Laurent Deroussi
email: deroussi@moniut.univ-bpclermont.fr

Michel Gourgand

Sylvie Norre

New effective neighborhoods for the permutation flow shop problem

Keywords: Flow-Shop Problem, Metaheuristic, Neighborhood. Résumé -Shop, Métaheuristiques, Systèmes de voisinage Flow-Shop Problem, Metaheuristic, Neighborhood

New effective neighborhoods for the permutation flow shop problem

Introduction

The permutation flow shop problem (PFSP) is one of the most studied scheduling problems. A set { } 1,..., J n = of n independent jobs has to be processed on a set { } 1,..., M m = of m machines in the order given by the indexation of the machines. The processing time for job i on machine j is denoted ij p . The objective is to find the job permutation { } 1 2 , ,..., n π π π π = (in the PFSP, the processing sequence of the jobs is the same for all machines) which minimizes a given criterion, for example the makespan (max C). More formally, the studied problem is classified as a | | max F prmu C problem according to the | | α β γ -notation introduced by Graham et al. (1979). If ij t is the completion time for job i on machine j , the makespan can be computed as follows:

1 This problem is known to be NP-hard in general [START_REF] Rinnooy Kan | Machine Scheduling Problems: Classification, Complexity and Computations[END_REF]. Only small instances can be exactly solved. Researchers have mainly focused their energies towards heuristic approaches. Constructive methods provide a good solution in a short time. Among them [START_REF] Campbell | A heuristic algorithm for the n job, m machine sequencing problem[END_REF][START_REF] Dannenbring | An evaluation of flow shop sequencing heuristics[END_REF], it is commonly recognized that the best of them is the NEH heuristic [START_REF] Nawaz | A heuristic algorithm for the m-machine, njob flow-shop sequencing problem[END_REF]. These solutions could be improved by a metaheuristic approach such as simulated annealing [START_REF] Osman | Simulated annealing for permutation flow shop scheduling[END_REF][START_REF] Ogbu | The application of the simulated annealing algorithm to the solution of n/m/Cmax flow-shop problem[END_REF], tabu search [START_REF] Widmer | A new heuristic method for the flow shop sequencing problem[END_REF][START_REF] Taillard | Some efficient heuristic methods for the flow shop sequencing problem[END_REF][START_REF] Reeves | Improving the efficiency of tabu search for machine scheduling problems[END_REF][START_REF] Nowicki | A fast tabu search algorithm for the permutation flow shop problem[END_REF][START_REF] Grabowski | A very fast tabu search algorithm for the permutation flow shop problem with makespan criterion[END_REF], iterated local search [START_REF] Stützle | Applying iterated local search to the permutation flow shop problem[END_REF][START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF] and genetic algorithm [START_REF] Reeves | A genetic algorithm for flowshop sequencing[END_REF][START_REF] Reeves | Genetic Algorithms, path relinking, and the flowshop sequencing problem[END_REF]. All these metaheuristics are based on the notion of neighborhood. A neighborhood is generally defined by a basic move allowing to slightly modify a solution. Three types of moves are considered in the literature for the flow shop problem: (i) swap two consecutive jobs at position i and 1 i + (swap move), (ii) exchange jobs at positions i and j (exchange move), (iii) remove job at position i and insert it at position j (insertion move). Local search based on swap move is very fast, but yields local minima with a low quality. Exchange moves and insertion moves give comparable solutions, but it is possible to speed up the exploration of the insertion neighborhood by using the data structure proposed by [START_REF] Taillard | Some efficient heuristic methods for the flow shop sequencing problem[END_REF]. So, the whole insertion neighborhood of a solution can be evaluated in ()

2

O n m , as fast as for the swap neighborhood. Further, (Nowicki and Smutnicki, 1996) define the critical path concept, which allows to reduce the size of the insertion neighborhood, and to speed up yet its evaluation. Nevertheless, according to [START_REF] Reeves | Genetic Algorithms, path relinking, and the flowshop sequencing problem[END_REF] and [START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF], the use of critical paths adds a significant degree of complexity. As a result of these neighborhood considerations, the insertion move is regarded as the best choice for the PFSP. Despite its efficiency, it remains a very simple move when compared with the sophisticated LK move [START_REF] Lin | An effective heuristic algorithm for the traveling salesman problem[END_REF] for the traveling salesman problem (TSP). Moreover, it is showed that for TSP, LK moves are much more efficient than simple moves (swap, exchange, insertion or 2-opt moves). Our main motivation lies in this fact. In order to reach a state-of-the-art level, researchers have developed for the PFSP complex techniques for the reduction of the insertion neighborhood size. Cannot we propose more complex (and more efficient) moves for this problem? To answer this question, we draw our inspiration from the LK move, and we adapt it for the PFSP. Basically, the LK move can be seen as a recursive move, in which, at each step, we remove an edge of the current tour, and we add another edge (according to given criteria). This idea could be adapted to the PSFP, by designing a recursive move, in which a step consists in removing a job, for reinserting it elsewhere. Owing to the Taillard's implementation, we know how to insert efficiently a job in the permutation. In order to apply this idea, we also need to remove efficiently a job from a permutation. This paper is organised as follows. In section 2, we propose to extend the Taillard's implementation for the case of job remove. In section 3, we describe the three classical moves for the PFSP and we propose six new moves. Section 4 gives a description of the iterated local search metaheuristic. In section 5, we present a complete experimental comparison of the proposed moves. We conclude in section 6 by some remarks and guidelines for further works.

Extension of the Taillard's implementation

Recall for efficient job insertion

We will first recall in algorithm 1 the Taillard's implementation, which allows to know the best position for inserting a given job (indexed k) in a partial permutation of 1 kjobs. More precisely, it allows to compute the k makespans obtained by inserting job k at the th i position (1 i k ≤ ≤) in () O km (as for the makespan calculation).

Proposition for efficient job remove

Once the earliest completion times and the tails are determined, it is easy to compute all makespans obtained by removing any one of the jobs. We present in algorithm 2 the extension of the Taillard's implementation in the case of a job remove. We can note that the two first steps are the same, just excepted for the bound of the variable i (the partial permutation contains 1 kjobs in algorithm 1, and k jobs in algorithm 2). Obviously, the calculation of i M ′ has a complexity of () O km . Consequently, it is possible to compute the k makespans of step 3 in ()

O km .
Algorithm 1. The Taillard's implementation for fast job insertion.

1. Compute the earliest completion time ij e of the th i job on the th j machine; the starting time of the first job on the first machine is 0. ()

, 1 1, max , ij i j i j ij e e e d - - = + for 1, , 1 i k = - … , 1, , j m = …
2. Compute the tail ij q , i.e. the duration between the starting time of the th i job on the th j machine and the end of the operations.

0 kj q = ; , 1 0 i m q + = ; () , 1 1, max , ij i j i j ij q q q d + + = + for 1, ,1 i k = -… , , ,1 j m = …
3. Compute the earliest relative completion time ij f on the th j machine of job k inserted at the th i position.

0 0 i f = ; () , 1 1, max , ij i j i j kj f f e d - - = + for 1, , i k = … , 1, , j m = …
4. The value of the partial makespan i M when adding job k at the th i position is:

() 1,..., max i ij ij j m M f q = = + for 1, , i k = …
Algorithm 2. Proposed implementation for fast job remove.

1. Compute the earliest completion time ij e of the th i job on the th j machine; the starting time of the first job on the first machine is 0. ()

, 1 1, max , ij i j i j ij e e e d - - = + for 1, , i k = … , 1, , j m = …
2. Compute the tail ij q , i.e. the duration between the starting time of the th i job on the th j machine and the end of the operations.

1, 0 k j q + = ; , 1 0

i m q + = ; () , 1 1, max , ij i j i j ij q q q d + + = + for , ,1 i k = … , , ,1 j m = …
3. The value of the partial makespan i M ′ when removing the job at the th i position is:

() 1, 1, 1,..., max i i j i j j m M e q - + = ′ = + for 1, , i k = …

Criteria for the choice of the removed job

In the case of job insertion, the best possible choice of the insertion position is obviously the position p that minimizes the makespan, i.e. the position p such that ()

1.. min p i i k M M = = .
The same criterion can also be chosen in the case of job remove (we suppress the job at the th p position, such that ()

1.. min p i i k M M = ′ =
; we denote this criterion the absolute remove). But doing that, we may choose in priority jobs with high sum of processing times to the detriment of others. For this reason, we propose also a relative remove, which consists in maximizing the gain of makespan relatively to the sum of processing times of the removed job. The relative remove can be stated as follows: remove the job at the th p position, such that 1..

1.. max i p i k ij j m M M M p = =   ′ -   =       ∑
, where M is the makespan of the permutation before removing the job. Preliminary results have shown the superiority of the relative remove. So, we will only consider the latter in the following of this paper.

In the next section, we use Taillard's implementation and its extension for describing existing moves (swap, exchange and insertion) and for proposing new moves.

Neighborhoods for the PFSP

The description of standard and new moves uses the following subroutines:

()

, , insert p i π : this subroutine inserts the job i at the position p in the permutation π . We obtain a new permutation ()

1 1 , , , , , , p p n
i π π π π π - ′ = … …
where n is the number of jobs in the permutation π , and α π represents the th α job in the permutation π .

{ } () _ , , p best insert i constraints π ← : this subroutine inserts the job i at the best possible position p in the permutation π . The position, which is returned by the subroutine, is determined by the makespans computed by algorithm 1, and must satisfy a given set of constraints.

() , i remove p π ← : this subroutine removes the job i , which is returned, at the th p position in the permutation π . We obtain a new permutation ()

1 1 1 , , , , , p p n
π π π π π - + ′ = … … . { } () , _ , i p best remove constraints π ←
: this subroutine removes the less well inserted job i that satisfies a given set of constraints in the permutation π . The position p , which is determined by the makespans computed by algorithm 2, and the job i are returned by the subroutine.

We propose first to describe the standard moves using these subroutines.

Description of the standard neighborhoods

As we mention above, we find mainly three moves in the literature: the swap moves, the exchange moves and the insertion moves.

The Swap moves (SW-moves)

We give a formulation of swap moves in algorithm 3. Local search algorithms based on these moves don't allow to reach good quality solutions. The size of the neighborhood is 1 n -, and it can be examined in ()

2 O n m . Algorithm 3. Swap moves.
// Exchange two consecutive jobs at positions p and p ()

1 p + , 1, , 1 p n = - … () , i remove p π ← () , 1, insert p i π +
1 2 p p < () 1 1 , i remove p π ← () 2 1 , 1, insert p i π - () 2 2 , i remove p π ← () 1 2 , , insert p i π 3.1.3.

The Insertion moves (I-moves)

This move consists in removing the job at position 1 p , and inserting it at position 2 p and Smutnicki, 1996)). I-moves give at least the same quality solution than E-moves. The size of the neighborhood is ()

(1 2 , 1, p p n ∈ … , { } 2 1 1 1, p p p ∉ - (Nowicki
2 1 n - but it can be evaluated in () 2
O n m using the Taillard's implementation [START_REF] Taillard | Some efficient heuristic methods for the flow shop sequencing problem[END_REF]. Consequently, this move is considered by most of the authors afterwards. Its description is given in algorithm 5.

Algorithm 5. Insertion moves. // Insert the job at position p at the best possible position ()

, i remove p π ← () _ , , best insert i π ∅

Proposition of new neighborhoods

We present in this section new moves for the PFSP.

The Best Exchange moves (BE-moves)

We can note that I-moves can be obtained from SW-moves by replacing the insertion at the position 1 p + by the best possible insertion. We can apply this method to E-moves and we obtain the Best Exchange moves (BE-moves) (algorithm 6). We don't have any more the symmetry between 1 p and 2 p . This leads to consider two cases depending on whether 1 2 p p <

or not. The size of neighbourhood is now ()

1 n n -. It can be explored in () 3
O n m . BE-moves have the same drawback that E-moves; namely the exploration of the whole neighborhood requires an important CPU time. In return, it is expected that local search algorithms obtain good quality solutions. Algorithm 6. Exchange moves.

// BE move between the positions 1 p and 2 p ()

1 1 , i remove p π ← if () 2 1 p p > then () 2 1 , 1, insert p i π - else () 2 1 , , insert p i π endif if () 2 1 p p > then () 2 2 , i remove p π ← else () 2 2 , 1 i remove p π ← + endif () 2 _ , , best insert i π ∅ 3.2.2. The k-Exchange moves (k-E-moves)
The E-moves consists in removing a job 1 i , and to insert it instead of another job 2 i . The latter is then inserted at the position of the first job. In BE-moves, 2 i is inserted at the best possible position. If the new permutation thus obtained is better than the previous one, that's okay. If not, we can continue. 2

i is inserted at the best possible position, instead of a third job 3 i , and so on while we don't find a better solution, or while we don't satisfy a stop criterion. So it is possible to define a recursive move; the k-Exchange move, where k is dynamically evaluated (algorithm 7). The constraint { } i p p ≠ ensures that job i is inserted at a different position in the permutation, and a new permutation is effectively built. The move is stopped is no improvement has been found in the kmax first steps. The size of the neighbourhood is n , but the evaluation of a neighbour is in ()

O kmax nm × at the worst case. We propose to take kmax n   =   , which realises a good compromise between the depth of the search and the increase of the complexity. We can note that k-E move with 1 kmax = corresponds to I-move.

The Best Removed Exchange moves (BRE-moves) and fast BRE-moves

We have proposed two new moves, but without using the fast job remove. This could be done by replacing the second remove in the definition of BE-moves by a best remove. We obtain the move described in algorithm 8. The constraints defined in the subroutine best_remove forbid to remove the job we have just inserted. BRE-moves have the same complexity that BE-moves. We can define a fast neighbourhood evaluation by replacing the first insert subroutine by best_insert (one must verify that no improvement is found after the first insertion). We obtain the fast BRE-moves (algorithm 9) for which the neighbourhood can be evaluated in ()

2

O n m . These moves can be generalised by the recursive k-Insert moves defined in the next section.

Algorithm 7. k-Exchange moves.

// k-E move build from the initial position p found false ← 0 k ← While () not found and ()

k kmax < do () M makespan π ← () , i remove p π ← { } () _ , , i best insert i p p π ≠ () M makespan π ′ ← if M M ′ < then found true ← else 1 k k ← + endif end Algorithm 8. Best Remove Exchange moves.
// BRE move between the positions 1 p and 2 p ()

1 1 , i remove p π ← if () 2 1 p p > then () 2 1 , 1, insert p i π - else () 2 1 , , insert p i π endif if () 2 1 p p > then { } () 2 2 2 2 , _ , 1 i p best remove p p π ′ ′ ← ≠ - else { } () 2 2 2 2 , _ , i p best remove p p π ′ ′ ← ≠ endif () 2 _ , , best insert i π ∅ 3.2.

k-insertion moves (k-I moves) and fast k-insertion moves

There are several manners to see k-I moves. It can result from the fast BRE-move in which we reiterate the instruction if…then…endif. It can also be seen as k-E moves in which we replace the subroutine remove by best_remove. We obtain the move described in algorithm 10. In order to prevent (or at least to reduce) cycles, a removed job becomes tabu and it cannot be chosen again in the next iterations. Starting from a current solution, we can generate n neighbours which can be evaluated in

()

O kmax nm × . As for k-E moves, we take

kmax n   =   .
Fast k-I moves are obtained simply by fixing as initial position the position obtained when removing a job with algorithm 2. Fast k-I moves define a very peculiar neighbourhood, in the sense that each solution of the search space has at most one neighbour (0 if the while loop ends with the value found false = ; 1 if it ends with the value found true =). Nevertheless, this kind of neighbourhood can be attractive for very large scale instances, or if a solution must be returned in a short CPU time. [START_REF] Stützle | Applying iterated local search to the permutation flow shop problem[END_REF] mentions that "for large FSP instances the computation time for the local search still grows fast". Algorithm 9. Fast BRE-moves.

// fast BRE move build from the initial position 1 p ()

M makespan π ← () 1 1 , i remove p π ← { } () 1 1 1 1 _ , , p best insert i p p π ′ ′ ← ≠ () M makespan π ′ ← if M M ′ > then { } () 2
k kmax < do { } () _ , , i best insert i p p π ≠ () M makespan π ′ ← if M M ′ < then found true ← else 1 k k ← + { } () , _ , , i p best remove p i TabuJobs π ← ∉ { } TabuJobs TabuJobs i ← ∪ endif end

Iterated local search

To compare these moves, we apply a simple but effective metaheuristic called Iterated Local Search (ILS). Let us briefly recall the principle algorithm (algorithm 11) as it is presented by [START_REF] Lourenço | Iterated local search[END_REF] The acceptance criterion is used to decide from which local minimum the search is continued. A new local minimum can be always accepted (random walk strategy), accepted only if it is better than the current local minimum (best walk strategy) or any compromise between these two strategies. We have chosen ILS mainly for its simplicity. As ILS does not contain any complex mechanisms, it is in position to correctly restore the neighborhood ability of obtaining good solutions.

Experimental results

We suggest comparing all these moves in the following way: we first measure the intrinsic performance of each neighborhood (both in term of solution quality and in term of CPU time). We consider then a simple metaheuristic base on each neighborhood, and we make short runs and long runs. For the comparisons we use the standard benchmark set of [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF] and we focus on hard instances of size (50x20), (100x20) and (200x20). Many of these instances still remain unsolved. UB the best known upper bound). All the programs are written in C and run on a Pentium IV 3.4 GHz.

Comparison of local minima

We consider local search based on all the presented moves. We can say that a move is efficient if it finds quickly some good solutions. So, it is a compromise between the quality of the obtained solution and the time spent to reach it. 1000 independent local searches were completed for each move on the instances of size (50x20). The initial solution is randomly generated (of course, we can start local searches from the solution obtained with the NEH heuristic. We obtain thus better results, but the difference between moves is less marked). The results are summarized in table 2. The row time gives the approximate CPU time in seconds. We can see that SW-moves and E-moves obtain effectively poor results. BE-moves and BREmoves provides good quality results (compared with I-moves) but they are slow and they are dominated by k-I moves (the latter is both better and faster). Fast BRE-moves and k-I-moves obtain promising results because they improve significantly the results of I-moves with a moderate increase of CPU time. K-E is dominated by fast BRE. Finally fast k-I moves give relatively poor quality results, but are as fast as SW-move. They may be interesting for very large instances.

Comparison of neighborhoods on short runs

In this section, we investigate the results of short runs for the iterated local search (ILS) metaheuristic. Let us give first some details about our ILS implementation. The initial solution is given by the NEH heuristic. The local search procedure is based successively on the nine moves. The perturbation is composed by three random exchange moves. The acceptance criterion is based on a simulated annealing type. The parameter T that simulates the temperature is a geometric sequence of common ratio f T . f T is computed such that 0 end iter f T T T = where 0 T is the initial temperature. We fix 0 5 T = (We have then a probability of 0.5 for accepting a deterioration of the current solution of ()

0 ln 2 T ×
at the beginning of the cooling schedule). end T is the expected final temperature (arbitrarily fixed at 2 10 -). iter represents the number of local searches (iterations of ILS) that are accomplished during the given time. This parameter is evaluated by running iterated local search during the given running time with the best walk acceptance criterion (which is equivalent to the simulated annealing with null temperature).

The probability of accepting a worse transition is given by the Boltzmann factor exp

E T ∆   -    
.

For each neighborhood and for each Taillard's instance of size (50x20), 5 independent short runs were performed under the same conditions but with different random number seeds. The stopping criterion is fixed at 60 seconds of CPU time. We indicate in Figure 1 the average performance (one curve represents the average result of 50 runs) as a function of the time.

This figure shows clearly the superiority of three moves (fast-BRE, k-I and fast k-I) which obtain an average performance of 0.80% compared to I-move (1.20%).

0,00% 0,50% We give in table 3 some detailed results for the reference I-moves, and for the three best moves (fast-BRE, k-I and fast k-I). 60 seconds of CPU time corresponds respectively to 6000, 2600, 800 and 35000 local search iterations. This gives a non-dependent machine running time. Results obtained for I-moves are similar to those published in [START_REF] Stützle | Applying iterated local search to the permutation flow shop problem[END_REF]. The main difference between our ILS implementation and those of Stützle lies in the acceptance criterion. Nevertheless, the author notes that ILS performance is better if sometimes worse solutions are accepted, but most of the acceptance criteria that satisfie this condition give closed results. As can be seen, the moves fast-BRE, k-I and fast k-I are significantly more effective than I-move. For each of the instances of dimension (50x20), the three latter moves provide better results and they allow to find very good solutions in a reasonable CPU time.

Results of longer runs

The previous results are promising, but they can be still improved by giving more time to each run. So, we decide to make 5 independent longer runs of 3600 seconds for each of the instances of size (50x20), (100x20) and (200x20). The results are provided in table 4.

As can be seen, we obtain very good results for the (50x20) instances. A new upper bound was even found for the TA055 instance (this solution is given in the appendix). However, it seems that the effectiveness of ILS decreases with size instances. The same remark is noticed by [START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF]. Anyway, the neighborhoods fast BRE, k-I and fast k-I always still obtain better results than I-move. An average run for the (50x20) instances is at 0.25% to the upper bound for k-I moves again 0.55% for I-moves. fast BRE and k-I provide equivalent results, while fast k-I seems less effective. These results show clearly the interest of the proposed neighborhoods. They can be used instead of I-move into the literature methods using local search, so improving their efficiency.

To conclude this section, we want to remind that our objective is to compare the efficiency of the neighborhoods. For that reason, the comparison with other methods of the literature has no sense. Nevertheless, we can say that our simple metaheuristic is competitive, especially for the (50x20) instances.

Conclusion

In this paper, we have first proposed an extension of the Taillard's implementation [START_REF] Taillard | Some efficient heuristic methods for the flow shop sequencing problem[END_REF]. It allows to compute efficiency all the possible partial permutations obtained by removing a job. We propose then six new neighborhoods, and the results show that three of them outperform the insertion move, which is commonly considered as the most effective move for the permutation flow shop problem. Moreover, all of the neighborhoods are easy to implement, on the condition of using the data structures proposed by Taillard.

We have implemented a simple iterated local search metaheuristic. The obtained results, both with short runs and with long runs, show the relevance of our approach. A new upper bound has been found for a hard instance from the benchmark test of [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF].

These works give promising perspectives: At first, the neighborhoods we have proposed may allow to improve the methods of the literature, at least those that use local search based on the movement of insertion (Stützle, 98, Ruiz and Stützle, 2006). The notion of critical path (Nowicki and Smutnicki, 1996;Reeves and Yamoto, 1998;[START_REF] Grabowski | A very fast tabu search algorithm for the permutation flow shop problem with makespan criterion[END_REF])), which speeds up yet the exploration of the insertion neighborhood, may also be investigated. Furthermore, if we look attentively at the results reported by our neighborhoods, it is difficult to differentiate them. Each of them seems to have its qualities and its drawbacks. It may be interesting to use them all three simultaneously, for example by using a variable neighborhood search (Mladenovic and Hansen, 1998;[START_REF] Hansen | Variable Neighborhood search[END_REF].

Lastly, the use of more elaborated metaheuristic, in particular population based metaheuristic such as genetic local search or particle swarm optimization may improve the results of iterated local search.

.

 Algorithm 11. Principle algorithm of Iterated Local Search metaheuristic. is based on a local search subroutine, which modify a current solution s into a local minimum s * . The perturbation of a local minimum must be strong enough to leave the current local minimum, but weak enough to keep memory of the current local minimum.

	0 s ← GenerateInitialSolution()	
	* s ← LocalSearch(0 s)	
	While stopping criterion is not met Do	
	s′ ← Perturbation(* , s history)	
	s ← ApplyAcceptanceCriterion(* * , , s s history ′)
	End While	
	Iterated local search	

* s ′ ← LocalSearch(s′) *

Table 1 .

 1 Best known lower and upper bounds for Taillard's instances as of April 2005.We give in Table1the best known lower bounds (obtained by branch-and-bound methods) and upper bounds (the best known solutions) for each instance. The performance measure used is the percentage increase over the best known upper bound (100

	(50x20) instances	(100x20) instances	(200x20) instances
	Name	LB	UB	Instance LB	UB	Instance	LB	UB
	TA051 3771 3850	TA081 6106 6202	TA101	11152	11195
	TA052 3668 3704	TA082 6183 6183	TA102	11143	11203
	TA053 3591 3640	TA083 6252 6271	TA103	11281	11281
	TA054 3635 3723	TA084 6254 6269	TA104	11275	11275
	TA055 3553 3611	TA085 6262 6314	TA105	11259	11259
	TA056 3667 3681	TA086 6302 6364	TA106	11176	11176
	TA057 3672 3704	TA087 6184 6268	TA107	11337	11360
	TA058 3627 3691	TA088 6315 6401	TA108	11301	11334
	TA059 3645 3743	TA089 6204 6275	TA109	11145	11192
	TA060 3696 3756	TA080 6404 6434	TA110	11284	11288

*

Table 2 .

 2 Comparison of moves. Average of 1000 independent local search starting from a random initial solution.

		Initial solution: randomly generated			
		SW	E	I	BE	k-E BRE fast BRE k-I	fast k-I
	TA051	19.91 7.63 4.88 3.47 4.00 3.20	3.92	3.04	6.50
	TA052	20.59 8.83 6.09 4.29 4.98 3.51	4.74	3.38	7.65
	TA053	21.69 8.33 6.17 4.40 5.04 3.81	4.71	3.56	7.85
	TA054	19.73 7.77 5.30 3.52 4.20 3.16	4.09	3.00	7.27
	TA055	23.31 9.08 6.10 4.34 5.04 3.83	4.80	3.59	8.69
	TA056	21.81 8.90 5.63 3.89 4.59 3.44	4.47	3.37	7.33
	TA057	21.91 9.20 5.84 4.17 4.80 3.60	4.59	3.50	7.91
	TA058	21.93 8.92 6.30 4.46 5.10 3.88	4.87	3.68	8.06
	TA059	20.33 8.30 5.91 4.14 4.75 3.52	4.53	3.41	7.50
	TA060	21.54 8.97 5.13 3.67 4.18 3.36	4.11	3.30	7.10
	Average 21.27 8.59 5.73 4.03 4.67 3.53	4.48	3.38	7.59
	Time (s)	3	100	16	500	80 1000	35	100	4

Percentage over the best known upper bound

	5,00%						
	4,50%						
	4,00%						
	3,50%						
	3,00%						
	2,50%						
	2,00%						
	1,50%						
	1,00%						
	0	10	20	30	40	50	60
				Time (s)			

Table 3 .

 3 Summary of the results obtained with short runs (60 seconds of CPU time). The value in bold type indicates the best found solution.

			I		fast BRE	k-I		fast k-I
	Instance UB	Best	Avg	Best	Avg	Best	Avg	Best	Avg
	TA051	3850 3893 3899.2 3876 3893.0 3875 3881.8 3875 3888.6
	TA052	3704 3721 3733.8 3715 3718.4 3708 3718.0 3714 3719.2
	TA053	3640 3688 3703.4 3658 3675.2 3666 3669.4 3673 3677.2
	TA054	3723 3758 3763.2 3748 3754.0 3743 3748.2 3742 3760.4
	TA055	3611 3640 3651.0 3626 3636.2 3632 3644.2 3637 3643.2
	TA056	3681 3709 3721.8 3696 3707.6 3704 3709.4 3699 3714.6
	TA057	3704 3737 3747.2 3729 3732.6 3727 3732.0 3727 3740.0
	TA058	3691 3732 3746.4 3729 3733.8 3716 3723.0 3715 3728.4
	TA059	3743 3779 3790.8 3765 3773.4 3765 3777.4 3768 3776.4
	TA060	3756 3783 3791.8 3768 3777.8 3772 3782.4 3784 3792.0
	Average		0.91% 1.20% 0.56% 0.81% 0.55% 0.76% 0.62% 0.91%

Table 4 .

 4 Summary of the results obtained with long runs (3600 seconds of CPU time). The value in bold type indicates the best found solution. The symbol "*" means that the obtained solution is a new upper bound.

			I		fast BRE		k-I	fast k-I
	Instance	UB	Best	Avg	Best	Avg	Best	Avg	Best	Avg
	(50x20)									
	TA051	3850	3865	3880.2	3858	3863.8	3863	3865.8	3857	3867.0
	TA052	3704	3708	3712.2	3714	3714.2	3708	3711.4	3713	3715.4
	TA053	3640	3656	3662.2	3651	3656.6	3641	3651.6	3653	3657.0
	TA054	3723	3733	3740.8	3730	3737.6	3724	3732.6	3737	3739.0
	TA055	3611	3619	3629.8	3616	3623.2 3610* 3615.2	3614	3619.2
	TA056	3681	3688	3695.4	3690	3694.0	3687	3691.2	3690	3693.0
	TA057	3704	3717	3725.2	3710	3715.6	3711	3712.8	3711	3715.0
	TA058	3691	3713	3720.4	3692	3700.4	3699	3705.4	3702	3710.2
	TA059	3743	3763	3767.2	3754	3759.2	3747	3754.2	3747	3758.6
	TA060	3756	3767	3774.2	3767	3768.0	3767	3768.0	3767	3769.6
	Average		0.34% 0.55% 0.21% 0.35% 0.14% 0.28% 0.24% 0.38%
	Instance	UB	Best	Avg	Best	Avg	Best	Avg	Best	Avg
	(100x20)									
	TA081	6202	6247	6267.0	6245	6256.0	6251	6254.8	6254	6262.6
	TA082	6183	6234	6245.8	6226	6234.8	6208	6219.6	6230	6240.8
	TA083	6271	6310	6322.0	6300	6309.0	6300	6304.4	6300	6311.0
	TA084	6269	6303	6321.0	6303	6311.0	6303	6303.0	6320	6335.8
	TA085	6314	6378	6392.2	6350	6364.8	6344	6349.2	6350	6364.0
	TA086	6364	6437	6474.4	6403	6417.6	6384	6404.8	6417	6443.0
	TA087	6268	6315	6322.8	6298	6304.8	6296	6305.0	6302	6308.6
	TA088	6401	6434	6456.6	6428	6441.0	6434	6442.6	6440	6448.6
	TA089	6275	6321	6338.8	6310	6328.2	6303	6314.2	6321	6330.6
	TA090	6434	6478	6481.6	6463	6475.0	6444	6464.6	6477	6482.0
	Average		0.76% 1.02% 0.55% 0.73% 0.46% 0.61% 0.68% 0.87%
	Instance	UB	Best	Avg	Best	Avg	Best	Avg	Best	Avg
	(200x20)									
	TA101	11195 11286 11325.4 11261 11270.0 11274 11281.2 11268 11292.2
	TA102	11203 11320 11338.8 11314 11320.8 11300 11311.4 11300 11321.2
	TA103	11281 11416 11443.0 11398 11422.4 11390 11404.8 11410 11421.0
	TA104	11275 11354 11377.2 11349 11369.8 11340 11350.8 11351 11368.6
	TA105	11259 11315 11326.6 11290 11307.2 11301 11304.6 11316 11332.0
	TA106	11176 11311 11328.2 11255 11277.2 11272 11288.8 11273 11304.4
	TA107	11360 11437 11455.4 11438 11444.6 11419 11442.4 11446 11457.8
	TA108	11334 11426 11434.6 11392 11426.8 11414 11424.2 11433 11439.8
	TA109	11192 11303 11353.8 11267 11319.6 11289 11304.6 11312 11341.4
	TA110	11288 11375 11402.8 11355 11367.6 11350 11367.4 11345 11380.4
	Average		0.87% 1.09% 0.67% 0.86% 0.70% 0.82% 0.79% 0.97%