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We want to detect small obstacles immersed in a fluid flowing in a larger bounded domain Ω in the three dimensional case. We assume that the fluid motion is governed by the steady-state Stokes equations. We make a measurement on a part of the exterior boundary ∂Ω and then have a Kohn-Vogelius approach to locate these obstacles. We use here the notion of topological derivative in order to determine the number of objects and their rough location. Thus, we first establish an asymptotic expansion of the solution of the Stokes equations in Ω when we add small obstacles inside. Then, we use it to find a topological asymptotic expansion of the considered Kohn-Vogelius functional, which give us a formula of its topological gradient. Finally, we make some numerical simulations, exploring the efficiency and the limits of this method.

Introduction

The detection of objects immersed in a fluid can be seen as a minimization of a shape functional using shape gradient (see [START_REF] Hettlich | Fréchet derivatives in inverse obstacle scattering[END_REF][START_REF] Hettlich | The determination of a discontinuity in a conductivity from a single boundary measurement[END_REF][START_REF] Afraites | Detecting perfectly insulated obstacles by shape optimization techniques of order two[END_REF][START_REF] Badra | Detecting an obstacle immersed in a fluid by shape optimization methods[END_REF]). However this approach does not permit to modify the topology of the obstacles. In particular, we have to know how many objects are present to reconstruct them.

We make the assumption of small size of the objects to use asymptotic formulae which allows us to change of point of view (see the works of Ammari et al. [START_REF] Ammari | Reconstruction of elastic inclusions of small volume via dynamic measurements[END_REF][START_REF] Ammari | Identification of small inhomogeneities: asymptotic factorization[END_REF][START_REF] Ammari | Asymptotic expansions for eigenvalues of the Lamé system in the presence of small inclusions[END_REF][START_REF] Ammari | The method of small-volume expansions for medical imaging[END_REF][START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: the elastic case[END_REF]). Then, we use the notion of topological gradient in order to determine the number of objects and their rough location, i.e. to have an initialization for a shape gradient algorithm. The topological sensitivity analysis consists in studying the variation of a shape functional with respect to the modification of the topology of the domain. It was introduced by Schumacher in [START_REF] Schumacher | Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien[END_REF] and Sokolowski et al. in [START_REF] Sokołowski | On the topological derivative in shape optimization[END_REF] for the compliance minimization in linear elasticity. Then, Masmoudi studied the Laplace equation case introducing a generalization of the adjoint method (see [START_REF] Céa | Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction coût[END_REF]) and the use of a truncation technique to give a topological sensitivity framework on a fixed functional space. By using this approach, the topological asymptotic expansion of a large class of shape functionals was given for the linear elasticity by Garreau et al. in [START_REF] Garreau | The topological asymptotic for PDE systems: the elasticity case[END_REF] and for the Poisson and the Stokes equations by Guillaume et al. in [START_REF] Guillaume | The topological asymptotic expansion for the Dirichlet problem[END_REF][START_REF] Guillaume | Topological sensitivity and shape optimization for the Stokes equations[END_REF]. The Helmoltz equations was also studied by Samet et al. in [START_REF] Amstutz | The topological asymptotic for the Helmholtz equation[END_REF][START_REF] Pommier | The topological asymptotic for the Helmholtz equation with Dirichlet condition on the boundary of an arbitrarily shaped hole[END_REF] and the quasi-Stokes problem by Hassine et al. in [START_REF] Hassine | The topological asymptotic expansion for the quasi-Stokes problem[END_REF]. The topological sensitivity was also used to elastic-wave imaging of finite solid bodies containing cavities by Bonnet et al. in [START_REF] Bonnet | Sounding of finite solid bodies by way of topological derivative[END_REF], or in the study of Introduction of the general notations. For a bounded Lipschitz open set Ω ⊂ R 3 , we denote by L p (Ω), W m,p (Ω) and H s (Ω) the usual Lebesgue and Sobolev spaces. We note in bold the vectorial functions and spaces: L p (Ω), W m,p (Ω), H s (Ω), etc. Moreover, we denote by W 1,p α (Ω) the weighted Sobolev spaces defined in Appendix B. For k ∈ N, we notice • k,Ω the norm • H k (Ω) and |•| 1,Ω the semi-norm of H 1 (Ω). We also use the notations • 1/2,∂Ω and • -1/2,∂Ω to define respectively the norms • H 1/2 (∂Ω) and • H -1/2 (∂Ω) . We represent the duality product between H -1/2 (∂Ω) and H 1/2 (∂Ω) using the notation • , • ∂Ω . Finally, n represents the external unit normal to ∂Ω and we define the space

L 2 0 (Ω) := p ∈ L 2 (Ω), Ω p = 0 .
Framework. Let Ω be a bounded Lipschitz open set of R 3 containing a Newtonian and incompressible fluid with coefficient of kinematic viscosity ν > 0. Let ω ⊂ R 3 a fixed bounded Lipschitz domain containing the origin. For z ∈ Ω and ε > 0, we denote ω z,ε := z + εω.

The aim of this work is to detect some unknown objects included in Ω. We assume that a finite number m * of obstacles ω * z,ε ⊂ Ω have to be detected. Moreover, we assume that they are well separated and have the geometry form

ω * z k ,ε = z * k + εω * k , 1 ≤ k ≤ m * ,
where ε is the shared diameter and ω * k ⊂ R 3 are bounded Lipschitz domains containing the origin. The points z * k ∈ Ω, 1 ≤ k ≤ m * , determine the location of the objects. Finally, we assume that, for all 1 ≤ k ≤ m * , ω * z k ,ε is far from the boundary ∂Ω. Let f ∈ H 1/2 (∂Ω) such that f = 0 satisfying the compatibility condition

∂Ω f • n = 0.
(2.1)

In order to determine the location of the objects, we make a measurement g ∈ H (2.2)

Here σ(u, p) represents the stress tensor defined by σ(u, p) := ν ∇u + t ∇u -pI.

Notice that, if div u = 0 in Ω, we have -ν∆u + ∇p = -div (νD(u)) + ∇p = -div (σ(u, p)) in Ω, with D(u) := ∇u + t ∇u . Therefore, we can consider two problems:

           Find (u ε D , p ε D ) ∈ H 1 (Ω\ω ε ) × L 2 0 (Ω\ω ε ) such that -ν∆u ε D + ∇p ε D = 0 in Ω\ω ε div u ε D = 0 in Ω\ω ε u ε D = f on ∂Ω u ε D = 0 on ∂ω ε (2.3) and                Find (u ε N , p ε N ) ∈ H 1 (Ω\ω ε ) × L 2 (Ω\ω ε ) such that -ν∆u ε N + ∇p ε N = 0 in Ω\ω ε div u ε N = 0 in Ω\ω ε σ(u ε N , p ε N )n = g on O u ε N = f on ∂Ω\O u ε N = 0 on ∂ω ε , (2.4) 
where ω ε := m k=1 ω z k ,ε for a finite number m of objects located in z 1 , . . . , z m . These problems are classically well-defined. We refer to [START_REF] Boyer | Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles[END_REF][START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF] for the results of existence and uniqueness of (u ε D , p ε D ). Notice that the compatibility condition (2.1) associated to Problem (2.3) is satisfied. The existence and the uniqueness of (u ε N , p ε N ) is guaranteed by Theorem A.1 recalled in Appendix A.

One can remark that if ω ε coincides with the actual domain ω * ε , then u ε D = u ε N in Ω\ω ε . According to this observation, we propose a resolution of the inverse problem of reconstructing ω * ε based on the minimization of the following Kohn-Vogelius functional

F KV ε (u ε D , u ε N ) := 1 2 Ω\ωε ν|D(u ε D ) -D(u ε N )| 2 .
We then define 

J KV (Ω\ω ε ) := F KV ε (u ε D , u ε N ).
ω ε such that J (Ω\ω ε ) = 0, then u ε D = u ε N in Ω\ω ε , i.e. u ε D satisfies (2.
2) and thus ω ε = ω * ε is the real domain.

Remark 2.1. In the following u 0 D , u 0 N , Ω 0 , etc. will denote respectively the solutions, the domain, etc. when ω ε = ∅ and not ω ε = ω 0 = m k=1 {z k }.

The main results

From now, we consider that we seek a single obstacle ω z,ε := z + εω, located at a point z ∈ Ω. Notice that in the case of several inclusions, we proceed by detecting the objects one by one. Thus, after detecting a first obstacle ω z 1 ,ε 1 , we work replacing the whole domain Ω by Ω\ω z 1 ,ω 1 (and then we have ∂ω z 1 ,ε 1 ⊂ ∂ (Ω\ω z 1 ,ω 1 ) \O) and the results presented below (in particular the topological derivative) are still valid for a new inclusion ω z,ε . Note that, the asymptotic expansion of the solution of elliptic boundary value problem in multiply perforated domains is studied in [START_REF] Bonnaillie-Noël | Interactions between moderately close inclusions for the Laplace equation[END_REF][START_REF] Maz | Asymptotic treatment of perforated domains without homogenization[END_REF].

Introduction of the needed functional tools

We recall that the topological sensitivity analysis consists in the study of the variations of a design functional J with respect to the insertion of a small hole (here an object) ω z,ε at the point z ∈ Ω. The aim is to obtain an asymptotic expansion of J of the form

J (Ω z,ε ) = J (Ω) + ξ(ε)δJ (z) + o(ξ(ε)) ∀z ∈ Ω,
where ε > 0, where ξ is a positive scalar function which going to zero with ε and where

Ω z,ε := Ω\ω z,ε ,
with ω z,ε := z + εω. We summarize the notations concerning the domains in Figure 1.

The computation of the topological gradient δJ exposed below is strongly influenced by the paper of Ben Abda et al. [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF]. We were also inspired by the works of Guillaume et al. [START_REF] Guillaume | Topological sensitivity and shape optimization for the Stokes equations[END_REF], of Abdelwahed et al. [START_REF] Abdelwahed | Topological optimization method for a geometric control problem in Stokes flow[END_REF] and of Hassine [START_REF] Hassine | Shape optimization for the Stokes equations using topological sensitivity analysis[END_REF]. In [START_REF] Guillaume | Topological sensitivity and shape optimization for the Stokes equations[END_REF], they use the Masmoudi's approach mentioned in the introduction. Here, we do not use this truncation technique but we follow the simplified approach presented in [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF] (see also [START_REF] Abdelwahed | Topological optimization method for a geometric control problem in Stokes flow[END_REF] and [START_REF] Hassine | Shape optimization for the Stokes equations using topological sensitivity analysis[END_REF]). However, contrary to the problem studied in [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF], we impose Dirichlet boundary conditions on the interior boundary. Moreover, contrary to [START_REF] Abdelwahed | Topological optimization method for a geometric control problem in Stokes flow[END_REF] and [START_REF] Hassine | Shape optimization for the Stokes equations using topological sensitivity analysis[END_REF], we have here to consider mixed boundary conditions on the exterior boundary (due to our Kohn-Vogelius approach).

O We recall the expression of the fundamental solution (E, P ) to the Stokes system in R 3 given by

Ω ∂Ω ω z,ε Ω z,ε
E(x) = 1 8πν x I + e r t e r , P (x) = x 4π x 3 , (3.1) 
with e r = x x ; that is -ν∆E j + ∇P j = δe j , where E j denotes the j th column of E, (e j ) 3 j=1 is the canonical basis of R 3 and δ is the Dirac distribution.

The results

The following theorem give us the expression of the topological gradient of the Kohn-Vogelius functional J KV :

Theorem 3.1. For z ∈ Ω, the functional J KV admits the following topological asymptotic expansion

J KV (Ω z,ε ) -J KV (Ω) = ε - ∂ω η D • u 0 D (z) + ∂ω η N • u 0 N (z) + o(ε),
where u 0 D ∈ H 1 (Ω) and u 0 N ∈ H 1 (Ω) solve respectively Problems (2.3) and (2.4) with ω ε = ∅ and where η ♮ ∈ H -1/2 (∂ω)/Rn (with the subscript ♮ = D and ♮ = N respectively) is the respective solution of

∂ω E(y -x)η ♮ (x)ds(x) = -u 0 ♮ (y) ∀y ∈ ∂ω. (3.2)
In the case of spherical objects ω = B(0, 1), we get a more explicit formula for the topological gradient of J KV . Indeed,

∂ω η D = -6πνu 0 D (z) and ∂ω η N = -6πνu 0 N (z)
holds in this very particular case (see for example [START_REF] Guillaume | Topological sensitivity and shape optimization for the Stokes equations[END_REF]Proof of Corollary 4.2]). Then, we obtain the following corollary:

Corollary 3.2. If ω = B(0, 1) then, for z ∈ Ω, the functional J KV admits the following topological asymptotic expansion

J KV (Ω z,ε ) -J KV (Ω) = 6πνε u 0 D (z) 2 -u 0 N (z) 2 + o(ε), (3.3) 
where u 0 D ∈ H 1 (Ω) and u 0 N ∈ H 1 (Ω) solve respectively Problems (2.3) and (2.4) with ω ε = ∅.

Asymptotic expansion of the solution of the Stokes problem

In order to provide an asymptotic expansion of the Kohn-Vogelius functional J KV , we need first an asymptotic expansion of the solution of the Stokes problems (2.3) and (2.4). In this section, we will work with exterior Stokes problems for which the theoretical tools are recalled in Appendix B (in particular the definition of weighted Sobolev space W 1,2 0 ). We recall that we here focus on the detection of a single obstacle (see the beginning of Section 3). This section is devoted to the proof of the following proposition: 

Proposition 4.1. The respective solutions u ε D ∈ H 1 (Ω z,ε ) and u ε N ∈ H 1 (Ω z,ε ) of Prob- lems 2.
u ε ♮ (x) = u 0 ♮ (x) + U ♮ x -z ε + O H 1 (Ωz,ε) (ε),
where

(U ♮ , P ♮ ) ∈ W 1,2 0 (R 3 \ω) × L 2 (R 3 \ω) solves the following Stokes exterior problem    -ν∆U ♮ + ∇P ♮ = 0 in R 3 \ω div U ♮ = 0 in R 3 \ω U ♮ = -u 0 ♮ (z) on ∂ω. (4.1)
The notation O H 1 (Ωz,ε) (ε) means that there exist a constant c > 0 (independent of ε) and

ε 1 > 0 such that for all 0 < ε < ε 1 u ε ♮ (x) -u 0 ♮ (x) -U ♮ x -z ε 1,Ωz,ε ≤ c ε.
We only detail the Neumann case ♮ = N . The Dirichlet case ♮ = D is a direct adaptation of this Neumann case (we also refer to [START_REF] Hassine | Shape optimization for the Stokes equations using topological sensitivity analysis[END_REF]Proposition 3.1] and [START_REF] Abdelwahed | Topological optimization method for a geometric control problem in Stokes flow[END_REF]Proposition 3.1]). We use uniform a priori estimates as what is done in [START_REF] Guillaume | Topological sensitivity and shape optimization for the Stokes equations[END_REF], [START_REF] Hassine | Shape optimization for the Stokes equations using topological sensitivity analysis[END_REF] or [START_REF] Abdelwahed | Topological optimization method for a geometric control problem in Stokes flow[END_REF]. An alternative method to obtain the same result consists to use multi-scale expansion and the notion of profile (see [START_REF] Bonnaillie-Noël | Multiscale expansion and numerical approximation for surface defects[END_REF], [START_REF] Dambrine | A multiscale correction method for local singular perturbations of the boundary[END_REF] or [START_REF] Maz ′ Ya | Asymptotic theory of elliptic boundary value problems in singularly perturbed domains[END_REF]).

Some notations and preliminaries

By Cauchy-Schartz and Korn's inequalities (see for example [START_REF] Hsiao | Boundary integral equations[END_REF]Lemma 5.4.4]), for u ∈ H 1 (Ω), the norm

|||u||| := Ω |D(u)| 2 + |u| 2 1/2 is equivalent to the norm u 1,Ω . Let us also note that, for u, v ∈ H 1 (Ω), Ω D(u) : D(v) = 2 Ω D(u) : ∇v. (4.2)
Moreover, for a given function u ∈ H 1 (Ω), we define the function u on Ω := Ω/ε by u(y) = u(x), y = x/ε. Using that ∇ x u(x) = (∇ y u(y))/ε, we obtain

|u| 2 1,Ω = Ω |∇ x u(x)| 2 dx = ε Ω |∇ y u(y)| 2 dy. Hence, |u| 1,Ω = ε 1/2 | u| 1, Ω . (4.3) 
Similarly, we obtain

u 0,Ω = ε 3/2 u 0, Ω . (4.4) 
By changing the origin, the same equalities hold with the change of variables y = (xz)/ε, for z ∈ Ω.

Finally, let us introduce some other domains. Let R > 0 be such that the closed ball B(z, R) is included in Ω and ω z,ε ⊂ B(z, R). We define the domains

Ω z R := Ω\B(z, R) and D z ε := B(z, R)\ω z,ε
(see Figure 2). Thus, in particular, we denote Ω 0 R := Ω\B(0, R) and 

D 0 ε := B(0, R)\εω. ∂Ω ω z,ε B(z,R) Ω z R D z ε

Uniform a priori estimates

In order to prove Proposition 4.1, we will use uniform a priori estimates given by the two following lemmas.

This first lemma is quoted in [31, Lemma 6.2] (see also [START_REF] Hassine | Shape optimization for the Stokes equations using topological sensitivity analysis[END_REF]Lemma 3.1] or [33, Lemma 7.1]) but we recall its proof for the reader's convenience: Lemma 4.2 (Guillaume et al., [START_REF] Guillaume | Topological sensitivity and shape optimization for the Stokes equations[END_REF]). Let g ∈ H 1/2 (∂ω) such that

∂ω g • n = 0. We consider (w, s) ∈ W 1,2 0 (R 3 \ω) × L 2 (R 3 \ω) the solution of the Stokes exterior problem    -ν∆w + ∇s = 0 in R 3 \ω div w = 0 in R 3 \ω w = g on ∂ω.
Then there exists a constant c > 0 (independent of ε and g) and ε 1 > 0 such that for all

0 < ε < ε 1 w 0,D 0 ε /ε ≤ c ε -1/2 g 1/2,∂ω , w 0,Ω 0 R /ε ≤ c ε -1/2 g 1/2,∂ω , |w| 1,D 0 ε /ε ≤ c g 1/2,∂ω and |w| 1,Ω 0 R /ε ≤ c ε 1/2 g 1/2,∂ω .
Proof. According to the representation formula (see Theorem B.3), since ∂ω g • n = 0, the velocity w can be written as

w(y) = Sη(y) = ∂ω E(y -x)η(x)ds(x), y ∈ R 3 \ω, (4.5) 
where η ∈ H -1/2 (∂ω)/R is the unique solution of

Sη(y) = g(y) ∀y ∈ ∂ω (4.6)
(the simple layer hydrodynamic potential operator S and the relation R being defined in Theorem B.3 and the Green function associated to the Stokes system E by (3.1)). Then, using a first order Taylor expansion of E, we have, for x in a bounded domain and y going to infinity,

E(y -x) = E(y) + O 1 y 2 and ∇E(y -x) = ∇E(y) + O 1 y 3
and using (4.5),

w(y) = E(y) η , 1 -1/2,1/2,∂ω + O 1 y 2 η , 1 -1/2,1/2,∂ω (with O 1 y 2 uniform in x). Moreover, since S is an isomorphism from H -1/2 (∂ω)/R into g ∈ H 1/2 (∂ω), ∂ω g • n = 0 (see Theorem B.
3), we have, according to (4.6),

η -1/2,∂ω ≤ c g 1/2,∂ω .
Then, since |E(y)| ≤ c y , there exists M > 0 such that, for y > M ,

|w(y)| ≤ c y g 1/2,∂ω + c y 2 g 1/2,∂ω . (4.7) 
We differentiate under the sum sign in (4.5) and proceed as above using the fact that |∇E(y)| ≤ c y 2 to obtain that for y > M (even if we have to increase M )

|∇w(y)| ≤ c y 2 g 1/2,∂ω + c y 3 g 1/2,∂ω . (4.8) 
Notice that since the upper bounds for w and its gradient (see (4.7) and (4.8)) are valid only for y > M , that is far away of ∂ω, we can not obtain directly the estimates on D 0 ε /ε. We split them in two estimates: one on B(0, M )\ω and one on B(0, R ε )\B(0, M ) (where we can use the above inequalities).

Using the change of variables x = εy, Inequalities (4.7) and (4.8) are valid for ε < R/M and

w 0,B(0, R ε )\B(0,M ) ≤ c B(0,R)\B(0,εM ) ε 2 x 2 1 ε 3 1/2 g 1/2,∂ω + c B(0,R)\B(0,εM ) ε 4 x 4 1 ε 3 1/2 g 1/2,∂ω ≤ c B(0,R) ε 2 x 2 1 ε 3 1/2 g 1/2,∂ω + c B(0,R) ε 4 x 4 1 ε 3 1/2 g 1/2,∂ω ≤ c ε -1/2 g 1/2,∂ω + c ε 1/2 g 1/2,∂ω . (4.9)
Moreover, since the weight ρ defined in Appendix B is bounded from above and below in B(0, M )\ω by non-negative constants and according to the definition of the norm

• W 1,2 0 , there exists a constant c > 0 such that w 1,B(0,M )\ω ≤ c w W 1,2 0 (B(0,M )\ω) .
Using the a priori estimate in Theorem B.2, we also obtain

w W 1,2 0 (R 3 \ω) ≤ c g 1/2,∂ω . Then, w 1,B(0,M )\ω ≤ c g 1/2,∂ω . (4.10) 
Gathering the estimates on each subdomains (4.9) and (4.10), we obtain the global estimate

w 0, D 0 ε ε ≤ c ε -1/2 g 1/2,∂ω .
Similarly, we obtain |w| 1,B(0, R ε )\B(0,M ) ≤ c ε 1/2 g 1/2,∂ω + c ε 3/2 g 1/2,∂ω and then, using (4.10),

|w| 1, D 0 ε ε ≤ c g 1/2,∂ω .
Finally, without splitting the norm in two, we obtain

w 0, Ω 0 R ε ≤ c ε -1/2 g 1/2,∂ω + c ε 1/2 g 1/2,∂ω |w| 1, Ω 0 R ε ≤ c ε 1/2 g 1/2,∂ω + c ε 3/2 g 1/2,∂ω .
Next we want to prove the following lemma:

Lemma 4.3. For ϕ ∈ H -1/2 (O), Φ ∈ H 1/2 (∂Ω\O), Ψ ∈ H 1 (D 0 ) such that div Ψ = 0 and ε > 0, let (v ε , q ε ) ∈ H 1 (Ω z,ε ) × L 2 (Ω z,ε ) be the solution of the Stokes problem            -ν∆u ε + ∇p ε = 0 in Ω z,ε div u ε = 0 in Ω z,ε σ(u ε , p ε )n = ϕ on O u ε = Φ on ∂Ω\O u ε = Ψ on ∂ω z,ε . (4.11) 
Then there exist a constant c > 0 (independent of ε and g) and ε 1 > 0 such that for all

0 < ε < ε 1 u ε 0,Ωz,ε ≤ c ϕ -1/2,O + Φ 1/2,∂Ω\O + ε 1/2 Ψ(z + εy) 1/2,∂ωz,ε .
To prove this result, we split it in two lemmas. First, we prove the following result inspired by [START_REF] Hassine | The topological asymptotic expansion for the quasi-Stokes problem[END_REF]Lemma 7.2] and [START_REF] Guillaume | Topological sensitivity and shape optimization for the Stokes equations[END_REF]Lemma 6.3

]: Lemma 4.4. Let ε > 0. For ϕ ∈ H -1/2 (O) and Φ ∈ H 1/2 (∂Ω\O), let (v ε , q ε ) ∈ H 1 (Ω z,ε ) × L 2 (Ω z,ε ) be the solution of the Stokes problem            -ν∆v ε + ∇q ε = 0 in Ω z,ε div v ε = 0 in Ω z,ε σ(v ε , q ε )n = ϕ on O v ε = Φ on ∂Ω\O v ε = 0 on ∂ω z,ε . (4.12)
Then there exist a constant c > 0 (independent of ε and ϕ) and ε 1 > 0 such that for all

0 < ε < ε 1 v ε 1,Ωz,ε ≤ c ϕ -1/2,O + Φ 1/2,∂Ω\O . Proof. Let ε > 0 and (v ε , q ε ) ∈ H 1 (Ω z,ε ) × L 2 (Ω z,ε ) be the solution of Problem (4.12). Let (V ε , Q ε ) ∈ H 1 (Ω z,ε ) × L 2 (Ω z,ε ) be the solution of            -ν∆V ε + ∇Q ε = 0 in Ω z,ε div V ε = 0 in Ω z,ε σ(V ε , Q ε )n = 0 on O V ε = Φ on ∂Ω\O V ε = 0 on ∂ω z,ε . (4.13) 
Let v ε and V ε the respective extensions of v ε and V ε to Ω by 0. Then, we have for all

Ψ ∈ Ψ ∈ H 1 (Ω z,ε ), div Ψ = 0, Ψ ∂ωz,ε = 0, Ψ ∂Ω\O = 0 1 2 ν Ωz,ε D(v ε -V ε ) : D(Ψ) = ϕ , Ψ O and then taking Ψ = v ε -V ε 1 2 ν D( v ε -V ε ) 2 0,Ω = ϕ , v ε -V ε O .
Thus, there exists a constant (independent of ε) such that 

D( v ε -V ε ) 2 0,Ω ≤ c ϕ -1/2,O v ε -V ε 1,Ω . Moreover, since v ε -V ε = 0 on ∂Ω\O,
v ε -V ε 1,Ω ≤ c D( v ε -V ε ) 0,Ω
(with a constant c independent of ε). Hence,

v ε -V ε 2 1,Ωz,ε = v ε -V ε 2 1,Ω ≤ c ϕ -1/2,O D( v ε -V ε ) 0,Ω ≤ c ϕ -1/2,O v ε -V ε 1,Ω ≤ c ϕ -1/2,O v ε -V ε 1,Ωz,ε . Thus, v ε -V ε 1,Ωz,ε ≤ c ϕ -1/2,O . Now, let us prove that V ε 1,Ωz,ε ≤ c Φ 1/2,∂Ω\O .
For a fixed ε 0 > 0, Problem (4.13) is well-posed and admits a unique solution

(V ε 0 , Q ε 0 ) ∈ H 1 (Ω z,ε 0 ) × L 2 (Ω z,ε 0 ) and there exists c > 0 such that V ε 0 1,Ωz,ε 0 ≤ c Φ 1/2,∂Ω\O . Let 0 < ε 1 < ε 0 such that Ω z,ε 0 ⊂ Ω z,ε for all 0 < ε < ε 1 . Let V ε 0 the extension of V ε 0
to Ω by 0. The solution V ε of (4.13) can be considered as the solution of the following minimization problem: min

V ∈U ν |V | 1,Ωz,ε ,
where

U := V ∈ H 1 (Ω z,ε ), div V = 0 in Ω z,ε , V = 0 on ∂ω z,ε , V = Φ on ∂Ω\O .
Hence, for all 0 < ε < ε 1 , we have

|V ε | 1,Ωz,ε ≤ c V ε 0 1,Ωz,ε = c |V ε 0 | 1,Ωz,ε 0 ≤ c V ε 0 1,Ωz,ε 0 ≤ c Φ 1/2,∂Ω\O .
Notice that V 0 1,Ω ≤ c Φ 1/2,∂Ω\O . Hence, using Poincaré's inequality,

V ε 0,Ωz,ε = V ε 0,Ω ≤ V ε -V 0 0,Ω + V 0 0,Ω ≤ c V ε -V 0 1,Ω + V 0 0,Ω ≤ c V ε 1,Ω + c V 0 1,Ω ≤ c |V ε | 1,Ωz,ε + c V 0 1,Ω ≤ c Φ 1/2,∂Ω\O .
Hence, we have the announced result.

Next we prove the following lemma which is an adaptation of [33, Lemma 7.3]:

Lemma 4.5. Let ε > 0. For Ψ ∈ H 1 (Ω) such that div Ψ = 0 in Ω, let (u ε , p ε ) ∈ H 1 (Ω z,ε ) × L 2 (Ω z,ε ) be the solution of the Stokes boundary value problem            -ν∆u ε + ∇p ε = 0 in Ω z,ε div u ε = 0 in Ω z,ε σ(u ε , p ε )n = 0 on O u ε = 0 on ∂Ω\O u ε = Ψ on ∂ω z,ε .
Then there exist a constant c > 0 (independent of ε and g) and ε 1 > 0 such that for all 0 < ε < ε 1 ,

u ε 0,Ω z R ≤ c ε Ψ(z + εy) 1/2,∂Ω , |u ε | 1,Ω z R ≤ c ε Ψ(z + εy) 1/2,∂Ω , u ε 0,D z ε ≤ c ε Ψ(z + εy) 1/2,∂Ω and |u ε | 1,D z ε ≤ c ε 1/2 Ψ(z + εy) 1/2,∂Ω . Proof. Let (V ε , Q ε ) ∈ W 1,2 0 (R 3 \ω) × L 2 (R 3 \ω) the solution of the exterior Stokes problem    -ν∆V ε + ∇Q ε = 0 in R 3 \ω div V ε = 0 in R 3 \ω V ε = 1 ε Ψ(z + εy) on ∂ω.
We define

v ε := εV ε x-z ε and q ε := Q ε x-z ε . Hence (w ε := v ε -u ε , s ε := q ε -p ε ) solves            -ν∆w ε + ∇s ε = 0 in Ω z,ε div w ε = 0 in Ω z,ε σ(w ε , s ε )n = σ(v ε , q ε )n on O w ε = v ε on ∂Ω\O w ε = 0 on ∂ω z,ε .
By Lemma 4.4, there exists a constant c > 0 and ε 1 > 0 such that for all 0 < ε < ε 1

w ε 1,Ωz,ε ≤ c σ(v ε , q ε )n -1/2,O + v ε 1/2,∂Ω\O . (4.14) 
We also have

v ε 1/2,∂Ω\O ≤ v ε 1/2,∂Ω ≤ v ε 1,Ω z R . (4.15) Moreover, σ(v ε , q ε )n -1/2,O ≤ v ε 1,Ω z R . (4.16) Indeed, for all ϕ ∈ H 1/2 (O) and all Φ ∈ H 1 (Ω z R ) extension of ϕ such that Φ ∂Ω\O = 0 and Φ ∂(B(0,R)) = 0, we have σ(v ε , q ε )n , ϕ -1/2,1/2,O = ν Ω z R D(v ε ) : ∇(Φ) ≤ c D(v ε ) 0,Ω z R Φ 1,Ω z R and, choosing Φ such that Φ 1,Ω z R = ϕ 1/2,O , we obtain that σ(v ε , q ε )n -1/2,O ≤ c D(v ε ) 0,Ω z R .
Finally, using the change of variables x = z + εy (see (4.3) and (4.4)) and Lemma 4.2, we obtain 

v ε 0,Ω z R ≤ ε 3/2 εV ε 0, Ω 0 R ε ≤ cε Ψ(z + εy) 1/2,∂ω |v ε | 1,Ω z R ≤ ε 1/2 |εV ε | 1, Ω 0 R ε ≤ cε Ψ(z + εy) 1/2,
w ε 1,Ωz,ε ≤ cε Ψ(z + εy) 1/2,∂ω .
Proceeding as above (using the change of variables x = z + εy and Lemma 4.2), we also have

v ε 0,D z ε ≤ cε Ψ(z + εy) 1/2,∂ω and |v ε | 1,D z ε ≤ cε 1/2 Ψ(z + εy) 1/2,∂ω . Therefore, we have |u ε | 1,Ω z R ≤ |v ε | 1,Ω z R + |w ε | 1,Ω z R ≤ cε Ψ(z + εy) 1/2,∂ω u ε 0,Ω z R ≤ v ε 0,Ω z R + w ε 0,Ω z R ≤ cε Ψ(z + εy) 1/2,∂ω ,
and similarly

u ε 0,D z ε ≤ cε Ψ(z + εy) 1/2,∂ω and |u ε | 1,D z ε ≤ cε 1/2 Ψ(z + εy) 1/2,∂ω .
Proof of Lemma 4. 

Proof of Proposition 4.1

In order to simplify the notations, let us define

r ε N (x) := u ε N (x) -u 0 N (x) -U N x -z ε and s ε N (x) := p ε N (x) -p 0 N (x) - 1 ε P N x -z ε ,
where

(U N , P N ) ∈ W 1,2 0 (R 3 \ω) × L 2 (R 3 \ω) solves (4.1) with ♮ = N . Then the pair (r ε N , s ε N ) ∈ H 1 (Ω z,ε ) × L 2 (Ω z,ε ) solves            -ν∆r ε N + ∇s ε N = 0 in Ω z,ε div r ε N = 0 in Ω z,ε σ(r ε N , s ε N )n = -1 ε σ(U N , P N ) x-z ε n on O r ε N = -U N x-z ε on ∂Ω\O r ε N = -u 0 N (x) + u 0 N (z) on ∂ω z,ε .
Then we know by Lemma 4.3 that there exists a constant c > 0 independent of ε such that

r ε N 1,Ωz,ε ≤ c 1 ε σ(U N , P N ) x -z ε n -1/2,O + U N x -z ε 1/2,∂Ω\O + ε 1/2 -u 0 N (z + εy) + u 0 N (z) 1/2,∂ω . (4.18)
Mimicking the proof of (4.16), we have

σ(U N , P N ) x -z ε n -1/2,O ≤ c (∇U N ) x -z ε 0,Ω z R .
Using the change of variables y = xz, we obtain

σ(U N , P N ) x -z ε n -1/2,O ≤ c (∇U N ) y ε 0,Ω 0 R = c ε ∇ U N y ε 0,Ω 0 R .
Then, using the change of variables y = εx (see (4.4)),

σ(U N , P N ) x -z ε n -1/2,O ≤ c ε 5/2 ∇U N 0, Ω 0 R ε .
Thus, Lemma 4.2 gives

σ(U N , P N ) x -z ε n -1/2,O ≤ c ε 3 u 0 N (z) 1/2,∂ω ≤ c ε 3 . (4.19)
Proceeding as for σ(U N , P N ) x-z ε n -1/2,O , we have, using the change of variables y = x-z ε (see (4.3) and (4.4)),

U N x -z ε 1/2,∂Ω\O ≤ c U N x -z ε 0,Ω z R + ∇ (U N ) x -z ε 0,Ω z R ≤ c ε 3/2 U N (x) 0, Ω 0 R ε + ε 5/2 ∇U N 0, Ω 0 R ε .
Thus, according to Lemma 4.2, we obtain

U N x -z ε 1/2,∂Ω\O ≤ c ε u 0 N (z) 1/2,∂ω ≤ c ε. (4.20) 
Using a Taylor expansion, we obtain u 0 N (z + εy) = u 0 N (z) + ε∇u 0 N (ξ y )y with ξ y ∈ ω z,ε . Since ∇u 0 N is uniformly bounded in ω z,ε , we have 

u 0 N (z + εy) -u 0 N (z) 1/2,∂ω ≤ c ε. ( 4 
u ε N (x) -u 0 N (x) -U N x -z ε 1,Ωz,ε ≤ c ε.
5 Proof of Theorem 3.1

A preliminary lemma

First we need an estimate of the norm • 1/2,∂ωz,ε of an uniformly bounded function. Here • 1/2,∂ωz,ε has to be seen as the trace norm

f 1/2,∂ωz,ε := inf u H 1 (Ω\ωz,ε) , u ∈ H 1 (Ω\ω z,ε ), u ∂ωz,ε = f . Lemma 5.1. Let ε ∈ (0, 1/2). If u ∈ H 1 (Ω)
is such that its restriction to ω z,1 is C 1 , then there exists a constant c > 0 independent of ε such that

u 1/2,∂ωz,ε ≤ cε 1/2 .
Proof. From Theorem C.1, there exists a constant c > 0 independent of ε such that

u 1/2,∂ωz,ε ≤ cε -1/2 u L 2 (∂ωz,ε) + c ∂ωz,ε×∂ωz,ε |u(x) -u(y)| 2 |x -y| 3 ds(x)ds(y) 1/2 .
Since u is uniformly bounded on ∂ω z,ε , we use the change of variables y = z + εx to prove that there exists a constant c > 0 independent of ε such that

u L 2 (∂ωz,ε) ≤ cε.
Moreover, using the changes of variables x = z + εX and y = z + εY , the fact that u(z

+ εX) = u(z) + ε∇(u)(ξ X )X, ξ X ∈ ω z,ε and u(z + εY ) = u(z) + ε∇(u)(ξ Y )Y , ξ Y ∈ ω z,ε , there exists c > 0 independent of ε such that ∂ωz,ε×∂ωz,ε |u(x) -u(y)| 2 |x -y| 3 ds(x)ds(y) 1/2 = ∂ω×∂ω ε 4 |ε (∇(u)(ξ X )X -∇(u)(ξ Y )Y )| 2 ε 3 |X -Y | 3 ds(x)ds(y) 1/2 ≤ cε 3/2 .

Splitting the variations of the objective

Now, we turn our attention to the Kohn-Vogelius functional given by

J KV (Ω z,ε ) = 1 2 ν Ωz,ε |D(u ε D ) -D(u ε N )| 2 .
Lemma 5.2. We have

J KV (Ω z,ε ) -J KV (Ω) = A D + A N , (5.1) 
where

A D := 1 2 ν Ωz,ε D(u ε D -u 0 D ) : D(u ε D -u 0 D ) + ν Ωz,ε D(u ε D -u 0 D ) : D(u 0 D ) - 1 2 ν ωz,ε |D(u 0 D )| 2
and

A N := ∂ωz,ε σ(u ε N -u 0 N , p ε N -p 0 N )n • u 0 N - 1 2 ν ωz,ε |D(u 0 N )| 2 .
Proof. The functional J KV can be expanded in

J KV (Ω z,ε ) = J DD (Ω z,ε ) := 1 2 ν Ωz,ε |D(u ε D )| 2 + J DN (Ω z,ε ) := -ν Ωz,ε D(u ε D ) : D(u ε N ) + J N N (Ω z,ε ) := 1 2 ν Ωz,ε |D(u ε N )| 2 .
Variation of J DD . We have

J DD (Ω z,ε ) -J DD (Ω) = 1 2 ν Ωz,ε |D(u ε D )| 2 - 1 2 ν Ω |D(u 0 D )| 2 = 1 2 ν Ωz,ε D(u ε D -u 0 D ) : D(u ε D -u 0 D ) +ν Ωz,ε D(u ε D -u 0 D ) : D(u 0 D ) - 1 2 ν ωz,ε |D(u 0 D )| 2 . (5.2)
Variation of J DN . We have, using Green's formula on (2.4) and (4.2),

J DN (Ω z,ε ) -J DN (Ω) = -ν Ωz,ε D(u ε N ) : D(u ε D ) + ν Ω D(u 0 N ) : D(u 0 D ) = 2 ∂Ω σ(u 0 N -u ε N , p 0 N -p ε N )n • f . (5.3)
Variation of J N N . We have

J N N (Ω z,ε ) -J N N (Ω) = 1 2 ν Ωz,ε |D(u ε N )| 2 - 1 2 ν Ω |D(u 0 N )| 2 = 1 2 ν Ωz,ε D(u ε N -u 0 N ) : D(u ε N ) + 1 2 ν Ωz,ε D(u ε N -u 0 N ) : D(u 0 N ) - 1 2 ν ωz,ε |D(u 0 N )| 2 .
Then, using Green's formula and (4.2) in the two first integrals, we obtain

J N N (Ω z,ε ) -J N N (Ω) = ∂Ω σ(u ε N -u 0 N , p ε N -p 0 N )n • u ε N + ∂Ω σ(u ε N -u 0 N , p ε N -p 0 N )n • u 0 N + ∂ωz,ε σ(u ε N -u 0 N , p ε N -p 0 N )n • u 0 N - 1 2 ν ωz,ε |D(u 0 N )| 2 . (5.4)
Variation of J KV . In order to obtain the variation J KV , we will sum the variations of J DD , J DN and J N N . First, we remark that fu 0 N and fu ε N belong to H 1/2 00 (O) since they belong to H 1/2 (∂Ω) and vanish on ∂Ω\O. Then

2 ∂Ω σ(u ε N -u 0 N , p ε N -p 0 N )n • f - ∂Ω σ(u ε N -u 0 N , p ε N -p 0 N )n • u 0 N - ∂ωz,ε σ(u ε N -u 0 N , p ε N -p 0 N )n • u ε N = ∂Ω σ(u ε N -u 0 N , p ε N -p 0 N )n • (f -u 0 N ) + ∂Ω σ(u ε N -u 0 N , p ε N -p 0 N )n • (f -u ε N ) = σ(u ε N -u 0 N , p ε N -p 0 N )n , f -u 0 N O + σ(u ε N -u 0 N , p ε N -p 0 N )n , f -u ε N O + ∂Ω\O σ(u ε N -u 0 N , p ε N -p 0 N )n • (f -u 0 N ) + ∂Ω\O σ(u ε N -u 0 N , p ε N -p 0 N )n • (f -u ε N ).
Since σ(u ε N , p ε N )n = σ(u 0 N , p 0 N )n = g on O and u 0 N = u ε N = f on ∂Ω\O, we prove that this expression is null. Finally, we obtain the expansion (5.1) using the variations of J DD , J DN and J N N (see (5.2), (5.3) and (5.4)).

Asymptotic expansion of A N

We know using elliptic regularity that ∇u 0 N is uniformly bounded on ω z,ε . Thus

- 1 2 ν ωz,ε |D(u 0 N )| 2 ≤ c ω ε 3 = O(ε 3 ). (5.5)
Let us recall that

r ε N (x) := u ε N (x) -u 0 N (x) -U N x -z ε and s ε N (x) := p ε N (x) -p 0 N (x) - 1 ε P N x -z ε ,
where

(U N , P N ) ∈ W 1,2 0 (R 3 \ω) × L 2 (R 3 
\ω) solves (4.1) with ♮ = N . Then the following equality holds

∂ωz,ε σ(u ε N -u 0 N , p ε N -p 0 N )n • u 0 N = ∂ωz,ε [σ(r ε N , s ε N )n] • u 0 N + 1 ε ∂ωz,ε σ(U N , P N ) x -z ε n • u 0 N . (5.6)
Let us first focus on the first term in the right-hand side of (5.6). We recall that for all ϕ ∈ H 1/2 (∂ω z,ε ) and all Φ ∈ H 1 (Ω z,ε ) extension of ϕ such that Φ ∂Ω = 0, we have

σ(r ε N , s ε N )n , ϕ -1/2,1/2,∂ωz,ε = 1 2 ν Ωz,ε D(r ε N ) : D(Φ) ≤ c D(r ε N ) 0,Ωz,ε Φ 1,Ωz,ε .
Hence, choosing Φ such that Φ 1,Ωz,ε = ϕ 1,∂Ωz,ε , we obtain that

σ(r ε N , s ε N )n -1/2,∂ωz,ε ≤ c D(r ε N ) 0,Ωz,ε .
(5.7)

Therefore, using the explicit upper bound of u 0 N 1/2,∂ωz,ε given by Lemma 5.1, we have

∂ωz,ε [σ(r ε N , s ε N )n] • u 0 N ≤ σ(r ε N , s ε N )n -1/2,∂ωz,ε u 0 N 1/2,∂ωz,ε ≤ c ε 1/2 r ε N 1,Ωz,ε .
Then, using the explicit upper bound of r ε N 1,Ωz,ε given by Proposition 4.1, we obtain

∂ωz,ε [σ(r ε N , s ε N )n] • u 0 N ≤ c ε 3/2 = O(ε 3/2 ). (5.8) 
Let us now focus on the second term in the right-hand side of (5.6). Using the change of variables x = z + ε y, we have

∂ωz,ε [σ(U N , P N )] x -z ε n • u 0 N ds(x) = ε 2 ∂ω [σ(U N , P N )(y)n] • u 0 N (z + εy) ds(y).
Since u 0 N (z +εy) = u 0 N (z)+ε∇(u 0 N )(ξ y )y, ξ y ∈ ω z,ε and since D(u 0 N ) is uniformly bounded in ω z,ε , we have

ε 2 ∂ω [σ(U N , P N )(y)n] • u 0 N (z + εy) = ε 2 ∂ω σ(U N , P N )(y)n • u 0 N (z) + O(ε 3 ).
Taking into account that n is oriented inside ω, we use the jump condition of the single layer potential (see [START_REF] Hsiao | Boundary integral equations[END_REF]Lemma 5.6.5]) to obtain that

-σ(U N , P N )n + σ(W N , Q N )n = -η N ,
where η N ∈ H -1/2 (∂ω)/Rn is defined by (3.2) and

(W N , Q N ) ∈ H 1 (ω) × L 2 (ω) solves    -ν∆W N + ∇Q N = 0 in ω div W N = 0 in ω W N = U N on ∂ω. Since -div σ(W N , Q N ) = -ν∆W N + ∇Q N = 0 in ω, we have ∂ω σ(W N , Q N )n = 0 and ∂ωz,ε [σ(U N , P N )] x -z ε n • u 0 N = ε 2 ∂ω η N • u 0 N (z) + O(ε 3 ).
(5.9) Gathering (5.5), (5.8) and (5.9), we obtain

A N = ε ∂ω η N u 0 N (z) + o(ε).
(5.10)

Asymptotic expansion of A D

We recall that

A D = 1 2 ν Ωz,ε D(u ε D -u 0 D ) : D(u ε D -u 0 D )+ν Ωz,ε D(u ε D -u 0 D ) : D(u 0 D )- 1 2 ν ωz,ε |D(u 0 D )| 2 .
Proceeding as in the previous section 5. [START_REF] Alliot | Weak solutions for the exterior Stokes problem in weighted Sobolev spaces[END_REF], we prove that

- 1 2 ν ωz,ε |D(u 0 D )| 2 = o(ε).
Moreover, using Green's formula, we have

ν Ωz,ε D(u ε D -u 0 D ) : D(u 0 D ) = 2 ∂ωz,ε σ(u 0 D , p 0 D )n • u ε D -u 0 D = -2 ∂ωz,ε σ(u 0 D , p 0 D )n • u 0 D = -ν ωz,ε |D(u 0 D )| 2 = o(ε). Now, let us study 1 2 ν Ωz,ε D(u ε D -u 0 D ) : D(u ε D -u 0 D ). We define r ε D (x) := u ε D (x) -u 0 D (x) -U D x -z ε and s ε D (x) := p ε D (x) -p 0 D (x) - 1 ε P D x -z ε ,
where

(U D , P D ) ∈ W 1,2 0 (R 3 \ω)×L 2 (R 3 \ω) solves (4.1) with ♮ = D. Using Green's formula ν Ωz,ε D(u ε D -u 0 D ) 2 = 2 ∂ωz,ε σ(u ε D -u 0 D , p ε D -p 0 D )n • u ε D -u 0 D = -2 ∂ωz,ε [σ(r ε D , s ε D )n] • u 0 D - 2 ε ∂ωz,ε σ(U D , P D ) x -z ε n • u 0 D .
Proceeding as in the previous section 5.3 (see inequality (5.8)), we use an inequality similar to (5.7), the asymptotic expansion of u ε D given by Proposition 4.1 and Lemma 5.1 to obtain

∂ωz,ε [σ(r ε D , s ε D )n] • u 0 D ≤ c ε 1/2 r ε D 1,Ωz,ε = O(ε 3/2 ).
Moreover, using the change of variables x = z + εy, we have

∂ωz,ε σ(U D , P D ) x -z ε n • u 0 D = ε 2 ∂ω [σ(U D , P D ) (y) n] • u 0 D (z + εy). Since u 0 D (z + εy) = u 0 D (z) + ε∇u 0 D (ξ y )y, ξ y ∈ ω z,ε and since ∇u 0 D is uniformly bounded in ω z,ε , we have ε 2 ∂ω [σ(U D , P D ) (y) n] • u 0 D (z + εy)ds(y) = ε 2 ∂ω σ(U D , P D ) (y) n u 0 D (z) + O(ε 3 ).
Taking into account that n is oriented inside ω, we use the jump condition of the single layer potential (see [START_REF] Hsiao | Boundary integral equations[END_REF]Lemma 5.6.5]) to obtain that

-σ(U D , P D ) + σ(W D , Q D ) = -η D ,
where

η D ∈ H -1/2 (∂ω)/Rn is defined by (3.2) and (W D , Q D ) ∈ H 1 (ω) × L 2 (ω) solves    -ν∆W D + ∇Q D = 0 in ω div W D = 0 in ω W D = U D on ∂ω. Since div σ(W D , Q D ) = -ν∆W D + ∇Q D = 0 in ω, we have ∂ω σ(W D , Q D )n = 0 and ∂ωz,ε σ(U D , P D ) x -z ε n • u 0 D = ε 2 ∂ω η D u 0 D (z) + O(ε 3 ).
Hence, we obtain

ν Ωz,ε D(u ε D -u 0 D ) 2 = -2ε ∂ω η D u 0 D (z) + o(ε).
Therefore

A D = -ε ∂ω η D u 0 D (z) + o(ε).
(5.11)

Conclusion of the proof: asymptotic expansion of J KN

Using (5.1), (5.10) and (5.11), we conclude the proof of Theorem 3.1:

J KV (Ω z,ε ) -J KV (Ω) = -ε ∂ω η D u 0 D (z) + ε ∂ω η N u 0 N (z) + o(ε).
6 Numerical Simulations

Framework of the numerical simulations

The use of the topological derivative aims to give us the number of inclusions and their rough location. Then it can provide initial shapes for an optimization method based on the boundary variation method for which we have to know the number of connected objects we have to reconstruct.

To make the numerical simulations presented here, we use a P 1b-P 1 finite elements discretization to solve the Stokes equations (2.3) and (2.4). The framework is the following: we work with the water kinematic viscosity ν = 10 -6 and the exterior boundary is assumed to be the parallelepiped rectangle [-0.5, 0.5] × [-0.25, 0.25] × [-0.25, 0.25]. Except when mentioned, the measurement is assumed to be made on all the faces except on the one given by x = -0.5. We consider the exterior Dirichlet boundary condition

f :=   -(x 2 + xy + 4 cos(3x) + 8y + 2xz + sin(z 2 )) -(-1 2 y 2 -2xy + x 2 + 12y sin(3x) + y cos(3z) + z 3 ) -(x 2 + xy + y 3 -z 2 -1 3 sin(3z) + cos(xy))   .
In order to have a suitable pair (measure g, domain ω * ), we use a synthetic data: we fix a shape ω * (more precisely a finite number of obstacles ω * 1 , . . . , ω * m ), solve the Stokes problem (2.3) in Ω\ω * using another finite elements method (here a P 2-P 1 finite elements discretization) and extract the measurement g by computing σ(u, p)n on O.

In the practical simulations that we present, we add spherical objects. Indeed, in this very particular case, we have an explicit formula for the topological gradient (see Corollary 3.2). In order to determine the radius of these spheres, we use a thresholding method. For an iteration k, it consists in determining the minimum argument P * of the topological gradient δJ KV in Ω\ k j=1 ω j and in defining the set P of the points P ∈ Ω\ k j=1 ω j such that δJ KV (P ) = δJ KV (P * ) + 0.25 * |δJ KV (P * )| .

Then we fix a minimum radius r min := 0.01 and we define the radius of the k th sphere by We use the classical topological gradient algorithm (see for example [START_REF] Céa | The shape and topological optimizations connection[END_REF], [START_REF] Guillaume | Topological sensitivity and shape optimization for the Stokes equations[END_REF], [START_REF] Hassine | The topological asymptotic expansion for the quasi-Stokes problem[END_REF], [START_REF] Amstutz | The topological asymptotic for the Navier-Stokes equations[END_REF]) that we recall here for reader's convenience: Algorithm 1. fix an initial shape ω 0 = ∅, a maximum number of iterations M and set i = 1 and k = 0, 2. solve Problems (2.3) and (2.4) in Ω\ k j=0 ω j , 3. compute the topological gradient δJ KV using Formula (3.3), i.e.

δJ KV (P ) = 6πν u 0 N (z) 2 -u 0 D (z) ∀P ∈ Ω\   k j=0 ω j   ,
4. seek P * k+1 := argmin δJ KV (P ), P ∈ Ω\ k j=0 ω j , 5. if P * k+1 -P j 0 < r k+1 + r j 0 + 0.01 for j 0 ∈ {1, . . . , k}, where r j 0 is the radius of ω j 0 and r k+1 is defined by (6.1), then r j 0 = 1.1 * r j 0 , get back to the step 2. and i ← i + 1 while i ≤ M , 6. set ω k+1 = B(P * k+1 , r k+1 ), where r k+1 is defined by (6.1), 7. while i ≤ M , get back to the step 2, i ← i + 1 and k ← k + 1.

We add to this algorithm a stop test (in addition of the maximum number of iterations). In every iteration, we compute the functional J KV . This non-negative functional has to decrease at each iteration. Thus, we stop our implementation when it is not the case, i.e. when J KV Ω\ k+1 j=0 ω j > J KV Ω\ k j=0 ω j . Notice that with this algorithm, we add only one object at each iteration. This method can be slower than the one proposed by Carpio et al. in [START_REF] Carpio | Topological derivatives for shape reconstruction[END_REF]: by seeking local minima of δJ KV and not a global minimum, they can add several objects simultaneously. However, in our case, it seems to be more appropriate because otherwise objects can be added wrongly. Moreover, notice that step 5 comes to the assumption that the objects are well separated.Finally, since we assumed that the obstacles are far away from the exterior boundary, we have to take away the added objects on it. Then, if the minimum of the topological gradient is on the exterior boundary, we push the added inclusion inside with a depth 0.005.

Concerning the mesh, we impose a fixed number of discretization points for the exterior boundary ∂Ω, that is 20 points for [-1, 1] and 10 points for [-0.5, 0.5] (in order to have a uniform mesh). Concerning the added objects, we fix the characteristic size of a cell, that is r 2 , where r is the radius of the sphere, in order to have approximatively 100 triangles to mesh the surface of each added sphere.

First simulations

First we want to detect three spheres ω * 1 , ω * 2 and ω * 3 centered respectively in (0.425, 0, 0.225), (-0.430, -0.225, 0.1) and (-0.15, 0.222, -0.222) (i.e. near from the exterior boundary) with shared radius r * = 0.013. The detection is quite efficient (see Figure 3). Indeed we detect three objects with shared radius r = 0.01 that we summarized in Table 1 Here, we stop the algorithm because of the functional increases as we can see in Figure 4.

In this first simulation, the objects are very far away from each other. But what happens when the obstacles are closed from each other? Figure 5 shows that the detection of closed objects is quite efficient too. Indeed, we want to detect three spheres ω * 4 , ω * 5 and ω * with shared radius r * = 0.01. We obtain three spheres with shared radius r = 0.01 as summarized in Table 2 Now the question we asked is: can we detect other shapes than spheres? Thus, we want to detect objects with different shapes: a sphere ω In conclusion of these first simulations, as we expected, this method permits to give us the number of objects we have to determine and their rough location. Moreover, it is efficient for different types of shapes, including shapes with corners.

Influence of the distance to the location of measurements

Now, we want to now how far we can detect an inclusion by try to recover a sphere increasingly pushed away from the boundary: precisely, the sphere with radius r * = 0.01 centered in (0, y * , 0.1) with y * = 0.232, 0.225, 0.2, 0.1, 0. In the three first tests, the inclusion is Finally, Figure 8 shows that the more the obstacle is far away from the exterior boundary, the more the initial value of the functional J KV is small and the initial value of the minimum of the topological gradient δJ KV (P * 1 ) is big: they seem to tend to 0. This means that the sensitivity of the functional and its topological gradient decreases when the distance d increases. This explains the encountered difficulties.

Hence, these simulations show that the detection of obstacles far away from the exterior boundary is difficult. This phenomenon can be explained by the regularizing behavior of the Stokes equations. We emphasized this difficulty of detection pointing out that the functional J KV and its topological gradient are less sensitive to the addition of obstacles when they are far away from the exterior boundary. This lack of sensitivity with respect to the object far away from the measurements is maybe due to the static (here stationary) physical context. Indeed, the sensitivity is better in a dynamical or waves context (see [START_REF] Carpio | Topological derivatives for shape reconstruction[END_REF]). Remark 6.1. An intuitive solution may be to cumulate several experiments (with different choices of f ) in order to improve the detection. We then sum the topological gradients for each experiment. However, this manipulation does not lead to efficient results and even poor results.

Influence of the size and the shape of the objects

Now, we want to study the influence of the volume of the objects on the efficiency of the detection. Thus, we want to detect a sphere with radius r * = 0.015, 0.02, 0.03, 0.04, 0.05 and which is, for each test, taken away from the boundary of d = 0.003. The fourth first tests are efficient and permit to detect the object decreasing the Kohn-Vogelius functional J KV . Moreover, once the object detected, the radius of the sphere increases. We recapitulate the radius r obtained in each case in Table 3. However, for r = 0.05, the object is badly Table 3: Radius of the approximate obstacles versus real radius of the object. r * 0.015 0.02 0.03 0.04 r 0.012 0.025 0.035 0.052 positioned as we can see in Figure 9 and the functional increases immediately: the real sphere is centered in (0, 0.197, 0.1) and we obtain a sphere centered in (0.395, 0.235, 0.235). Then, we want to know the influence of the size of the objects when several objects have to be to detected. We make the simulations detecting two spheres with radius r 1 and r 2 when r 1 = 2r 2 , r 1 = 3r 2 , r 1 = 4r 2 and r 1 = 5r 2 . The simulations shows that the first object detected is the biggest sphere (even if we interchange the position of the objects). However, when an object is too big, we have the same conclusion than above: we add an obstacle badly positioned and the functional increases.

Finally, we wonder if the shape of the objects has an influence on the detection. We have seen in Section 6.2 that cubes can be detected. Are cubes more difficult or easier to detect than spheres? In the simulation represented in Figure 6, the first obstacle detected is the cube. Note that this is unchanged by interchanging the position of the objects. Then, we want to detect a big sphere and a small cube: the sphere ω cube, even if it is the smaller. Finally, when we have to detect a big cube and a small sphere, the simulations shows that only the cube is well-detected.

In conclusion, the volume of the objects seems to have a major importance in the detection of them. It seems that we can only detect small obstacles. This is reasonable since the theoretical construction started with that assumption. Moreover, the shape of the obstacles seems to be important too: domain with geometrical singularities seems to be more easily imaged also with the topological gradient approach.

Influence of the size of the domain where measurements are made

At this point, the measurements are made on all the faces of the parallelepiped rectangle except on the face x = -0.5. Now, we want to study the efficiency of the detection if the domain of measurement O ⊂ ∂Ω is reduced. To do this, we want to detect the objets ω * 1 , ω * 2 and ω * 3 presented in Section 6.2 (see Figure 3). One can note that here we have to refine the mesh to obtain efficient results: we use 32 discretization points for [-1, 1] and 16 [-0.5, 0.5] and the characterized size of a cell of a sphere of radius r is now r 2.3 . We have seen that when ∂Ω\O is the face x = -0.5, the three objects are detected. However, if ∂Ω\O is the faces x = -0.5 and y = -0.25 (i.e. the faces near ω *

2 ), then we only detect two objects: one centered in (-0.165, 0.235, -0.235) and one centered in (0.431, 0.05, 0.235). Hence, we do not detect ω * 2 (see Figure 11 on the left). Moreover, if ∂Ω\O is the faces x = 0.5 and z = 0.25 (i.e. the faces near ω * 1 ), then we detect only two objects again: ω * 1 is not located in this case. Finally, if we make the measurement only on the face y = 0.25, then we only detect an object centered in (-0.159, 0.235, -0.217), i.e the object ω * 3 which is near this face (see Figure 11 on the right). In conclusion, as we expected, it seems that we can only detect objects which are near from a measurement part of the exterior boundary.

Conclusion

Using a Kohn-Vogelius approach, we have detected the number of potential objects immersed in a fluid and their rough location. We have computed the topological gradient of the Kohn-Vogelius functional considered using an asymptotic expansion of the solution of the Stokes equations in the whole domain when we add small obstacles inside. We have made some numerical attempts adding spherical objects because of an explicit formula of the topological derivative holds in this very particular case. The simulations have shown that only small obstacles close to the part of the boundary where we make the measurements can be detected. Once these restrictions are satisfied, the detection is quite efficient, even for objects with corners. Our intuition to explain these numerical results is the penetration depth of the approach is poor in the stationary case. In the elastic case, this depth increases in a dynamical (or waves) setting.
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A Some results on the Stokes problem with mixed boundary conditions

We recall classical results about the Stokes problem with mixed boundary conditions: a theorem of existence and uniqueness of the solution and a local regularity result. We note C a generic positive constant, only depending on the geometry of the domain and on the dimension, which may change from line to line. ′ and H 1 (Ω\ω) and between H -1/2 (∂Ω) and H 1/2 (∂Ω). admits a unique solution (u, p) ∈ H 1 (Ω\ω) × L 2 (Ω\ω) and the following estimate holds: Here R is the equivalence relation t ∼ t ′ if tt ′ = λn, λ ∈ R.

u H 1 (Ω\ω) + p L 2 (Ω\ω) ≤ C f [H 1 (Ω\ω)] ′ + h ext H 1/2 (∂Ω\O) + h O H -1/2 (O) + h int
Moreover S is an isomorphism from H -1/2 (∂ω)/R into g ∈ H 1/2 (∂ω), 

  -1/2 (O) on a part O of the exterior boundary ∂Ω with O ∂Ω. Then, we notice ω * ε:= m * k=1 ω * z k ,εand consider the following overdetermined Stokes problem           -ν∆u + ∇p = 0 in Ω\ω * ε div u = 0 in Ω\ω * ε u = f on ∂Ω u = 0 on ∂ω * ε σ(u, p)n = g on O ⊂ ∂Ω.

Figure 1 :

 1 Figure 1: The initial domain and the same domain after inclusion of an object

  3 and 2.4 admit the following asymptotic expansion (with the subscript ♮ = D and ♮ = N respectively):

Figure 2 :

 2 Figure 2: The truncated domain

3 .

 3 Lemma 4.3 is a direct consequence of the two previous results splitting Problem (4.11) into the two problems intervening in Lemmas 4.4 and 4.5.

  r k := max r min , min P ∈P (|x Px P * | , |y Py P * | , |z Pz P * |) . (6.1)
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 3 Figure 3: Detection of ω * 1 , ω * 2 and ω * 3

Table 1 :Figure 4 : 3 Figure 5 :

 1435 Figure 4: Evolution of the functional J KV during the detection of ω * 1 , ω * 2 and ω * 3

* 7

 7 centered in (0.2, -0.237, 0.237) with radius r * = 0.01 and a cube ω * 8 given by [0.08, 0.1] × [0.227, 0.247] × [-0.247, -0.227]. We obtain Figure 6: a sphere centered in (0.096, 0.235, -0.235) and one centered in (0.202, -0.235, 0.235) with shared radius r = 0.01. Here again, we stop our algorithm because of the functional increases.

Table 2 :Figure 6 :Figure 7 :

 267 Figure 6: Detection of ω * 7 and ω * 8

Figure 8 :

 8 Figure 8: The initial Kohn-Vogelius functional and minimum of the topological gradient versus the distance of the obstacle from the exterior boundary d

Figure 9 :

 9 Figure 9: Detection of a big obstacle

  * 9 centered in (0.05, -0.222, 0.222) with radius r * = 0.025 and the cube ω * 10 given by [0.08, 0.1] × [0.227, 0.247] × [-0.247, -0.227]. Notice that they are equally far away of the boundary. The results are presented in Figure 10. The first object detected is again the

Figure 10 :

 10 Figure 10: Detection of ω * 9 and ω * 10

Figure 11 :

 11 Figure 11: Detection of ω * 1 , ω * 2 and ω * 3 for different measurement domains

  First, let us introduce some notations: for Ω an open set of R N an open subset ω ⊂⊂ Ω and a part O of the exterior boundary ∂Ω, we define V O (Ω\ω) := u ∈ H 1 (Ω\ω); div u = 0 in Ω\ω, u = 0 on ∂ω ∪ (∂Ω\O) . Moreover, we denote respectively by •, • Ω\ω and •, • ∂Ω (or •, • ∂ω ) the duality product between H 1 (Ω\ω)

Theorem A. 1 (

 1 Existence and uniqueness of the solution). Let Ω be a bounded Lipschitz open set of R N (N ∈ N * ) and let ω ⊂⊂ Ω be a Lipschitz open subset of Ω such that Ω\ω is connected. Let O ⊂ ∂Ω be a part of the exterior boundary and ν> 0. Let f ∈ H 1 (Ω\ω) ′ , h ext ∈ H 1/2 (∂Ω\O), h O ∈ H -1/2 (O) and h int ∈ H 1/2 (∂ω). Then, the problem            -ν∆u + ∇p = f in Ω\ω div u = 0 in Ω\ω σ(u, p)n = h O on O u = h ext on ∂Ω\O u = h int on ∂ω (A.1)

2 0( 2 0(

 22 H 1/2 (∂ω) .Proof. Step 1: existence and uniqueness. According to[START_REF] Amrouche | Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension[END_REF] Lemma 3.3], let us considerH ∈ H 1 (Ω\ω) such that div H = 0 in Ω\ω, H = h int on ∂ω, H = h ext on ∂Ω\O such that ∂Ω∪∂ω H • n = 0 and satisfying H H 1 (Ω\ω) ≤ C h int H 1/2 (∂ω) + h ext H 1/2 (∂Ω\O) . (A.2)Then the couple(U := u -H, p) ∈ H 1 (Ω\ω) × L 2 (Ω\ω) satisfies            -ν∆U + ∇p = f + ν∆H in Ω\ω div U = 0 in Ω\ω σ(U , P )n = h O + ν(∇H + t ∇H)n on O U = 0 on ∂Ω\O U = 0 on ∂ω.Theorem B.2 (Girault et al.,[START_REF] Girault | A well-posed problem for the exterior Stokes equations in two and three dimensions[END_REF]). Let O be a Lipschitz-continuous exterior domain. Foreach f ∈ W -1,O), g ∈ L 2 (O) and for each ϕ ∈ H 1/2 (∂O), the problem    -ν∆u + ∇π = f in O div u = g in O u = ϕ on ∂O has a unique solution (u, π) ∈ W 1,2 0 (O) × L 2 (O).Moreover, there exists a positive constantC = C(d, O, ν) such that u W 1,2 0 (O) + π L 2 (O) ≤ C f W -1,O) + g L 2 (O) + ϕ H 1/2 (O) .Finally we recall that E(y) = 1 8πν y (I + e r t e r ) with e r := y y is the Green function associated to the Stokes system (see (3.1)). For an integrable vector ϕ on ∂ω, we introduce the following integral operator (called simple layer hydrodynamic potential operator) for all y / ∈ ∂ω:Sϕ(y) := ∂ω E(yx)ϕ(x)ds(x).Now we claim a theorem extracted from [26, §XI.B.5, Theorem 1, page 697-698]:Theorem B.3. Let ω an open bounded open set of R N (N = 2, 3). Let g ∈ H 1/2 (∂ω) such that ∂ω g • n = 0. We consider (w, s) ∈ W 1,2 0 (R 3 \ω) × L 2 (R 3 \ω) the solution of the Stokes exterior problem    -ν∆w + ∇s = 0 in R 3 \ω div w = 0 in R 3 \ω w = g on ∂ω.Hence the velocity w can be written thanks to the representation formula with hydrodynamical potential w(y) = Sη(y) = ∂ω E(yx)η(x)ds(x), y ∈ R 3 \ω, where η ∈ H -1/2 (∂ω) 3 /R is the unique solution of Sη(y) = g(y) ∀y ∈ ∂ω.

∂ω g • n = 0 .

 0 C A result concerning the space of tracesHere we recall a result used in the paper concerning the boundary values of functions, in particular when domains depend on a parameter (see[START_REF] Maz | Differentiable functions on bad domains[END_REF] Chapter 4]):Theorem C.1 ([40] Section 4.1.3. page 214).Let Ω and ω be two bounded simply connected domains of R N (N ≥ 2) of class C 0,1 . Let p ∈ (1, +∞), ε ∈ (0, 1/2) and ω ε := εω. Let us assume that ω ε ⊂ Ω and that there exists a constant c > 0 depending only of N , p, ω and Ω such that d(ω ε , ∂Ω) > cε. Then• p,∂ωε ∼ a(ε) • L p (∂ωε) + [•] p,∂ωε where f p,∂ωε := inf u W 1,p (Ω\ωε) , u ∈ W 1,p (Ω\ω ε ), u ∂ωε = f , 1,∂ωε := |∂ω ε | -1 ∂ωε×∂ωε |f (x)f (y)| ds(x)ds(y) [f ] p,∂ωε := ∂ωε×∂ωε |f(x)f (y)| p |x -y| N +p-2 ds(x)ds(y) 1/p for p ∈ (1, +∞).

  We assume that there exists ω * ε such that the overdetermined problem (2.2) has a solution. Hence, according to the identifiability result [4, Theorem 1.2] proved by Alvarez et al., the domain ω * ε is unique. Notice that in [4], ω * ε is assumed to have a C 1,1 boundary but we can only assume that he has a Lipschitz boundary in the Stokes case (see [14, Theorem 2.1]). Hence, if we find

centered respectively in (0, 0.237, -0.237), (0.04, 0.237, -0.237) and (0.08, 0.237, -0.237)

According to Lax-Milgram's theorem, there exists a unique U ∈ V O (Ω\ω) such that for all v ∈ V O (Ω\ω)

and we have, using (A.2),

Then using De Rham's theorem (see for example [START_REF] Amrouche | Problèmes généralisés de Stokes[END_REF]Lemma 2.7]), there exists p ∈ L 2 (Ω\ω), up to an additive constant, such that for all v ∈ H 1 0 (Ω\ω)

According to [START_REF] Amrouche | Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension[END_REF]Lemma 3.3] or [27, Theorem 3.2], we define ϕ N ∈ H 1 (Ω\ω) such that

Using again [START_REF] Amrouche | Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension[END_REF]Lemma 3.3] or [27, Theorem 3.2], we define

Using (A.3) and (A.5), we then obtain

Therefore, choosing the additive constant for p such that

we prove that there exists a unique pair (U , p)

Step 2: estimate. Let v := v + c(p)ϕ N , where [START_REF] Amrouche | Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension[END_REF]Lemma 3.3]). Using v in (A.6), and according to (A.4), we obtain

and hence

B Some results on the exterior Stokes problem

First, we recall the definition of the weighted Sobolev spaces. We introduce the weight function ρ(x) := (2 + |x| 2 ) 1/2 and the following Sobolev spaces (for more details, see [START_REF] Alliot | Weak solutions for the exterior Stokes problem in weighted Sobolev spaces[END_REF]):

Consider now the space

The dual space of

, where p ′ is such that

Notice that these spaces are reflexive Banach spaces with respect to the norms: