in the permutation π . We

obtain a new permutation ()1 1, , , , , ,p p niπ π π π π−
′ = … … where n is the number of jobs in the

permutation π , and απ represents the thα job in the permutation π .

{ }()_ , ,p best insert i constraintsπ← : this subroutine inserts the job i at the best possible

position p in the permutation π . The position, which is returned by the subroutine, is

determined by the makespans computed by algorithm 1, and must satisfy a given set of

constraints.

(),i remove pπ← : this subroutine removes the job i , which is returned, at the thp position in

the permutation π . We obtain a new permutation ()1 1 1, , , , ,p p nπ π π π π− +
′ = … … .

{ }(), _ ,i p best remove constraintsπ← : this subroutine removes the less well inserted job i

that satisfies a given set of constraints in the permutation π . The position p , which is

determined by the makespans computed by algorithm 2, and the job i are returned by the

subroutine.

We propose first to describe the standard moves using these subroutines.

3.1. Description of the standard neighborhoods

As we mention above, we find mainly three moves in the literature: the swap moves, the

exchange moves and the insertion moves.

3.1.1. The Swap moves (SW-moves)

We give a formulation of swap moves in algorithm 3. Local search algorithms based on these

moves don’t allow to reach good quality solutions. The size of the neighborhood is 1n − , and

it can be examined in ()2O n m .

Algorithm 3. Swap moves.

// Exchange two consecutive jobs at positions p and 1p + , 1, , 1p n= −…

(),i remove pπ←

(), 1,insert p iπ +

 Page 5

3.1.2. The exchange moves (E-moves)

The E-move consists in exchanging two jobs at position 1p and 2p with 1 2p p< . Its

formulation is given in algorithm 4. The size of the neighborhood is
()1
2

n n −
. Local search

algorithms based on E-moves provide good quality local minima, but the neighborhood

exploration is in ()3O n m .

Algorithm 4. Exchange moves.

// Exchange two jobs at positions 1p and 2p ()1 2p p<

()1 1,i remove pπ←

()2 1, 1,insert p iπ −

()2 2,i remove pπ←

()1 2, ,insert p iπ

3.1.3. The Insertion moves (I-moves)

This move consists in removing the job at position 1p , and inserting it at position 2p

(1 2, 1,p p n∈ … , { }2 1 11,p p p∉ − (Nowicki and Smutnicki, 1996)). I-moves give at least the

same quality solution than E-moves. The size of the neighborhood is ()
2
1n − but it can be

evaluated in ()2O n m using the Taillard’s implementation (Taillard, 1990). Consequently, this

move is considered by most of the authors afterwards. Its description is given in algorithm 5.

Algorithm 5. Insertion moves.

// Insert the job at position p at the best possible position

(),i remove pπ←

()_ , ,best insert iπ ∅

3.2. Proposition of new neighborhoods

We present in this section new moves for the PFSP.

3.2.1. The Best Exchange moves (BE-moves)

We can note that I-moves can be obtained from SW-moves by replacing the insertion at the

position 1p + by the best possible insertion. We can apply this method to E-moves and we

obtain the Best Exchange moves (BE-moves) (algorithm 6).

We don’t have any more the symmetry between 1p and 2p . This leads to consider two cases

depending on whether 1 2p p< or not. The size of neighbourhood is now ()1n n − . It can be

explored in ()3O n m . BE-moves have the same drawback that E-moves; namely the

exploration of the whole neighborhood requires an important CPU time. In return, it is

expected that local search algorithms obtain good quality solutions.

 New effective neighborhoods for the permutation flow shop problem

 Page 6

Algorithm 6. Best Exchange moves.

// BE move between the positions 1p and 2p

()1 1,i remove pπ←

if ()2 1p p> then

()2 1, 1,insert p iπ −

else

()2 1, ,insert p iπ

endif

if ()2 1p p> then

()2 2,i remove pπ←

else

()2 2, 1i remove pπ← +

endif

()2_ , ,best insert iπ ∅

3.2.2. The k-Exchange moves (k-E-moves)

The E-moves consists in removing a job 1i , and to insert it instead of another job 2i . The latter

is then inserted at the position of the first job. In BE-moves, 2i is inserted at the best possible

position. If the new permutation thus obtained is better than the previous one, that’s okay. If

not, we can continue. 2i is inserted at the best possible position, instead of a third job 3i , and

so on while we don’t find a better solution, or while we don’t satisfy a stop criterion. So it is

possible to define a recursive move; the k-Exchange move, where k is dynamically evaluated

(algorithm 7). The constraint { }ip p≠ ensures that job i is inserted at a different position in

the permutation, and a new permutation is effectively built. The move is stopped is no

improvement has been found in the kmax first steps. The size of the neighbourhood is n , but

the evaluation of a neighbour is in ()O kmax nm× at the worst case. We propose to take

kmax n =   , which realises a good compromise between the depth of the search and the

increase of the complexity. We can note that k-E move with 1kmax = corresponds to I-move.

3.2.3. The Best Removed Exchange moves (BRE-moves) and fast BRE-moves

We have proposed two new moves, but without using the fast job remove. This could be done

by replacing the second remove in the definition of BE-moves by a best remove. We obtain

the move described in algorithm 8. The constraints defined in the subroutine best_remove

forbid to remove the job we have just inserted. BRE-moves have the same complexity that

BE-moves. We can define a fast neighbourhood evaluation by replacing the first insert

subroutine by best_insert (one must verify that no improvement is found after the first

insertion). We obtain the fast BRE-moves (algorithm 9) for which the neighbourhood can be

evaluated in ()2O n m . These moves can be generalised by the recursive k-Insert moves

defined in the next section.

 Page 7

Algorithm 7. k-Exchange moves.

// k-E move build from the initial position p

found false←

0k ←

While ()not found and ()k kmax< do

()M makespan π←

(),i remove pπ←

{ }()_ , , ibest insert i p pπ ≠

()M makespan π′ ←

if M M′ < then

found true←

else

1k k← +
endif

end

Algorithm 8. Best Remove Exchange moves.

// BRE move between the positions 1p and 2p

()1 1,i remove pπ←

if ()2 1p p> then

()2 1, 1,insert p iπ −

else

()2 1, ,insert p iπ

endif

if ()2 1p p> then

{ }()2 2 2 2, _ , 1i p best remove p pπ′ ′← ≠ −

else

{ }()2 2 2 2, _ ,i p best remove p pπ′ ′← ≠

endif

()2_ , ,best insert iπ ∅

3.2.4. k-insertion moves (k-I moves) and fast k-insertion moves

There are several manners to see k-I moves. It can result from the fast BRE-move in which we

reiterate the instruction if…then…endif. It can also be seen as k-E moves in which we replace

the subroutine remove by best_remove. We obtain the move described in algorithm 10. In

order to prevent (or at least to reduce) cycles, a removed job becomes tabu and it cannot be

chosen again in the next iterations. Starting from a current solution, we can generate n

neighbours which can be evaluated in ()O kmax nm× . As for k-E moves, we take

kmax n =   .

Fast k-I moves are obtained simply by fixing as initial position the position obtained when

removing a job with algorithm 2. Fast k-I moves define a very peculiar neighbourhood, in the

 New effective neighborhoods for the permutation flow shop problem

 Page 8

sense that each solution of the search space has at most one neighbour (0 if the while loop

ends with the value found false= ; 1 if it ends with the value found true=). Nevertheless,

this kind of neighbourhood can be attractive for very large scale instances, or if a solution

must be returned in a short CPU time. (Stützle, 1998) mentions that “for large FSP instances

the computation time for the local search still grows fast”.

Algorithm 9. Fast BRE-moves.

// fast BRE move build from the initial position 1p

()M makespan π←

()1 1,i remove pπ←

{ }()1 1 1 1_ , ,p best insert i p pπ′ ′← ≠

()M makespan π′ ←

if M M′ > then

{ }()2 2 2 1, _ ,i p best remove p pπ ′← ≠

{ }()2 2 2 2_ , ,p best insert i p pπ′ ′← ≠

endif

Algorithm 10. k-Insertion moves.

// k-I move build from the initial position p

found false←

0k ←

()M makespan π←

(),i remove pπ←

{ }TabuJobs i←

While ()not found and ()k kmax< do

{ }()_ , , ibest insert i p pπ ≠

()M makespan π′ ←

if M M′ < then

found true←

else

1k k← +

{ }(), _ , ,i p best remove p i TabuJobsπ← ∉

{ }TabuJobs TabuJobs i← ∪

endif

end

 Page 9

4. Iterated local search

To compare these moves, we apply a simple but effective metaheuristic called Iterated Local

Search (ILS). Let us briefly recall the principle algorithm (algorithm 11) as it is presented by

(Lourenço et al., 2003).

Algorithm 11. Principle algorithm of Iterated Local Search metaheuristic.

0s ←GenerateInitialSolution()
*s ← LocalSearch(0s)

While stopping criterion is not met Do

s′ ← Perturbation(*,s history)
*s
′
←LocalSearch(s′)

*s ←ApplyAcceptanceCriterion(* *, ,s s history
′

)

End While

Iterated local search is based on a local search subroutine, which modify a current solution s

into a local minimum s∗ . The perturbation of a local minimum must be strong enough to leave

the current local minimum, but weak enough to keep memory of the current local minimum.

The acceptance criterion is used to decide from which local minimum the search is continued.

A new local minimum can be always accepted (random walk strategy), accepted only if it is

better than the current local minimum (best walk strategy) or any compromise between these

two strategies.

We have chosen ILS mainly for its simplicity. As ILS does not contain any complex

mechanisms, it is in position to correctly restore the neighborhood ability of obtaining good

solutions.

5. Experimental results

We suggest comparing all these moves in the following way: we first measure the intrinsic

performance of each neighborhood (both in term of solution quality and in term of CPU time).

We consider then a simple metaheuristic base on each neighborhood, and we make short runs

and long runs. For the comparisons we use the standard benchmark set of Taillard (1993) and

we focus on hard instances of size (50x20), (100x20) and (200x20). Many of these instances

still remain unsolved.

Table 1. Best known lower and upper bounds for Taillard’s instances as of April 2005.
(50x20) instances (100x20) instances (200x20) instances

Name LB UB Instance LB UB Instance LB UB

TA051 3771 3850 TA081 6106 6202 TA101 11152 11195

TA052 3668 3704 TA082 6183 6183 TA102 11143 11203

TA053 3591 3640 TA083 6252 6271 TA103 11281 11281

TA054 3635 3723 TA084 6254 6269 TA104 11275 11275

TA055 3553 3611 TA085 6262 6314 TA105 11259 11259

TA056 3667 3681 TA086 6302 6364 TA106 11176 11176

TA057 3672 3704 TA087 6184 6268 TA107 11337 11360

TA058 3627 3691 TA088 6315 6401 TA108 11301 11334

TA059 3645 3743 TA089 6204 6275 TA109 11145 11192

TA060 3696 3756 TA080 6404 6434 TA110 11284 11288

 New effective neighborhoods for the permutation flow shop problem

 Page 10

We give in Table 1 the best known lower bounds (obtained by branch-and-bound methods)

and upper bounds (the best known solutions) for each instance. The performance measure

used is the percentage increase over the best known upper bound (100
x UB

UB

∗

∗

−
× where x is

the makespan of the obtained solution and *UB the best known upper bound).

All the programs are written in C and run on a Pentium IV 3.4 GHz.

5.1. Comparison of local minima

We consider local search based on all the presented moves. We can say that a move is

efficient if it finds quickly some good solutions. So, it is a compromise between the quality of

the obtained solution and the time spent to reach it. 1000 independent local searches were

completed for each move on the instances of size (50x20). The initial solution is randomly

generated (of course, we can start local searches from the solution obtained with the NEH

heuristic. We obtain thus better results, but the difference between moves is less marked). The

results are summarized in table 2. The row time gives the approximate CPU time in seconds.

Table 2. Comparison of moves. Average of 1000 independent local search starting from a

random initial solution.

 Initial solution: randomly generated

 SW E I BE k-E BRE fast BRE k-I fast k-I

TA051 19.91 7.63 4.88 3.47 4.00 3.20 3.92 3.04 6.50

TA052 20.59 8.83 6.09 4.29 4.98 3.51 4.74 3.38 7.65

TA053 21.69 8.33 6.17 4.40 5.04 3.81 4.71 3.56 7.85

TA054 19.73 7.77 5.30 3.52 4.20 3.16 4.09 3.00 7.27

TA055 23.31 9.08 6.10 4.34 5.04 3.83 4.80 3.59 8.69

TA056 21.81 8.90 5.63 3.89 4.59 3.44 4.47 3.37 7.33

TA057 21.91 9.20 5.84 4.17 4.80 3.60 4.59 3.50 7.91

TA058 21.93 8.92 6.30 4.46 5.10 3.88 4.87 3.68 8.06

TA059 20.33 8.30 5.91 4.14 4.75 3.52 4.53 3.41 7.50

TA060 21.54 8.97 5.13 3.67 4.18 3.36 4.11 3.30 7.10

Average 21.27 8.59 5.73 4.03 4.67 3.53 4.48 3.38 7.59

Time (s) 3 100 16 500 80 1000 35 100 4

We can see that SW-moves and E-moves obtain effectively poor results. BE-moves and BRE-

moves provides good quality results (compared with I-moves) but they are slow and they are

dominated by k-I moves (the latter is both better and faster). Fast BRE-moves and k-I-moves

obtain promising results because they improve significantly the results of I-moves with a

moderate increase of CPU time. K-E is dominated by fast BRE. Finally fast k-I moves give

relatively poor quality results, but are as fast as SW-move. They may be interesting for very

large instances.

5.2. Comparison of neighborhoods on short runs

In this section, we investigate the results of short runs for the iterated local search (ILS)

metaheuristic. Let us give first some details about our ILS implementation.

The initial solution is given by the NEH heuristic. The local search procedure is based

successively on the nine moves. The perturbation is composed by three random exchange

moves. The acceptance criterion is based on a simulated annealing type. The parameter T that

 Page 11

simulates the temperature is a geometric sequence of common ratio
f

T .
f

T is computed such

that
0

end
iter

f

T
T

T
= where

0T is the initial temperature. We fix 0
5T = (We have then a probability of 0.5 for accepting a

deterioration of the current solution of ()0
ln 2T × at the beginning of the cooling schedule).

endT is the expected final temperature (arbitrarily fixed at 210−).

iter represents the number of local searches (iterations of ILS) that are accomplished during

the given time. This parameter is evaluated by running iterated local search during the given

running time with the best walk acceptance criterion (which is equivalent to the simulated

annealing with null temperature).

The probability of accepting a worse transition is given by the Boltzmann factor exp
E

T

∆ 
− 
 

.

For each neighborhood and for each Taillard’s instance of size (50x20), 5 independent short

runs were performed under the same conditions but with different random number seeds. The

stopping criterion is fixed at 60 seconds of CPU time. We indicate in Figure 1 the average

performance (one curve represents the average result of 50 runs) as a function of the time.

This figure shows clearly the superiority of three moves (fast-BRE, k-I and fast k-I) which

obtain an average performance of 0.80% compared to I-move (1.20%).

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

5,00%

0 10 20 30 40 50 60

Time (s)

P
e

rc
e

n
ta

g
e

 o
v

e
r

th
e

 b
e

s
t

k
n

o
w

n
 u

p
p

e
r

b
o

u
n

d

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Figure 1. Average performance of each move as a function of time. The legend is:

[1] SW-moves [2] E-moves [3] I-moves

[4] BE-moves [5] k-E-moves [6] BRE-moves

[7] fast BRE-moves [8] k-I-moves [9] fast k-E-moves

 New effective neighborhoods for the permutation flow shop problem

 Page 12

We give in table 3 some detailed results for the reference I-moves, and for the three best

moves (fast-BRE, k-I and fast k-I). 60 seconds of CPU time corresponds respectively to 6000,

2600, 800 and 35000 local search iterations. This gives a non-dependent machine running

time. Results obtained for I-moves are similar to those published in (Stützle, 1998). The main

difference between our ILS implementation and those of Stützle lies in the acceptance

criterion. Nevertheless, the author notes that ILS performance is better if sometimes worse

solutions are accepted, but most of the acceptance criteria that satisfie this condition give

closed results. As can be seen, the moves fast-BRE, k-I and fast k-I are significantly more

effective than I-move. For each of the instances of dimension (50x20), the three latter moves

provide better results and they allow to find very good solutions in a reasonable CPU time.

Table 3. Summary of the results obtained with short runs (60 seconds of CPU time). The

value in bold type indicates the best found solution.

 I fast BRE k-I fast k-I

Instance UB Best Avg Best Avg Best Avg Best Avg

TA051 3850 3893 3899.2 3876 3893.0 3875 3881.8 3875 3888.6

TA052 3704 3721 3733.8 3715 3718.4 3708 3718.0 3714 3719.2

TA053 3640 3688 3703.4 3658 3675.2 3666 3669.4 3673 3677.2

TA054 3723 3758 3763.2 3748 3754.0 3743 3748.2 3742 3760.4

TA055 3611 3640 3651.0 3626 3636.2 3632 3644.2 3637 3643.2

TA056 3681 3709 3721.8 3696 3707.6 3704 3709.4 3699 3714.6

TA057 3704 3737 3747.2 3729 3732.6 3727 3732.0 3727 3740.0

TA058 3691 3732 3746.4 3729 3733.8 3716 3723.0 3715 3728.4

TA059 3743 3779 3790.8 3765 3773.4 3765 3777.4 3768 3776.4

TA060 3756 3783 3791.8 3768 3777.8 3772 3782.4 3784 3792.0

Average 0.91% 1.20% 0.56% 0.81% 0.55% 0.76% 0.62% 0.91%

5.3. Results of longer runs

The previous results are promising, but they can be still improved by giving more time to

each run. So, we decide to make 5 independent longer runs of 3600 seconds for each of the

instances of size (50x20), (100x20) and (200x20). The results are provided in table 4.

As can be seen, we obtain very good results for the (50x20) instances. A new upper bound

was even found for the TA055 instance (this solution is given in the appendix). However, it

seems that the effectiveness of ILS decreases with size instances. The same remark is noticed

by (Ruiz and Stützle, 2006). Anyway, the neighborhoods fast BRE, k-I and fast k-I always

still obtain better results than I-move. An average run for the (50x20) instances is at 0.25% to

the upper bound for k-I moves again 0.55% for I-moves. fast BRE and k-I provide equivalent

results, while fast k-I seems less effective.

These results show clearly the interest of the proposed neighborhoods. They can be used

instead of I-move into the literature methods using local search, so improving their efficiency.

To conclude this section, we want to remind that our objective is to compare the efficiency of

the neighborhoods. For that reason, the comparison with other methods of the literature has no

sense. Nevertheless, we can say that our simple metaheuristic is competitive, especially for

the (50x20) instances.

 Page 13

Table 4. Summary of the results obtained with long runs (3600 seconds of CPU time). The

value in bold type indicates the best found solution. The symbol “*” means that the obtained

solution is a new upper bound.

 I fast BRE k-I fast k-I

Instance

(50x20)

UB Best Avg Best Avg Best Avg Best Avg

TA051 3850 3865 3880.2 3858 3863.8 3863 3865.8 3857 3867.0

TA052 3704 3708 3712.2 3714 3714.2 3708 3711.4 3713 3715.4

TA053 3640 3656 3662.2 3651 3656.6 3641 3651.6 3653 3657.0

TA054 3723 3733 3740.8 3730 3737.6 3724 3732.6 3737 3739.0

TA055 3611 3619 3629.8 3616 3623.2 3610* 3615.2 3614 3619.2

TA056 3681 3688 3695.4 3690 3694.0 3687 3691.2 3690 3693.0

TA057 3704 3717 3725.2 3710 3715.6 3711 3712.8 3711 3715.0

TA058 3691 3713 3720.4 3692 3700.4 3699 3705.4 3702 3710.2

TA059 3743 3763 3767.2 3754 3759.2 3747 3754.2 3747 3758.6

TA060 3756 3767 3774.2 3767 3768.0 3767 3768.0 3767 3769.6

Average 0.34% 0.55% 0.21% 0.35% 0.14% 0.28% 0.24% 0.38%

Instance

(100x20)

UB Best Avg Best Avg Best Avg Best Avg

TA081 6202 6247 6267.0 6245 6256.0 6251 6254.8 6254 6262.6

TA082 6183 6234 6245.8 6226 6234.8 6208 6219.6 6230 6240.8

TA083 6271 6310 6322.0 6300 6309.0 6300 6304.4 6300 6311.0

TA084 6269 6303 6321.0 6303 6311.0 6303 6303.0 6320 6335.8

TA085 6314 6378 6392.2 6350 6364.8 6344 6349.2 6350 6364.0

TA086 6364 6437 6474.4 6403 6417.6 6384 6404.8 6417 6443.0

TA087 6268 6315 6322.8 6298 6304.8 6296 6305.0 6302 6308.6

TA088 6401 6434 6456.6 6428 6441.0 6434 6442.6 6440 6448.6

TA089 6275 6321 6338.8 6310 6328.2 6303 6314.2 6321 6330.6

TA090 6434 6478 6481.6 6463 6475.0 6444 6464.6 6477 6482.0

Average 0.76% 1.02% 0.55% 0.73% 0.46% 0.61% 0.68% 0.87%

Instance

(200x20)

UB Best Avg Best Avg Best Avg Best Avg

TA101 11195 11286 11325.4 11261 11270.0 11274 11281.2 11268 11292.2

TA102 11203 11320 11338.8 11314 11320.8 11300 11311.4 11300 11321.2

TA103 11281 11416 11443.0 11398 11422.4 11390 11404.8 11410 11421.0

TA104 11275 11354 11377.2 11349 11369.8 11340 11350.8 11351 11368.6

TA105 11259 11315 11326.6 11290 11307.2 11301 11304.6 11316 11332.0

TA106 11176 11311 11328.2 11255 11277.2 11272 11288.8 11273 11304.4

TA107 11360 11437 11455.4 11438 11444.6 11419 11442.4 11446 11457.8

TA108 11334 11426 11434.6 11392 11426.8 11414 11424.2 11433 11439.8

TA109 11192 11303 11353.8 11267 11319.6 11289 11304.6 11312 11341.4

TA110 11288 11375 11402.8 11355 11367.6 11350 11367.4 11345 11380.4

Average 0.87% 1.09% 0.67% 0.86% 0.70% 0.82% 0.79% 0.97%

6. Conclusion

In this paper, we have first proposed an extension of the Taillard’s implementation (Taillard,

1990). It allows to compute efficiency all the possible partial permutations obtained by

removing a job. We propose then six new neighborhoods, and the results show that three of

them outperform the insertion move, which is commonly considered as the most effective

move for the permutation flow shop problem. Moreover, all of the neighborhoods are easy to

implement, on the condition of using the data structures proposed by Taillard.

We have implemented a simple iterated local search metaheuristic. The obtained results, both

with short runs and with long runs, show the relevance of our approach. A new upper bound

has been found for a hard instance from the benchmark test of Taillard (1993).

 New effective neighborhoods for the permutation flow shop problem

 Page 14

These works give promising perspectives:

At first, the neighborhoods we have proposed may allow to improve the methods of the

literature, at least those that use local search based on the movement of insertion (Stützle, 98,

Ruiz and Stützle, 2006). The notion of critical path (Nowicki and Smutnicki, 1996; Reeves

and Yamoto, 1998; Grabowski and Wodecki, 2004)), which speeds up yet the exploration of

the insertion neighborhood, may also be investigated.

Furthermore, if we look attentively at the results reported by our neighborhoods, it is difficult

to differentiate them. Each of them seems to have its qualities and its drawbacks. It may be

interesting to use them all three simultaneously, for example by using a variable

neighborhood search (Mladenovic and Hansen, 1998; Hansen and Mladenovic, 2003).

Lastly, the use of more elaborated metaheuristic, in particular population based metaheuristic

such as genetic local search or particle swarm optimization may improve the results of

iterated local search.

7. References

Campbell, H.G., R.A. Dudek and M.L. Smith. (1970). A heuristic algorithm for the n job, m

machine sequencing problem. Management Science, 16, 630-637.

Dannenbring, D.G. (1977). An evaluation of flow shop sequencing heuristics. Management

Science, 23, 1174-1182.

Grabowski, J. and M. Wodecki. (2004). A very fast tabu search algorithm for the permutation

flow shop problem with makespan criterion. Computers & Operations Research, 31, 1891-

1909.

Graham, R.L., E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan. (1979). Optimisation and

approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics, 5, 236-287.

Hansen, P., and N. Mladenovic. (2003). Variable Neighborhood search. In F. Glover and G.

Kochenberger (eds.), Handbook of Metaheuristics, Kluwers Academic Publishers, 145-184.

Lin, S. and B.W. Kernigham. (1973). An effective heuristic algorithm for the traveling

salesman problem. Operations Research, 21, 498-516.

Lourenço, H.R., O.C. Martin, and T. Stützle. (2003). Iterated local search. In F. Glover and G.

Kochenberger (eds.), Handbook of Metaheuristics, Kluwers Academic Publishers, 321-353.

Mladenovic, N. and P. Hansen. (1997). Variable Neighborhood Search. Computers &

Operations Research, 24, 1097-1100.

Nawaz, M., E.E. Enscore Jr and I. Ham. (1983). A heuristic algorithm for the m-machine, n-

job flow-shop sequencing problem. OMEGA, The International Journal of Management

Science, 11, 91-95.

Nowicki, E. and C. Smutniki. (1996), A fast tabu search algorithm for the permutation flow

shop problem. European Journal of Operational Research, 91, 160-175.

Ogbu, F.A. and D.K. Smith. (1990). The application of the simulated annealing algorithm to

the solution of n/m/Cmax flow-shop problem. Computers & Operations Research, 17, 243-

253.

Osman, I.H. and C.N. Potts. (1989). Simulated annealing for permutation flow shop

scheduling. OMEGA, The International Journal of Management Science, 17, 551-557.

Reeves, C.R. (1993). Improving the efficiency of tabu search for machine scheduling

problems. Journal of Operational Research Society,44, 375-382.

Reeves, C.R. (1995). A genetic algorithm for flowshop sequencing. Computers & Operations

Research, 22, 5-13.

Reeves, C.R. and T. Yamada. (1998). Genetic Algorithms, path relinking, and the flowshop

sequencing problem. Evolutionary Computation, 6, 45-60.

 Page 15

Rinnooy Kan, A.H.G. (1976). Machine Scheduling Problems: Classification, Complexity and

Computations. Martinus Nijhoff, The Hague, The Netherlands.

Ruiz, R. and T. Stützle. (2006). A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem. European Journal of Operational Research, to

appear.

Stützle, T. (1998). Applying iterated local search to the permutation flow shop problem.

Technical Report, AIDA-98-04, FG Intellecktik, TU Darmstadt.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem.

European Journal of Operational Research, 47, 67-74.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64, 278-285.

Widmer, M. and A. Hertz (1989), A new heuristic method for the flow shop sequencing

problem. European Journal of Operational Research, 41, 186-193.

8. Appendix

new best solution for ta055 (50x20)

40 48 4 2 19 31 50 28 20 49 34 5 23 21 32 25 43 45 44 18 26 36 33 42 27 16 41 14 8 47 39 38

10 6 22 17 30 12 13 3 37 9 7 1 46 24 15 29 35 11

Cost 3610

