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CONTROL THROUGH OPERATORS FOR QUANTUM

CHEMISTRY

PHILIPPE LAURENT1, HERSCHEL RABITZ2, JULIEN SALOMON3 AND GABRIEL
TURINICI3

Abstract. We consider the problem of operator identification in quantum
control. The free Hamiltonian and the dipole moment are searched such that
a given target state is reached at a given time. A local existence result is
obtained. As a by-product, our works reveals necessary conditions on the
laser field to make the identification feasible. In the last part of this work,
some algorithms are proposed to compute effectively these operators.

Keywords: Inverse problem, Identification, Quantum Control

1. Introduction

In the last decades, quantum control has known significant improvements both
at theoretical and practical levels (cf.[1, 12, 11, 8] and references therein). Results
have been obtained on existence of controls [2, 3, 9] or efficient ways to compute
and carry out laser fields that achieve some goals concerning the state of quantum
systems [7]. On the other hand, the design of relevant laser fields plays also a
major role when the goal is to identify some properties of the quantum system
to be controlled. In this way, some methods have been designed to identify finite
dimensional systems characteristics [4], or to compute discriminant laser fields [5].

In this paper, we focus on the case where only one laser is used to identify
in finite time the free Hamiltonian and the dipole moment. From the theoretical
point of view, we obtain a local existence result: we prove that the inversion is
always possible in the neighborhood of some particular states. As a by-product, we
emphasize some features of the laser fields that enables the identification.

Following the local approach we use to obtain this result, we present in a second
part, a time discretized setting and fixed-point methods to solve numerically our
problem. In particular, a Newton method is proposed together with a continuation
method that allows to solve problems where the local assumption does not hold.

This paper is organized as follows: the mathematical formulation of our problem
is given in Section 2 and a local controllability result is presented in Section 3. In
Section 4, we present the algorithms to solve numerically the identification problem.
We conclude with some tests in Section 5.
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Let us finally introduce some notations concerning particular matrix sets that
will be used throughout the paper. Given Nd ∈ N, we denote by CNd,Nd and RNd,Nd

the sets of matrices of size Nd ×Nd with complex and real coefficients respectively.
Then, define

U =
{
M ∈ C

Nd,Nd , M∗M =MM∗ = Id
}
,

S =
{
M ∈ C

Nd,Nd , M∗ =M
}
,

SR =
{
M ∈ R

Nd,Nd , M∗ =M
}
,

S0
R

= SR ∩
{
M ∈ R

Nd,Nd , Mk,k = 0, k = 1, . . . , Nd

}
,

whereM∗ denotes the adjoint matrix associated toM and Id is the identity matrix
of CNd,Nd . Note that for the sake of simplicity, we omit the dependence of these sets
with respect to Nd. In what follows, we denote by ℜz and ℑz denote respectively
the real and imaginary parts of a complex number z. Given a matrixM , we denote
by MT its transposed.

2. Setting of the problem

Fix T > 0, and consider a system U(t) ∈ U whose dynamics over [0, T ] is ruled
by the Schrödinger equation:

iU̇(t) = [H0 + ε(t)µ]U(t),(1)

U(0) = Uinit,(2)

where H0 ∈ SR is the matrix of the internal Hamiltonian, ε(t) ∈ L2(0, T ;R) a
laser field, µ ∈ SR the matrix associated with the dipole moment. For relevant
applications, the matrices H0 and µ are not supposed to commute. The initial
state Uinit is fixed. In this equation, ε is given and the pair (H0, µ) ∈ SR × S0

R
is

searched such that at time t = T , the state reaches a given target state Utarget, i.e.,

(3) U(T ) = Utarget.

In other words, given the mapping

ϕ : SR × S0
R

→ U
(H0, µ) 7→ U(T ),

the main question that will be investigated in this paper is the surjectivity of ϕ.
Note that the internal Hamiltonian H0 is searched as real Hermitian (i.e. sym-

metric) matrix. This is a particular situation as in general it is only supposed to
be complex Hermitian and not real. Nevertheless, for the applications we have in
mind this restriction is very natural since the Hamiltonian is a sum of a kinetic
operator and a potential, both real. For the same reasons, we suppose that the
dipole moment µ is real (Hermitian thus symmetric) but we assume moreover that
the diagonal elements are null. This additional assumption is motivated both by
invariance properties (the diagonal of H0 as matrix commutes with the diagonal of
µ as matrix) but also by the desire to identify an unique pair (H0, µ) since in this
way the number of unknowns (dimension of SR plus that of S0

R
) equals the number

of equations (the dimension of U).
Note that one can easily prove the following conservation property:

∀t ∈ [0, T ], ‖U(t)‖U = ‖Uinit‖U ,
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where we have denoted by ‖ · ‖U the norm associated to the scalar product

(A,B) ∈ U × U 7→ tr(A∗B).

This problem is related to inverse problems in quantum control [5], but unlike
previous works, we do not aim here at designing relevant laser fields to identify the
pair (H0, µ) but rather to investigate the properties of the fields ε(t) that make
Equation (3) invertible and algorithms to compute numerically the corresponding
solution operators H0 and µ.

3. Local controllability result

In this section, we present some theoretical results about the local inversion of
Equation (3). More precisely, we make use of the calculus of variations to obtain a
local inversion theorem.

Given a pair (H0, µ), we first introduce the tangent space AH0,µ, which is the
space of matrices defined by:

AH0,µ =
{
M ∈ C

Nd,Nd , M∗U(T ) + U(T )∗M = 0
}
.

We then consider the differential operator of ϕ defined by:

dϕ(H0, µ) : SR × SR → AH0,µ

(δH0, δµ) 7→ δU(T ),

where δU(T ) is solution at time t = T of the linearized Schrödinger equation:

i ˙δU(t) = [H0 + ε(t)µ]δU(t) + [δH0 + ε(t)δµ]U(t),

and U(t) follows equation (1).
We will prove that ϕ is an onto mapping using the fact that dϕ also satisfies this

property. This strategy is motivated by the following known result:

Theorem 1. Supposed that dϕ(H0, µ) is an onto mapping, i.e.

∀V ∈ AH0,µ, ∃(δH0, δµ), dϕ(H0, µ)(δH0, δµ) = V.

Then ϕ is locally onto in a neighborhood of (H0, µ).

We shall prove that dϕ is an onto mapping on the neighborhood of all states
of the form U0 := ϕ(H0, 0) ∈ U . To do this, we compute explicitly an inverse
mapping.

Theorem 2. Given H0 ∈ SR, define V0 as the matrix that diagonalizes U0 :=
ϕ(H0, 0) in the following way:

U0(t) = V ∗

0 e
iΛ(t−T

2
)V0,

with Λ the diagonal matrix with coefficients λa ∈ R, a ∈ Nd, 1 ≤ a ≤ Nd. Suppose

that for a 6= b, 1 ≤ a ≤ Nd, 1 ≤ b ≤ Nd,

λa 6= λb(4)

ε̂ia,b := ℑ

(∫ T

0

ε(t)eiδλa,b(t−
T
2
)dt

)
6= 0.(5)

Then dϕ(H0, 0) is an onto mapping and its inverse is given by:

ψ : V ′ ∈ AH0,µ 7→ (δH0, δµ).



4 P. LAURENT, H. RABITZ, J. SALOMON, G. TURINICI

The matrices δH0 and δµ are given by:

δH0 := V ∗

0 δH̃0V0, δµ := V ∗

0 δµ̃V0,

where the coefficients ha,b and ma,b of the matrices δH̃0 and δµ̃ are given by:

(6)





ma,b =
ℑva,b
ε̂ia,b

ha,b =
ℜva,b −

ε̂ra,b

ε̂ia,b

ℑva,b

sin(δλa,b
T

2
)

δλa,b ifa 6= b

ma,a = 0,

ha,a =
2

T
va,a ifa = b.

Here va,b, a, b ∈ Nd, 1 ≤ a ≤ Nd are the coefficients of iV ∗
0 U0(T )

∗V ′V0 and

ε̂ra,b := ℜ
(∫ T

0 ε(t)eiδλa,b(t−
T
2
)dt
)
.

Proof. We fix V ′ ∈ AH0,µ and solve

(7) dϕ(H0, 0)(δH0, δµ) = V ′.

First, one can show the identities:

ϕ(H0, µ)
∗dϕ(H0, 0)(δH0, δµ) = U0(T )

∗δU0(T )

= −i

∫ T

0

U0(t)
∗(δH0 + ε(t)δµ)U0(t)dt,(8)

where the variation δU0 is defined by the evolution equation:

(9) i ˙δU0(t) = [H0 + ε(t)µ]δU0(t) + [δH0 + ε(t)δµ]U0(t).

Note that such an identity holds also when µ 6= 0. Since U0(T )
∗ is invertible,

showing that (7) has a solution is equivalent to show that

(10)

∫ T

0

U0(t)
∗(δH0 + ε(t)δµ)U0(t)dt = V,

has a solution, with V := iU0(T )
∗V ′ ∈ S since V ′ ∈ AH0,µ. A nice property of the

trajectory t 7→ U0(t) is that Equation (10) can be solved explicitly. Indeed, let us
denote by va,b, ha,b and ma,b, with a, b ∈ N, 1 ≤ a, b ≤ N, the coefficients of the
matrices V0V V

∗
0 , V0δH0V

∗
0 and V0δµV

∗
0 respectively. Expanding (10) gives rise, in

the case a 6= b to

va,b = ha,b

∫ T

0

ei(λa−λb)(t−
T
2
)dt

+ma,b

∫ T

0

ε(t)ei(λa−λb)(t−
T
2
)dt

= ha,b
sin(δλa,b

T

2
)

δλa,b
+ma,bε̂(δλa,b),
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where δλa,b = λa − λb and ε̂(δλa,b) =
∫ T

0
ε(t)eiδλa,b(t−

T
2
)dt = ε̂ra,b + iε̂ia,b.

In the case a = b, one finds that

va,a = ha,b
T

2
+ma,bε̂(0) = ha,b

T

2
+ma,b

∫ T

0

ε(t)dt.

Note that the assumption δH0, δµ ∈ SR combined with ε̂(δλa,b) = ε̂(δλb,a) implies
that va,b = v̄b,a, so that V ∈ S. The result follows. �

Remark 1. In this theorem, we have defined ma,a arbitrarily.

This theorem gives a first hint about conditions required to identify (H0, µ).
Condition (4) is weaker to the standard non-degeneracy condition

∀(a, b) 6= (a′, b′), λb − λa 6= λb′ − λa′ ,

and is in practice often satisfied. Condition (5) deals with the laser field itself. It
is a non-resonant condition to control the system.

4. Numerical methods

In this section, we present two algorithms to solve (3). The strategy we follow is
a direct adaptation of previous results and proofs: we consider local approximations
based on fixed point iterative solvers. In our approach, a crucial step consists in
obtaining an appropriate time discretized version of (1). In the first part, we build
such an approximation that enables the exact computation of the derivative of the
final state U(T ) with respect to (H0, µ) and derive from this setting a numerical
strategy.

4.1. Time discretization. In order to simulate numerically Equation (1), we in-

troduce the following time discretization: give NT ∈ N, we denote by ∆T =
T

NT
the time step and for n = 0, · · · , NT by Un and εn the approximations of U(n∆T )
and ε(n∆T ). In order to preserve the unitary property of the matrices U(t) at the
discrete level, we use a Crank-Nicholson scheme ruled by the formula:

i
Un+1 − Un

∆T
= (H0 + εnµ)

Un+1 + Un

2
.

The corresponding iteration is then given by:

(Id+ Ln)Un+1 = (Id− Ln)Un,

where Ln = i∆T
2 (H0 + εnµ).

Let us now detail the effect of variations δH0, δµ in H0 and µ on the sequence
(Un)n=0,...,NT . We have:

(Id+ Ln)δUn+1 + δLnUn+1 = (Id− Ln)δUn

−δLnUn,

δLn(Un+1 + Un) = (Id− Ln)δUn

−(Id+ Ln)δUn+1,

(Un+1 + Un)
∗δLn(Un+1 + Un) = −2(U∗

n+1δUn+1

−U∗

nδUn),
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where δLn = i∆T
2 (δH0 + εnδµ). This finally gives rise to:

U∗

n+1δUn+1 − U∗

nδUn

= −i∆T
(Un+1 + Un)

∗

2
(δH0 + εnδµ)

Un+1 + Un

2
.

Since the initial value is fixed, we obtain:

U∗

NT
δUNT

=−i∆T

NT−1∑

n=0

(Un+1 + Un)
∗

2
(δH0 + εnδµ)

Un+1 + Un

2
.

(11)

This result can be seen as a discretized version of (8) where µ is not necessarily
null. We insist on the fact that such a result is specific to the Crank-Nicholson dis-
cretization. As far as we know, no other numerical solvers give rise to discretization
of (8) where the variations δH0 and δµ are explicit.

4.2. Fixed points methods. We now present some iterative solvers to compute
solutions of (3).

4.2.1. A Newton Method. In the discrete setting, we still denote by ϕ the operator:

ϕ : SR × S0
R
→ U

(H0, µ) 7→ UNT .

To solve the equation ϕ(H0, µ) = Utarget, a Newton method would consist in the
following iteration:

(12) dϕ(Hk
0 , µ

k) · (δHk
0 , δµ

k) = −
(
ϕ(Hk

0 , µ
k)− Utarget

)
,

where k is the iteration index, δHk
0 = Hk+1

0 −Hk
0 , δµ

k = µk+1 − µk.
In our case, (12) reads:

δUk
NT

= Utarget − Uk
NT
.

Using (11), one can rewrite this equation as follows:

∆T

NT−1∑

n=0

(Uk
n+1 + Uk

n)
∗

2
(δHk

0 + εnδµ
k)
Uk
n+1 + Uk

n

2

= i
(
(Uk

NT
)∗Utarget − Id

)
,

where we recall that the unknowns are δHk
0 and δµk. This equation has generally

no solutions, since its left hand side belongs to S what is not the case for its right
hand side. To solve this problem, we replace i

(
(Uk

NT
)∗Utarget − Id

)
by a first order

approximation Sk ∈ SR. Two possible choices are:

exp(−iSk) := (Uk
NT

)∗Utarget(13)

Sk := i
(Uk

NT
)∗Utarget − U∗

targetU
k
NT

2
.(14)

In the numerical tests, the same behavior is observed when using the first or the
second definition.
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Remark 2. The previous method can be simplified to obtain a procedure where

no matrix needs to be assembled and the inverted during iterations. Instead of up-

dating at each iteration in the pair (H0, µ) in the term dϕ(H0, µ) of Formula (12),

one can keep a constant approximation (Href
0 , µref ) of the solution. We denote by

(U ref
n )n=0,··· ,NT the corresponding sequence of states. The iteration then reads:

∆T

NT−1∑

n=0

(U ref
n+1 + U ref

n )∗

2
(δHk

0 + εnδµ
k)
U ref
n+1 + U ref

n

2

= Sk,

where Sk is defined in the previous section, see (13) and (14). Note that such an

algorithm is actually a time-discretized version of the fixed point used in the proof

of Theorem 2, except that here µ is not supposed to be null.

4.2.2. Implementation of the iterative solvers. Both previous methods require in-
versions of linear systems which are not given explicitly in our formulations. To
fill in this gap, we explain here how to assemble the matrices, i.e. to rewrite the
equation

∆T

NT−1∑

n=0

(Un+1 + Un)
∗

2
(δH0 + εnδµ)

Un+1 + Un

2
= S,

in terms of linear system. In what follows, we denote by XM the vector representa-
tion of a matrix M consisting in concatenating vertically its columns. A first step
to do this is to note that the later equation reads as follows:

∆T

(
NT−1∑

n=0

MUn+1/2

)
XδH0

+∆T

(
NT−1∑

n=0

εnMUn+1/2

)
Xδµ

= XS ,(15)

with

MUn+1/2
= kron(1Nd

, U∗

n+1/2).× kron(UT
n+1/2,1Nd

).

Here, kron denotes the Kronecker product, Un+1/2 = Un+1+Un

2 , the term by term
product of two matrices A and B is denoted by A.×B and 1Nd

denotes the matrix
of RNd,Nd whose coefficients are equal to 1.

A second step must then be carried out: since the matrices δH0 and δµ are
symmetric, one has to consider the columns of the matrices in (15) that correspond
to the coefficients of δH0 located, e.g., above the diagonal and the coefficients of δµ
located strictly above the diagonal. In the same way, only the lines of the resulting
system that correspond to the coefficients located above the diagonal of S shall be
considered.

Taking the real and the imaginary part of the equations, the resulting system is
of size N4

d .

4.3. A continuation method for global controllability. The algorithms pro-
posed in Section 4.2 are only locally convergent. The purpose of this section is to
present a continuation method that enables to extend their range of application.

As mentioned above, numerous methods exist to solve the control problem where
the laser term ε in Equation (1) is unknown and H0 and µ are given [6, 7, 10].
Based on this fact, the method we propose is the following. Given an initial guess
(H0

0 , µ
0), find a control ε0 such that U0

NT
, the final state associated to (H0

0 , µ
0)
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correctly approximates Utarget. Given θ ∈ [0, 1] , we define the interpolated fields
εθ = (1−θ)ε0+θε. A fixed point method as the one presented in Section 4.2 can then
be applied with (H0

0 , µ
0) as an initial guess to solve the operator control problem

with εθ. Our algorithm consists in repeating this procedure by solving iteratively
the operator control problem associated to the field εkδθ using (Hk−1

0 , µk−1) as
initial guess. Carrying this procedure up to θ = 1 enables to solve the original
problem.

5. Numerical results

In this last section, we present some numerical results obtained with the algo-
rithms of the previous sections. As a laser term in Equation (1), we use ε(t) = sin(t).
The other numerical data are Nd = 5, T0 = 10, NT = 102, T = 2πT0 and
∆T = T/N .

5.1. Newton Method. We first test our Newton method. In this way, we choose
randomly a pair (H0, µ), with coefficients in [−1, 1] and compute the correspond-
ing final state UNT . Then, we start the Newton procedure with an initialization
(H0 + ∆H0, µ + ∆µ) where (∆H0,∆µ) are also chosen randomly. An example of
computation is given in the next table.

Iteration log10(‖H
k
0 −H0‖U) log10(‖µ

k − µ‖U)
1 -1.579029 -1.358376
2 -3.003599 -2.865026
3 -4.339497 -4.122528
4 -8.234980 -8.179398
5 -13.963299 -14.029020
6 -14.022486 -14.131066

Here, we refind a pair (H0, µ) starting from a 10% random perturbation. We see
that the numerical convergence is obtained after 6 iterations. Note also that the
quadratic convergence is observed.

5.2. Continuation method. In a second test, we use the continuation method
presented in 4.3 to tackle a problem where the algorithms of Section 4.2 do not
apply. Given a target Utarget obtained with the field ε and a pair (H0, µ) that
is chosen randomly, we look for the operators H ′

0 and µ′ that solve the control
problem associated to the field cos(3t) and the target Utarget.
The direct use of the Newton method of Section 4.2 does not work: in this case,
the algorithm does not converge. The continuation method enables to solve this
problem. Using δθ = 1/4, and 10 iterations of the Newton method as inner loop, a
relevant pair (H ′

0, µ
′) is obtained.

This example has been reproduced for numerous random initial pairs (H0, µ).
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