Control through operators for quantum chemistry

Philippe Laurent, Herschel Rabitz, Julien Salomon, Gabriel Turinici

To cite this version:

Philippe Laurent, Herschel Rabitz, Julien Salomon, Gabriel Turinici. Control through operators for quantum chemistry. 2012. hal-00678040v1

HAL Id: hal-00678040 https://hal.science/hal-00678040v1

Preprint submitted on 12 Mar 2012 (v1), last revised 5 Oct 2012 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CONTROL THROUGH OPERATORS FOR QUANTUM CHEMISTRY

PHILIPPE LAURENT ${ }^{1}$, HERSCHEL RABITZ ${ }^{2}$, JULIEN SALOMON ${ }^{3}$ AND GABRIEL TURINICI ${ }^{3}$

Abstract

We consider the problem of operator identification in quantum control. The free Hamiltonian and the dipole moment are searched such that a given target state is reached at a given time. A local existence result is obtained. As a by-product, our works reveals necessary conditions on the laser field to make the identification feasible. In the last part of this work, some algorithms are proposed to compute effectively these operators.

Keywords: Inverse problem, Identification, Quantum Control

1. Introduction

In the last decades, quantum control has known significant improvements both at theoretical and practical levels (cf. $[1,12,11,8]$ and references therein). Results have been obtained on existence of controls [2, 3, 9] or efficient ways to compute and carry out laser fields that achieve some goals concerning the state of quantum systems [7]. On the other hand, the design of relevant laser fields plays also a major role when the goal is to identify some properties of the quantum system to be controlled. In this way, some methods have been designed to identify finite dimensional systems characteristics [4], or to compute discriminant laser fields [5].

In this paper, we focus on the case where only one laser is used to identify in finite time the free Hamiltonian and the dipole moment. From the theoretical point of view, we obtain a local existence result: we prove that the inversion is always possible in the neighborhood of some particular states. As a by-product, we emphasize some features of the laser fields that enables the identification.

Following the local approach we use to obtain this result, we present in a second part, a time discretized setting and fixed-point methods to solve numerically our problem. In particular, a Newton method is proposed together with a continuation method that allows to solve problems where the local assumption does not hold.

This paper is organized as follows: the mathematical formulation of our problem is given in Section 2 and a local controllability result is presented in Section 3. In Section 4, we present the algorithms to solve numerically the identification problem. We conclude with some tests in Section 5.

[^0]Let us finally introduce some notations concerning particular matrix sets that will be used throughout the paper. Given $N_{d} \in \mathbb{N}$, we denote by $\mathbb{C}^{N_{d}, N_{d}}$ and $\mathbb{R}^{N_{d}, N_{d}}$ the sets of matrices of size $N_{d} \times N_{d}$ with complex and real coefficients respectively. Then, define

$$
\begin{aligned}
\mathcal{U} & =\left\{M \in \mathbb{C}^{N_{d}, N_{d}}, M^{*} M=M M^{*}=I d\right\} \\
\mathcal{S} & =\left\{M \in \mathbb{C}^{N_{d}, N_{d}}, M^{*}=M\right\} \\
\mathcal{S}_{\mathbb{R}} & =\left\{M \in \mathbb{R}^{N_{d}, N_{d}}, M^{*}=M\right\}, \\
\mathcal{S}_{\mathbb{R}}^{0} & =\mathcal{S}_{\mathbb{R}} \cap\left\{M \in \mathbb{R}^{N_{d}, N_{d}}, M_{k, k}=0, k=1, \ldots, N_{d}\right\},
\end{aligned}
$$

where M^{*} denotes the adjoint matrix associated to M and $I d$ is the identity matrix of $\mathbb{C}^{N_{d}, N_{d}}$. Note that for the sake of simplicity, we omit the dependence of these sets with respect to N_{d}. In what follows, we denote by $\Re z$ and $\Im z$ denote respectively the real and imaginary parts of a complex number z. Given a matrix M, we denote by M^{T} its transposed.

2. Setting of the problem

Fix $T>0$, and consider a system $U(t) \in \mathcal{U}$ whose dynamics over $[0, T]$ is ruled by the Schrödinger equation:

$$
\begin{align*}
i \dot{U}(t) & =\left[H_{0}+\varepsilon(t) \mu\right] U(t), \tag{1}\\
U(0) & =U_{\text {init }}, \tag{2}
\end{align*}
$$

where $H_{0} \in \mathcal{S}_{\mathbb{R}}$ is the matrix of the internal Hamiltonian, $\varepsilon(t) \in L^{2}(0, T ; \mathbb{R})$ a laser field, $\mu \in \mathcal{S}_{\mathbb{R}}$ the matrix associated with the dipole moment. For relevant applications, the matrices H_{0} and μ are not supposed to commute. The initial state $U_{\text {init }}$ is fixed. In this equation, ε is given and the pair $\left(H_{0}, \mu\right) \in \mathcal{S}_{\mathbb{R}} \times \mathcal{S}_{\mathbb{R}}^{0}$ is searched such that at time $t=T$, the state reaches a given target state $U_{\text {target }}$, i.e.,

$$
\begin{equation*}
U(T)=U_{\text {target }} . \tag{3}
\end{equation*}
$$

In other words, given the mapping

$$
\begin{aligned}
& \varphi: \mathcal{S}_{\mathbb{R}} \times \mathcal{S}_{\mathbb{R}}^{0} \rightarrow \mathcal{U} \\
& \left(H_{0}, \mu\right) \mapsto U(T) \text {, }
\end{aligned}
$$

the main question that will be investigated in this paper is the surjectivity of φ.
Note that the internal Hamiltonian H_{0} is searched as real Hermitian (i.e. symmetric) matrix. This is a particular situation as in general it is only supposed to be complex Hermitian and not real. Nevertheless, for the applications we have in mind this restriction is very natural since the Hamiltonian is a sum of a kinetic operator and a potential, both real. For the same reasons, we suppose that the dipole moment μ is real (Hermitian thus symmetric) but we assume moreover that the diagonal elements are null. This additional assumption is motivated both by invariance properties (the diagonal of H_{0} as matrix commutes with the diagonal of μ as matrix) but also by the desire to identify an unique pair $\left(H_{0}, \mu\right)$ since in this way the number of unknowns (dimension of $\mathcal{S}_{\mathbb{R}}$ plus that of $\mathcal{S}_{\mathbb{R}}^{0}$) equals the number of equations (the dimension of \mathcal{U}).

Note that one can easily prove the following conservation property:

$$
\forall t \in[0, T],\|U(t)\|_{\mathcal{U}}=\left\|U_{\text {init }}\right\|_{\mathcal{U}},
$$

where we have denoted by $\|\cdot\|_{\mathcal{U}}$ the norm associated to the scalar product

$$
(A, B) \in \mathcal{U} \times \mathcal{U} \mapsto \operatorname{tr}\left(A^{*} B\right)
$$

This problem is related to inverse problems in quantum control [5], but unlike previous works, we do not aim here at designing relevant laser fields to identify the pair $\left(H_{0}, \mu\right)$ but rather to investigate the properties of the fields $\varepsilon(t)$ that make Equation (3) invertible and algorithms to compute numerically the corresponding solution operators H_{0} and μ.

3. Local controllability result

In this section, we present some theoretical results about the local inversion of Equation (3). More precisely, we make use of the calculus of variations to obtain a local inversion theorem.

Given a pair $\left(H_{0}, \mu\right)$, we first introduce the tangent space $\mathcal{A}_{H_{0}, \mu}$, which is the space of matrices defined by:

$$
\mathcal{A}_{H_{0}, \mu}=\left\{M \in \mathbb{C}^{N_{d}, N_{d}}, M^{*} U(T)+U(T)^{*} M=0\right\}
$$

We then consider the differential operator of φ defined by:

$$
\begin{aligned}
d \varphi\left(H_{0}, \mu\right): \mathcal{S}_{\mathbb{R}} & \times \mathcal{S}_{\mathbb{R}}
\end{aligned} \rightarrow \mathcal{A}_{H_{0}, \mu},{ }_{\left(\delta H_{0}, \delta \mu\right)} \mapsto \delta U(T), ~ \$
$$

where $\delta U(T)$ is solution at time $t=T$ of the linearized Schrödinger equation:

$$
i \delta \dot{U}(t)=\left[H_{0}+\varepsilon(t) \mu\right] \delta U(t)+\left[\delta H_{0}+\varepsilon(t) \delta \mu\right] U(t),
$$

and $U(t)$ follows equation (1).
We will prove that φ is an onto mapping using the fact that $d \varphi$ also satisfies this property. This strategy is motivated by the following known result:
Theorem 1. Supposed that $d \varphi\left(H_{0}, \mu\right)$ is an onto mapping, i.e.

$$
\forall V \in \mathcal{A}_{H_{0}, \mu}, \exists\left(\delta H_{0}, \delta \mu\right), d \varphi\left(H_{0}, \mu\right)\left(\delta H_{0}, \delta \mu\right)=V
$$

Then φ is locally onto in a neighborhood of $\left(H_{0}, \mu\right)$.
We shall prove that $d \varphi$ is an onto mapping on the neighborhood of all states of the form $U_{0}:=\varphi\left(H_{0}, 0\right) \in \mathcal{U}$. To do this, we compute explicitly an inverse mapping.

Theorem 2. Given $H_{0} \in \mathcal{S}_{\mathbb{R}}$, define V_{0} as the matrix that diagonalizes $U_{0}:=$ $\varphi\left(H_{0}, 0\right)$ in the following way:

$$
U_{0}(t)=V_{0}^{*} e^{i \Lambda\left(t-\frac{T}{2}\right)} V_{0}
$$

with Λ the diagonal matrix with coefficients $\lambda_{a} \in \mathbb{R}, a \in \mathbb{N}_{d}, 1 \leq a \leq N_{d}$. Suppose that for $a \neq b, 1 \leq a \leq N_{d}, 1 \leq b \leq N_{d}$,

$$
\begin{align*}
\lambda_{a} & \neq \lambda_{b} \tag{4}\\
\hat{\varepsilon}_{a, b}^{i} & :=\Im\left(\int_{0}^{T} \varepsilon(t) e^{i \delta \lambda_{a, b}\left(t-\frac{T}{2}\right)} d t\right) \neq 0 \tag{5}
\end{align*}
$$

Then $d \varphi\left(H_{0}, 0\right)$ is an onto mapping and its inverse is given by:

$$
\psi: V^{\prime} \in \mathcal{A}_{H_{0}, \mu} \mapsto\left(\delta H_{0}, \delta \mu\right) .
$$

The matrices δH_{0} and $\delta \mu$ are given by:

$$
\delta H_{0}:=V_{0}^{*} \delta \tilde{H}_{0} V_{0}, \delta \mu:=V_{0}^{*} \delta \tilde{\mu} V_{0}
$$

where the coefficients $h_{a, b}$ and $m_{a, b}$ of the matrices $\delta \tilde{H}_{0}$ and $\delta \tilde{\mu}$ are given by:

$$
\left\{\begin{array}{rlr}
m_{a, b} & =\frac{\Im v_{a, b}}{\hat{\varepsilon}_{a, b}^{i}} & \tag{6}\\
h_{a, b} & =\frac{\Re v_{a, b}-\frac{\hat{\varepsilon}_{a, b}^{r}}{\hat{\varepsilon}_{a, b}^{i}} \Im v_{a, b}}{\sin \left(\delta \lambda_{a, b} \frac{T}{2}\right)} \delta \lambda_{a, b} & \text { if } a \neq b \\
m_{a, a} & =0, & i f a=b \\
h_{a, a} & =\frac{2}{T} v_{a, a} &
\end{array}\right.
$$

Here $v_{a, b}, a, b \in \mathbb{N}_{d}, 1 \leq a \leq N_{d}$ are the coefficients of $i V_{0}^{*} U_{0}(T)^{*} V^{\prime} V_{0}$ and $\hat{\varepsilon}_{a, b}^{r}:=\Re\left(\int_{0}^{T} \varepsilon(t) e^{i \delta \lambda_{a, b}\left(t-\frac{T}{2}\right)} d t\right)$.

Proof. We fix $V^{\prime} \in \mathcal{A}_{H_{0}, \mu}$ and solve

$$
\begin{equation*}
d \varphi\left(H_{0}, 0\right)\left(\delta H_{0}, \delta \mu\right)=V^{\prime} \tag{7}
\end{equation*}
$$

First, one can show the identities:

$$
\begin{array}{r}
\varphi\left(H_{0}, \mu\right)^{*} d \varphi\left(H_{0}, 0\right)\left(\delta H_{0}, \delta \mu\right)=U_{0}(T)^{*} \delta U_{0}(T) \\
=-i \int_{0}^{T} U_{0}(t)^{*}\left(\delta H_{0}+\varepsilon(t) \delta \mu\right) U_{0}(t) d t \tag{8}
\end{array}
$$

where the variation δU_{0} is defined by the evolution equation:

$$
\begin{equation*}
i \delta \dot{U}_{0}(t)=\left[H_{0}+\varepsilon(t) \mu\right] \delta U_{0}(t)+\left[\delta H_{0}+\varepsilon(t) \delta \mu\right] U_{0}(t) \tag{9}
\end{equation*}
$$

Note that such an identity holds also when $\mu \neq 0$. Since $U_{0}(T)^{*}$ is invertible, showing that (7) has a solution is equivalent to show that

$$
\begin{equation*}
\int_{0}^{T} U_{0}(t)^{*}\left(\delta H_{0}+\varepsilon(t) \delta \mu\right) U_{0}(t) d t=V \tag{10}
\end{equation*}
$$

has a solution, with $V:=i U_{0}(T)^{*} V^{\prime} \in \mathcal{S}$ since $V^{\prime} \in \mathcal{A}_{H_{0}, \mu}$. A nice property of the trajectory $t \mapsto U_{0}(t)$ is that Equation (10) can be solved explicitly. Indeed, let us denote by $v_{a, b}, h_{a, b}$ and $m_{a, b}$, with $a, b \in \mathbb{N}, 1 \leq a, b \leq N$, the coefficients of the matrices $V_{0} V V_{0}^{*}, V_{0} \delta H_{0} V_{0}^{*}$ and $V_{0} \delta \mu V_{0}^{*}$ respectively. Expanding (10) gives rise, in the case $a \neq b$ to

$$
\begin{aligned}
v_{a, b}= & h_{a, b} \int_{0}^{T} e^{i\left(\lambda_{a}-\lambda_{b}\right)\left(t-\frac{T}{2}\right)} d t \\
& +m_{a, b} \int_{0}^{T} \varepsilon(t) e^{i\left(\lambda_{a}-\lambda_{b}\right)\left(t-\frac{T}{2}\right)} d t \\
= & h_{a, b} \frac{\sin \left(\delta \lambda_{a, b} \frac{T}{2}\right)}{\delta \lambda_{a, b}}+m_{a, b} \widehat{\varepsilon}\left(\delta \lambda_{a, b}\right),
\end{aligned}
$$

where $\delta \lambda_{a, b}=\lambda_{a}-\lambda_{b}$ and $\widehat{\varepsilon}\left(\delta \lambda_{a, b}\right)=\int_{0}^{T} \varepsilon(t) e^{i \delta \lambda_{a, b}\left(t-\frac{T}{2}\right)} d t=\hat{\varepsilon}_{a, b}^{r}+i \hat{\varepsilon}_{a, b}^{i}$.
In the case $a=b$, one finds that

$$
v_{a, a}=h_{a, b} \frac{T}{2}+m_{a, b} \widehat{\varepsilon}(0)=h_{a, b} \frac{T}{2}+m_{a, b} \int_{0}^{T} \varepsilon(t) d t
$$

Note that the assumption $\delta H_{0}, \delta \mu \in \mathcal{S}_{\mathbb{R}}$ combined with $\widehat{\varepsilon}\left(\delta \lambda_{a, b}\right)=\overline{\widehat{\varepsilon}\left(\delta \lambda_{b, a}\right)}$ implies that $v_{a, b}=\bar{v}_{b, a}$, so that $V \in \mathcal{S}$. The result follows.

Remark 1. In this theorem, we have defined $m_{a, a}$ arbitrarily.
This theorem gives a first hint about conditions required to identify $\left(H_{0}, \mu\right)$. Condition (4) is weaker to the standard non-degeneracy condition

$$
\forall(a, b) \neq\left(a^{\prime}, b^{\prime}\right), \lambda_{b}-\lambda_{a} \neq \lambda_{b^{\prime}}-\lambda_{a^{\prime}},
$$

and is in practice often satisfied. Condition (5) deals with the laser field itself. It is a non-resonant condition to control the system.

4. Numerical methods

In this section, we present two algorithms to solve (3). The strategy we follow is a direct adaptation of previous results and proofs: we consider local approximations based on fixed point iterative solvers. In our approach, a crucial step consists in obtaining an appropriate time discretized version of (1). In the first part, we build such an approximation that enables the exact computation of the derivative of the final state $U(T)$ with respect to $\left(H_{0}, \mu\right)$ and derive from this setting a numerical strategy.
4.1. Time discretization. In order to simulate numerically Equation (1), we introduce the following time discretization: give $N_{T} \in \mathbb{N}$, we denote by $\Delta T=\frac{T}{N_{T}}$ the time step and for $n=0, \cdots, N_{T}$ by U_{n} and ε_{n} the approximations of $U(n \Delta T)$ and $\varepsilon(n \Delta T)$. In order to preserve the unitary property of the matrices $U(t)$ at the discrete level, we use a Crank-Nicholson scheme ruled by the formula:

$$
i \frac{U_{n+1}-U_{n}}{\Delta T}=\left(H_{0}+\varepsilon_{n} \mu\right) \frac{U_{n+1}+U_{n}}{2} .
$$

The corresponding iteration is then given by:

$$
\left(I d+L_{n}\right) U_{n+1}=\left(I d-L_{n}\right) U_{n},
$$

where $L_{n}=\frac{i \Delta T}{2}\left(H_{0}+\varepsilon_{n} \mu\right)$.
Let us now detail the effect of variations $\delta H_{0}, \delta \mu$ in H_{0} and μ on the sequence $\left(U_{n}\right)_{n=0, \ldots, N_{T}}$. We have:

$$
\begin{aligned}
\left(I d+L_{n}\right) \delta U_{n+1}+\delta L_{n} U_{n+1}= & \left(I d-L_{n}\right) \delta U_{n} \\
& -\delta L_{n} U_{n}, \\
\delta L_{n}\left(U_{n+1}+U_{n}\right)= & \left(I d-L_{n}\right) \delta U_{n} \\
& -\left(I d+L_{n}\right) \delta U_{n+1}, \\
\left(U_{n+1}+U_{n}\right)^{*} \delta L_{n}\left(U_{n+1}+U_{n}\right)= & -2\left(U_{n+1}^{*} \delta U_{n+1}\right. \\
& \left.-U_{n}^{*} \delta U_{n}\right),
\end{aligned}
$$

where $\delta L_{n}=\frac{i \Delta T}{2}\left(\delta H_{0}+\varepsilon_{n} \delta \mu\right)$. This finally gives rise to:

$$
\begin{aligned}
U_{n+1}^{*} \delta U_{n+1}-U_{n}^{*} \delta U_{n} & \\
& =-i \Delta T \frac{\left(U_{n+1}+U_{n}\right)^{*}}{2}\left(\delta H_{0}+\varepsilon_{n} \delta \mu\right) \frac{U_{n+1}+U_{n}}{2} .
\end{aligned}
$$

Since the initial value is fixed, we obtain:

$$
\begin{align*}
& U_{N_{T}}^{*} \delta U_{N_{T}} \\
& =-i \Delta T \sum_{n=0}^{N_{T}-1} \frac{\left(U_{n+1}+U_{n}\right)^{*}}{2}\left(\delta H_{0}+\varepsilon_{n} \delta \mu\right) \frac{U_{n+1}+U_{n}}{2} . \tag{11}
\end{align*}
$$

This result can be seen as a discretized version of (8) where μ is not necessarily null. We insist on the fact that such a result is specific to the Crank-Nicholson discretization. As far as we know, no other numerical solvers give rise to discretization of (8) where the variations δH_{0} and $\delta \mu$ are explicit.
4.2. Fixed points methods. We now present some iterative solvers to compute solutions of (3).
4.2.1. A Newton Method. In the discrete setting, we still denote by φ the operator:

$$
\begin{array}{cc}
\varphi: & \mathcal{S}_{\mathbb{R}} \times \mathcal{S}_{\mathbb{R}}^{0} \rightarrow \mathcal{U} \\
& \left(H_{0}, \mu\right) \mapsto U_{N_{T}} .
\end{array}
$$

To solve the equation $\varphi\left(H_{0}, \mu\right)=U_{\text {target }}$, a Newton method would consist in the following iteration:

$$
\begin{equation*}
d \varphi\left(H_{0}^{k}, \mu^{k}\right) \cdot\left(\delta H_{0}^{k}, \delta \mu^{k}\right)=-\left(\varphi\left(H_{0}^{k}, \mu^{k}\right)-U_{\text {target }}\right), \tag{12}
\end{equation*}
$$

where k is the iteration index, $\delta H_{0}^{k}=H_{0}^{k+1}-H_{0}^{k}, \delta \mu^{k}=\mu^{k+1}-\mu^{k}$.
In our case, (12) reads:

$$
\delta U_{N_{T}}^{k}=U_{\text {target }}-U_{N_{T}}^{k} .
$$

Using (11), one can rewrite this equation as follows:

$$
\begin{aligned}
\Delta T \sum_{n=0}^{N_{T}-1} \frac{\left(U_{n+1}^{k}+U_{n}^{k}\right)^{*}}{2} & \left(\delta H_{0}^{k}+\varepsilon_{n} \delta \mu^{k}\right) \frac{U_{n+1}^{k}+U_{n}^{k}}{2} \\
& =i\left(\left(U_{N_{T}}^{k}\right)^{*} U_{\text {target }}-I d\right)
\end{aligned}
$$

where we recall that the unknowns are δH_{0}^{k} and $\delta \mu^{k}$. This equation has generally no solutions, since its left hand side belongs to \mathcal{S} what is not the case for its right hand side. To solve this problem, we replace $i\left(\left(U_{N_{T}}^{k}\right) * U_{\text {target }}-I d\right)$ by a first order approximation $S^{k} \in \mathcal{S}_{\mathbb{R}}$. Two possible choices are:

$$
\begin{align*}
\exp \left(-i S^{k}\right) & :=\left(U_{N_{T}}^{k}\right)^{*} U_{\text {target }} \tag{13}\\
S^{k} & :=i \frac{\left(U_{N_{T}}^{k}\right)^{*} U_{\text {target }}-U_{\text {target }}^{*} U_{N_{T}}^{k}}{2} \tag{14}
\end{align*}
$$

In the numerical tests, the same behavior is observed when using the first or the second definition.

Remark 2. The previous method can be simplified to obtain a procedure where no matrix needs to be assembled and the inverted during iterations. Instead of updating at each iteration in the pair $\left(H_{0}, \mu\right)$ in the term $d \varphi\left(H_{0}, \mu\right)$ of Formula (12), one can keep a constant approximation ($\left.H_{0}^{\text {ref }}, \mu^{\text {ref }}\right)$ of the solution. We denote by $\left(U_{n}^{r e f}\right)_{n=0, \cdots, N_{T}}$ the corresponding sequence of states. The iteration then reads:

$$
\begin{array}{r}
\Delta T \sum_{n=0}^{N_{T}-1} \frac{\left(U_{n+1}^{r e f}+U_{n}^{\text {ref }}\right)^{*}}{2}\left(\delta H_{0}^{k}+\varepsilon_{n} \delta \mu^{k}\right) \frac{U_{n+1}^{\text {ref }}+U_{n}^{r e f}}{2} \\
=S^{k}
\end{array}
$$

where S^{k} is defined in the previous section, see (13) and (14). Note that such an algorithm is actually a time-discretized version of the fixed point used in the proof of Theorem 2, except that here μ is not supposed to be null.
4.2.2. Implementation of the iterative solvers. Both previous methods require inversions of linear systems which are not given explicitly in our formulations. To fill in this gap, we explain here how to assemble the matrices, i.e. to rewrite the equation

$$
\Delta T \sum_{n=0}^{N_{T}-1} \frac{\left(U_{n+1}+U_{n}\right)^{*}}{2}\left(\delta H_{0}+\varepsilon_{n} \delta \mu\right) \frac{U_{n+1}+U_{n}}{2}=S
$$

in terms of linear system. In what follows, we denote by X_{M} the vector representation of a matrix M consisting in concatenating vertically its columns. A first step to do this is to note that the later equation reads as follows:

$$
\begin{array}{r}
\Delta T\left(\sum_{n=0}^{N_{T}-1} M_{U_{n+1 / 2}}\right) X_{\delta H_{0}}+\Delta T\left(\sum_{n=0}^{N_{T}-1} \varepsilon_{n} M_{U_{n+1 / 2}}\right)
\end{array} X_{\delta \mu} .
$$

with

$$
M_{U_{n+1 / 2}}=\operatorname{kron}\left(\mathbf{1}_{N_{d}}, U_{n+1 / 2}^{*}\right) \cdot \times \operatorname{kron}\left(U_{n+1 / 2}^{T}, \mathbf{1}_{N_{d}}\right) .
$$

Here, kron denotes the Kronecker product, $U_{n+1 / 2}=\frac{U_{n+1}+U_{n}}{2}$, the term by term product of two matrices A and B is denoted by $A . \times B$ and $\mathbf{1}_{N_{d}}$ denotes the matrix of $\mathbb{R}^{N_{d}, N_{d}}$ whose coefficients are equal to 1 .

A second step must then be carried out: since the matrices δH_{0} and $\delta \mu$ are symmetric, one has to consider the columns of the matrices in (15) that correspond to the coefficients of δH_{0} located, e.g., above the diagonal and the coefficients of $\delta \mu$ located strictly above the diagonal. In the same way, only the lines of the resulting system that correspond to the coefficients located above the diagonal of S shall be considered.

Taking the real and the imaginary part of the equations, the resulting system is of size N_{d}^{4}.
4.3. A continuation method for global controllability. The algorithms proposed in Section 4.2 are only locally convergent. The purpose of this section is to present a continuation method that enables to extend their range of application.

As mentioned above, numerous methods exist to solve the control problem where the laser term ε in Equation (1) is unknown and H_{0} and μ are given [6, 7, 10]. Based on this fact, the method we propose is the following. Given an initial guess $\left(H_{0}^{0}, \mu^{0}\right)$, find a control ε^{0} such that $U_{N_{T}}^{0}$, the final state associated to $\left(H_{0}^{0}, \mu^{0}\right)$
correctly approximates $U_{\text {target }}$. Given $\theta \in[0,1]$, we define the interpolated fields $\varepsilon^{\theta}=(1-\theta) \varepsilon^{0}+\theta \varepsilon$. A fixed point method as the one presented in Section 4.2 can then be applied with $\left(H_{0}^{0}, \mu^{0}\right)$ as an initial guess to solve the operator control problem with ε^{θ}. Our algorithm consists in repeating this procedure by solving iteratively the operator control problem associated to the field $\varepsilon^{k \delta \theta}$ using (H_{0}^{k-1}, μ^{k-1}) as initial guess. Carrying this procedure up to $\theta=1$ enables to solve the original problem.

5. Numerical results

In this last section, we present some numerical results obtained with the algorithms of the previous sections. As a laser term in Equation (1), we use $\varepsilon(t)=\sin (t)$. The other numerical data are $N_{d}=5, T_{0}=10, N_{T}=10^{2}, T=2 \pi T_{0}$ and $\Delta T=T / N$.
5.1. Newton Method. We first test our Newton method. In this way, we choose randomly a pair $\left(H_{0}, \mu\right)$, with coefficients in $[-1,1]$ and compute the corresponding final state $U_{N_{T}}$. Then, we start the Newton procedure with an initialization $\left(H_{0}+\Delta H_{0}, \mu+\Delta \mu\right)$ where $\left(\Delta H_{0}, \Delta \mu\right)$ are also chosen randomly. An example of computation is given in the next table.

Iteration	$\log _{10}\left(\left\\|H_{0}^{k}-H_{0}\right\\|_{\mathcal{U}}\right)$	$\log _{10}\left(\left\\|\mu^{k}-\mu\right\\|_{\mathcal{U}}\right)$
1	-1.579029	-1.358376
2	-3.003599	-2.865026
3	-4.339497	-4.122528
4	-8.234980	-8.179398
5	-13.963299	-14.029020
6	-14.022486	-14.131066

Here, we refind a pair $\left(H_{0}, \mu\right)$ starting from a 10% random perturbation. We see that the numerical convergence is obtained after 6 iterations. Note also that the quadratic convergence is observed.
5.2. Continuation method. In a second test, we use the continuation method presented in 4.3 to tackle a problem where the algorithms of Section 4.2 do not apply. Given a target $U_{\text {target }}$ obtained with the field ε and a pair $\left(H_{0}, \mu\right)$ that is chosen randomly, we look for the operators H_{0}^{\prime} and μ^{\prime} that solve the control problem associated to the field $\cos (3 t)$ and the target $U_{\text {target }}$.
The direct use of the Newton method of Section 4.2 does not work: in this case, the algorithm does not converge. The continuation method enables to solve this problem. Using $\delta \theta=1 / 4$, and 10 iterations of the Newton method as inner loop, a relevant pair $\left(H_{0}^{\prime}, \mu^{\prime}\right)$ is obtained.
This example has been reproduced for numerous random initial pairs $\left(H_{0}, \mu\right)$.

ACKNOWLEDGMENT

J.S. and G.T. were partially supported by the Agence Nationale de la Recherche (ANR), Projet Blanc EMAQS number ANR-2011-BS01-017-01.

References

[1] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science, 282:919-922, 1998.
[2] K. Beauchard. Local controllability of a 1-d schrödinger equation. Journal de Mathématiques Pures et Appliquées, 84(7):851-956, 2005.
[3] K. Beauchard and C. Laurent. Local controllability of 1d linear and nonlinear schrödinger equations with bilinear control. Journal de Mathématiques Pures et Appliquées, 94(5):520554, 2010.
[4] C. Le Bris, M. Mirrahimi, H. Rabitz, and G. Turinici. Hamiltonian identification for quantum systems: well-posedness and numerical approaches. ESAIM: Control, Optimisation and Calculus of Variations, 13(02):378-395, 2007.
[5] Y. Maday and J. Salomon. A greedy algorithm for the identification of quantum systems. In Proceedings of the 48 th IEEE Conference on Decision and Control, 16-18 December, Shanghaï, 2009.
[6] Y. Maday, J. Salomon, and G. Turinici. Monotonic time-discretized schemes in quantum control. Numerische Mathematik, 103:323-338, 2006. 10.1007/s00211-006-0678-x.
[7] Y. Maday and G. Turinici. New formulations of monotonically convergent quantum control algorithms. The Journal of Chemical Physics, 118(18):8191-8196, 2003.
[8] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa. Wither the future of controlling quantum phenomena? Science, 288:824-828, 2000.
[9] G. Turinici and H. Rabitz. Wavefunction controllability in quantum systems. J. Phys.A., 36:2565-2576, 2003.
[10] G. von Winckel, A. Borzi, and S. Volkwein. A globalized newton method for the accurate solution of a dipole quantum control problem. SIAM Journal on Scientific Computing, 31(6):4176-4203, 2009.
[11] W. Warren, H. Rabitz, and M. Dahleh. Coherent control of quantum dynamics: The dream is alive. Science, 259:1581-1589, 1993.
[12] T. Weinacht, J. Ahn, and P. Bucksbaum. Controlling the shape of a quantum wavefunction. Nature, 397:233-235, 1999.

[^0]: ${ }^{1}$ P. Laurent is with the IRCCyN, Ecole des Mines de NANTES, 4 rue Alfred Kastler, 44300 Nantes, FRANCE philippe.laurent at mines-nantes.fr.
 ${ }^{2}$ H. Rabitz is with Department of Chemistry, Princeton University, Princeton, NJ 08544, USA hrabitz at princeton.edu.
 ${ }^{3}$ J. Salomon and G. Turinici are with the CEREMADE, Université Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, 75016 Paris, FRANCE julien.salomon at dauphine.fr, garbiel.turinici at dauphine.fr.

