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I. INTRODUCTION

In the last decades, quantum control has known significant improvements both at theoretical and practical levels (cf. [START_REF] Assion | Control of chemical reactions by feedbackoptimized phase-shaped femtosecond laser pulses[END_REF], [START_REF] Weinacht | Controlling the shape of a quantum wavefunction[END_REF], [START_REF] Warren | Coherent control of quantum dynamics: The dream is alive[END_REF], [START_REF] Rabitz | Wither the future of controlling quantum phenomena?[END_REF] and references therein). Results have been obtained on existence of controls [START_REF] Beauchard | Local controllability of a 1-d schrdinger equation[END_REF], [START_REF] Beauchard | Local controllability of 1d linear and nonlinear Schrdinger equations with bilinear control[END_REF], [START_REF] Turinici | Wavefunction controllability for finitedimensional bilinear quantum systems[END_REF], [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF], [START_REF] Altafini | Controllability of quantum mechanical systems by root space decomposition of su(N)[END_REF] or efficient ways to compute and carry out laser fields that achieve some goals concerning the state of quantum systems [START_REF] Winckel | A globalized newton method for the accurate solution of a dipole quantum control problem[END_REF], [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF], [START_REF] Palao | Optimal control theory for unitary transformations[END_REF], [START_REF] Salomon | Convergence of the time-discretized monotonic schemes[END_REF], [START_REF] Maday | Monotonic parareal control for quantum systems[END_REF], [START_REF] Maday | Monotonic time-discretized schemes in quantum control[END_REF]. On the other hand, the design of relevant laser fields plays also a major role when the goal is to identify some properties of the quantum system to be controlled. In this way, some methods have been designed to identify finite dimensional systems characteristics [START_REF] Bris | Hamiltonian identification for quantum systems: well-posedness and numerical approaches[END_REF], or to compute discriminant laser fields [START_REF] Maday | A greedy algorithm for the identification of quantum systems[END_REF].

Note that operator identification in relation to the Schrödinger equation has already been studied in the literature. As an example, we refer to [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrodinger equation[END_REF] for a theoretical result, where no laser interaction is considered.

In this paper, we focus on the case where only one fixed laser is used to identify in finite given time the free Hamiltonian and the dipole moment. From the theoretical point of view, we obtain a local existence result: we prove that the inversion is always possible in the neighborhood of some particular states. As a by-product, we emphasize some features of the laser fields that enables the identification.

Following the local approach we use to obtain this result, we present in a second part, a time discretized setting and fixed-point methods to solve numerically our problem. In particular, a Newton method is proposed together with a continuation method that allows us to solve problems where the local assumption does not hold.

This paper is organized as follows: the mathematical formulation of our problem is given in Section II and a local controllability result is presented in Section III. In Section IV, we present the algorithms to solve numerically the identification problem. We conclude with some tests in Section V.

Let us finally introduce some notations concerning particular matrix sets that will be used throughout the paper. Given N d ∈ N, we denote by C N d ,N d and R N d ,N d the sets of matrices of size N d × N d with complex and real coefficients respectively. Then, define N d , where M * denotes the adjoint matrix associated to M and Id is the identity matrix of C N d ,N d . Here, for the sake of simplicity, we have omitted the dependence of these sets with respect to N d . In what follows, we denote by ℜz and ℑz denote respectively the real and imaginary parts of a complex number z. Given a matrix M , we denote by M T its transposed.

U = M ∈ C N d ,N d , M * M = M M * = Id , S = M ∈ C N d ,N d , M * = M , S R = M ∈ R N d ,N d , M * = M , S 0 R = S R ∩ M ∈ R N d ,N d , M k,k = 0, k = 1, . . . ,

II. SETTING OF THE PROBLEM

Fix T > 0, and consider a system U (t) ∈ U whose dynamics over [0, T ] is ruled by the Schrödinger equation:

i U (t) = [H 0 + ε(t)µ]U (t), (1) 
U (0) = U init , (2) 
where H 0 ∈ S R is the matrix of the internal Hamiltonian, ε(t) ∈ L 2 (0, T ; R) a laser field, µ ∈ S R the matrix associated with the dipole moment. For relevant applications, the matrices H 0 and µ are not supposed to commute. The initial state U init is fixed. In this equation, ε is given and the pair (H 0 , µ) ∈ S R × S 0 R is searched such that at time t = T , the state reaches a given target state U target , i.e.,

U (T ) = U target . (3) 
In other words, given the mapping

ϕ : S R × S 0 R → U (H 0 , µ) → U (T ),
the main question that will be investigated in this paper is the surjectivity of ϕ.

In our work, the internal Hamiltonian H 0 is searched as real Hermitian (i.e. symmetric) matrix. This is a particular situation as in general it is only supposed to be complex Hermitian and not real. Nevertheless, for the applications we have in mind this restriction is very natural since the Hamiltonian is a sum of a kinetic operator and a potential, both real. For the same reasons, we suppose that the dipole moment µ is real (Hermitian thus symmetric) but we assume moreover that the diagonal elements are null. This additional assumption is motivated both by invariance properties (the diagonal of H 0 as matrix commutes with the diagonal of µ as matrix) but also by the desire to identify an unique pair (H 0 , µ) since in this way the number of unknowns (dimension of S R plus that of S 0 R ) equals the number of equations (the dimension of U).

Note that one can easily prove the following conservation property:

∀t ∈ [0, T ], U (t) U = U init U ,
where we have denoted by • U the norm associated to the scalar product

(A, B) ∈ U × U → tr(A * B).
This problem is related to inverse problems in quantum control [START_REF] Maday | A greedy algorithm for the identification of quantum systems[END_REF], but unlike previous works, we do not aim here at designing relevant laser fields to identify the pair (H 0 , µ) but rather to investigate the properties of the fields ε(t) that make Equation (3) invertible and algorithms to compute numerically the corresponding solution operators H 0 and µ.

III. LOCAL CONTROLLABILITY RESULT

In this section, we present some theoretical results about the local inversion of Equation ( 3). More precisely, we make use of the calculus of variations to obtain a local inversion theorem.

Given a pair (H 0 , µ), we first introduce the tangent space A H0,µ , which is the space of matrices defined by:

A H0,µ = M ∈ C N d ,N d , M * U (T ) + U (T ) * M = 0 .
We then consider the differential operator of ϕ defined by:

dϕ(H 0 , µ) : S R × S R → A H0,µ (δH 0 , δµ) → δU (T ),
where δU (T ) is solution at time t = T of the linearized Schrödinger equation:

i δ U (t) = [H 0 + ε(t)µ]δU (t) + [δH 0 + ε(t)δµ]U (t),
and U (t) follows equation ( 1). We will prove that ϕ is an onto mapping using the fact that dϕ also satisfies this property. This strategy is motivated by the following known result:

Theorem 1: Supposed that dϕ(H 0 , µ) is an onto mapping, i.e.

∀V ∈ A H0,µ , ∃(δH 0 , δµ), dϕ(H 0 , µ)(δH 0 , δµ) = V.
Then ϕ is locally onto in a neighborhood of (H 0 , µ). We shall prove that dϕ is an onto mapping on the neighborhood of all states of the form U 0 := ϕ(H 0 , 0) ∈ U. To do this, we compute explicitly an inverse mapping.

Theorem 2: Given H 0 ∈ S R , define V 0 as the matrix that diagonalizes U 0 := ϕ(H 0 , 0) in the following way:

U 0 (t) = V * 0 e iΛ(t-T 2 ) V 0 ,
with Λ the diagonal matrix with coefficients

λ a ∈ R, a ∈ N d , 1 ≤ a ≤ N d . Suppose that for a = b, 1 ≤ a ≤ N d , 1 ≤ b ≤ N d , λ a = λ b (4) εi a,b := ℑ T 0 ε(t)e iδλ a,b (t-T 2 ) dt = 0. (5) 
Then dϕ(H 0 , 0) is an onto mapping and its inverse is given by: ψ : V ′ ∈ A H0,µ → (δH 0 , δµ).

The matrices δH 0 and δµ are given by:

δH 0 := V * 0 δ H0 V 0 , δµ := V * 0 δ μV 0 ,
where the coefficients h a,b and m a,b of the matrices δ H0 and δ μ are given by:

                       m a,b = ℑv a,b εi a,b h a,b = ℜv a,b - εr a,b εi a,b ℑv a,b sin(δλ a,b T 2 ) δλ a,b if a = b m a,a = 0, h a,a = 2 T v a,a if a = b. (6) 
Here

v a,b , a, b ∈ N d , 1 ≤ a ≤ N d are the coefficients of iV * 0 U 0 (T ) * V ′ V 0 and εr a,b := ℜ T 0 ε(t)e iδλ a,b (t-T 2 ) dt . Proof: We fix V ′ ∈ A H0,µ and solve dϕ(H 0 , 0)(δH 0 , δµ) = V ′ . (7) 
First, one can show the identities:

ϕ(H 0 , µ) * dϕ(H 0 , 0)(δH 0 , δµ) = U 0 (T ) * δU 0 (T ) = -i T 0 U 0 (t) * (δH 0 + ε(t)δµ)U 0 (t)dt, (8) 
where the variation δU 0 is defined by the evolution equation:

i δU 0 (t) = [H 0 + ε(t)µ]δU 0 (t) + [δH 0 + ε(t)δµ]U 0 (t). (9) 
Note that such an identity holds also when µ = 0. Since U 0 (T ) * is invertible, showing that (7) has a solution is equivalent to show that

T 0 U 0 (t) * (δH 0 + ε(t)δµ)U 0 (t)dt = V, (10) 
has a solution, with V := iU 0 (T ) * V ′ ∈ S since V ′ ∈ A H0,µ . A nice property of the trajectory t → U 0 (t) is that Equation ( 10) can be solved explicitly. Indeed, let us denote by v a,b , h a,b and m a,b , with a, b ∈ N, 1 ≤ a, b ≤ N, the coefficients of the matrices V 0 V V * 0 , V 0 δH 0 V * 0 and V 0 δµV * 0 respectively. Expanding [START_REF] Winckel | A globalized newton method for the accurate solution of a dipole quantum control problem[END_REF] gives rise, in the case a = b to

v a,b = h a,b T 0 e i(λa-λ b )(t-T 2 ) dt +m a,b T 0 ε(t)e i(λa-λ b )(t-T 2 ) dt = h a,b sin(δλ a,b T 2 ) δλ a,b + m a,b ε(δλ a,b ), where δλ a,b = λ a -λ b and ε(δλ a,b ) = T 0 ε(t)e iδλ a,b (t-T 2 ) dt = εr a,b + iε i a,b . In the case a = b, one finds that v a,a = h a,b T 2 + m a,b ε(0) = h a,b T 2 + m a,b T 0 ε(t)dt.
Note that the assumption δH 0 , δµ ∈ S R combined with

ε(δλ a,b ) = ε(δλ b,a ) implies that v a,b = vb,a , so that V ∈ S.
The result follows.

Remark 1: In this theorem, we have defined m a,a arbitrarily. This theorem gives a first hint about conditions required to identify (H 0 , µ). Condition ( 4) is weaker to the standard nondegeneracy condition

∀(a, b) = (a ′ , b ′ ), λ b -λ a = λ b ′ -λ a ′ ,
and is in practice often satisfied. Condition (5) deals with the laser field itself. It is a non-resonant condition to control the system.

IV. NUMERICAL METHODS

In this section, we present two algorithms to solve [START_REF] Warren | Coherent control of quantum dynamics: The dream is alive[END_REF]. The strategy we follow is a direct adaptation of previous results and proofs: we consider local approximations based on fixed point iterative solvers. In our approach, a crucial step consists in obtaining an appropriate time discretized version of (1). In the first part, we build such an approximation that enables the exact computation of the derivative of the final state U (T ) with respect to (H 0 , µ) and derive from this setting a numerical strategy.

A. Time discretization

In order to simulate numerically Equation (1), we introduce the following time discretization: give N T ∈ N, we denote by ∆T = T N T the time step and for n = 0, • • • , N T by U n and ε n the approximations of U (n∆T ) and ε(n∆T ).

In order to preserve the unitary property of the matrices U (t) at the discrete level, we use a Crank-Nicholson scheme ruled by the formula:

i U n+1 -U n ∆T = (H 0 + ε n µ) U n+1 + U n 2 .
The corresponding iteration is then given by:

(Id + L n )U n+1 = (Id -L n )U n ,
where L n = i∆T 2 (H 0 + ε n µ). Let us now detail the effect of variations δH 0 , δµ in H 0 and µ on the sequence (U n ) n=0,...,NT . We have:

(Id + L n )δU n+1 + δL n U n+1 = (Id -L n )δU n -δL n U n , δL n (U n+1 + U n ) = (Id -L n )δU n -(Id + L n )δU n+1 , (U n+1 + U n ) * δL n (U n+1 + U n ) = -2(U * n+1 δU n+1 -U * n δU n )
, where δL n = i∆T 2 (δH 0 + ε n δµ). This finally gives rise to:

U * n+1 δU n+1 -U * n δU n = -i∆T (U n+1 + U n ) * 2 (δH 0 + ε n δµ) U n+1 + U n 2 .
Since the initial value is fixed, we obtain:

U * NT δU NT =-i∆T NT -1 n=0 (U n+1 + U n ) * 2 (δH 0 + ε n δµ) U n+1 + U n 2 . (11) 
This result can be seen as a discretized version of (8) where µ is not necessarily null. We insist on the fact that such a result is specific to the Crank-Nicholson discretization. As far as we know, no other numerical solvers give rise to discretization of [START_REF] Albertini | Notions of controllability for bilinear multilevel quantum systems[END_REF] where the variations δH 0 and δµ are explicit.

B. Fixed points methods

We now present some iterative solvers to compute solutions of (3).

1) A Newton Method: In the discrete setting, we still denote by ϕ the operator:

ϕ : S R × S 0 R → U (H 0 , µ) → U NT .
To solve the equation ϕ(H 0 , µ) = U target , a Newton method would consist in the following iteration:

dϕ(H k 0 , µ k ) • (δH k 0 , δµ k ) = -ϕ(H k 0 , µ k ) -U target , (12) 
where k is the iteration index,

δH k 0 = H k+1 0 -H k 0 , δµ k = µ k+1 -µ k .
In our case, (12) reads: [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF], one can rewrite this equation as follows:

δU k NT = U target -U k NT . Using
∆T NT -1 n=0 (U k n+1 + U k n ) * 2 (δH k 0 + ε n δµ k ) U k n+1 + U k n 2 = i (U k NT ) * U target -Id ,
where we recall that the unknowns are δH k 0 and δµ k . This equation has generally no solutions, since its left hand side belongs to S what is not the case for its right hand side. To solve this problem, we replace i (U k NT ) * U target -Id by a first order approximation S k ∈ S R . Two possible choices are:

exp(-iS k ) := (U k NT ) * U target (13) 
S k := i (U k NT ) * U target -U * target U k NT 2 . (14) 
In the numerical tests, the same behavior is observed when using the first or the second definition.

Remark 2: The previous method can be simplified to obtain a procedure where no matrix needs to be assembled and the inverted during iterations. Instead of up-dating at each iteration in the pair (H 0 , µ) in the term dϕ(H 0 , µ) of Formula [START_REF] Palao | Optimal control theory for unitary transformations[END_REF], one can keep a constant approximation (H ref 0 , µ ref ) of the solution. We denote by (U ref n ) n=0,••• ,NT the corresponding sequence of states. The iteration then reads:

∆T NT -1 n=0 (U ref n+1 + U ref n ) * 2 (δH k 0 + ε n δµ k ) U ref n+1 + U ref n 2 = S k ,
where S k is defined in the previous section, see [START_REF] Salomon | Convergence of the time-discretized monotonic schemes[END_REF] and [START_REF] Maday | Monotonic parareal control for quantum systems[END_REF]. Note that such an algorithm is actually a time-discretized version of the fixed point used in the proof of Theorem 2, except that here µ is not supposed to be null.

2) Implementation of the iterative solvers: Both previous methods require inversions of linear systems which are not given explicitly in our formulations. To fill in this gap, we explain here how to assemble the matrices, i.e. to rewrite the equation

∆T NT -1 n=0 (U n+1 + U n ) * 2 (δH 0 + ε n δµ) U n+1 + U n 2 = S,
in terms of linear system. In what follows, we denote by X M the vector representation of a matrix M consisting in concatenating vertically its columns. A first step to do this is to note that the later equation reads as follows:

 [START_REF] Maday | Monotonic time-discretized schemes in quantum control[END_REF]with

Here, kron denotes the Kronecker product, U n+1/2 = Un+1+Un 2

, the term by term product of two matrices A and B is denoted by A. × B and 1 N d denotes the matrix of R N d ,N d whose coefficients are equal to 1.

A second step must then be carried out: since the matrices δH 0 and δµ are symmetric, one has to consider the columns of the matrices in [START_REF] Maday | Monotonic time-discretized schemes in quantum control[END_REF] that correspond to the coefficients of δH 0 located, e.g., above the diagonal and the coefficients of δµ located strictly above the diagonal. In the same way, only the lines of the resulting system that correspond to the coefficients located above the diagonal of S shall be considered.

Taking the real and the imaginary part of the equations, the resulting system is of size N 4 d .

C. A continuation method for global controllability

The algorithms proposed in Section IV-B are only locally convergent. The purpose of this section is to present a continuation method that enables to extend their range of application.

As mentioned above, numerous methods exist to solve the control problem where the laser term ε in Equation ( 1) is unknown and H 0 and µ are given [START_REF] Maday | Monotonic time-discretized schemes in quantum control[END_REF], [START_REF] Maday | New formulations of monotonically convergent quantum control algorithms[END_REF], [START_REF] Winckel | A globalized newton method for the accurate solution of a dipole quantum control problem[END_REF]. Based on this fact, the method we propose is the following. Given an initial guess (H 0 0 , µ 0 ), find a control ε 0 such that U 0 NT , the final state associated to (H 0 0 , µ 0 ) correctly approximates U target . Given θ ∈ [0, 1] , we define the interpolated fields ε θ = (1 -θ)ε 0 + θε. A fixed point method as the one presented in Section IV-B can then be applied with (H 0 0 , µ 0 ) as an initial guess to solve the operator control problem with ε θ . Our algorithm consists in repeating this procedure by solving iteratively the operator control problem associated to the field ε kδθ using (H k-1 0 , µ k-1 ) as initial guess. Carrying this procedure up to θ = 1 enables to solve the original problem.

V. NUMERICAL RESULTS

In this last section, we present some numerical results obtained with the algorithms of the previous sections. As a laser term in Equation ( 1), we use ε(t) = sin(t). The other numerical data are N d = 5, T 0 = 10, N T = 10 2 , T = 2πT 0 and ∆T = T /N .

A. Newton Method

We first test our Newton method. In this way, we choose randomly a pair (H 0 , µ), with coefficients in [-1, 1] and compute the corresponding final state U NT . Then, we start the Newton procedure with an initialization (H 0 + ∆H 0 , µ + ∆µ) where (∆H 0 , ∆µ) are also chosen randomly. An example of computation is given in the next table. Here, we refind a pair (H 0 , µ) starting from a 10% random perturbation. We see that the numerical convergence is obtained after 6 iterations. Note also that the quadratic convergence is observed.

B. Continuation method

In a second test, we use the continuation method presented in IV-C to tackle a problem where the algorithms of Section IV-B do not apply. Given a target U target obtained with the field ε and a pair (H 0 , µ) that is chosen randomly, we look for the operators H ′ 0 and µ ′ that solve the control problem associated to the field cos(3t) and the target U target . The direct use of the Newton method of Section IV-B does not work: in this case, the algorithm does not converge. The continuation method enables to solve this problem. Using δθ = 1/4, and 10 iterations of the Newton method as inner loop, a relevant pair (H ′ 0 , µ ′ ) is obtained. This example has been reproduced for numerous random initial pairs (H 0 , µ).