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A new proof for the convergence of an individual based model to

the Trait substitution sequence

Ankit Gupta∗ and J.A.J. Metz† and Viet Chi Tran‡

March 11, 2012

Abstract

We consider a stochastic individual based model for a population structured by a vector
trait and with logistic interactions. We consider its limit in a context from adaptive dynamics:
the population is large, the mutations are rare and we view the process in the timescale of
mutations. Using averaging techniques due to Kurtz (1992), we give a new proof of the
convergence of the individual based model to the Trait substitution sequence of Metz et
al. (1992) and rigorously proved by Champagnat (2006): assuming that “invasion implies
fixation”, we obtain in the limit a process that jumps from one population equilibrum to
another one when mutations occur and invade the population.

Keywords: birth and death process; structured population; adaptive dynamics; individual based
model; averaging technique; trait substitution sequence
Mathematical Subject Classification (2000): 92D15; 60J80; 60K35; 60F99

1 Introduction: Champagnat’s model

We consider a stochastic individual based model (IBM) with trait structure and evolving under
births and deaths, that has been introduced by Champagnat [2] in 2008. We study its limit in an
evolutionary time scale when the population is large and the mutations are rare. Champagnat [2]
established a rigorous proof of the convergence of a sequence of such IBMs to the trait substitu-
tion sequence process (TSS) introduced by Metz et al. [17] which can be explained as follows. In
the limit described above, the time scales of ecology and evolution can be separated. Mutations
are rare and before a mutant arises, the resident population stabilizes around an equilibrium.
Under the “invasion implies fixation” assumption, there cannot be long term coexistence of two
different traits. Evolution can be seen as a succession of monomorphic population equilibria.
The transitions disappear in the time scale that is considered and the TSS jumps from one state
to another, when a mutation occurs, invades and fixates in the population by completely replac-
ing the resident trait. Champagnat’s proof is based on some fine estimates, including some fine
large deviations results, to combine several approximations of the microscopic process. Using
averaging techniques due to Kurtz [12] we separate the different time scales that are involved
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and propose a new simplified proof of Champagnat’s results, skipping many technicalities linked
with fine approximations of the IBM. The aim of this paper is to exemplify the use of averaging
techniques in adpative dynamics, which we hope will pave the way for generalizations of the TSS.

We consider a structured population where each individual is characterized by a trait x ∈ X,
a compact subset of Rd. We are interested in large populations. We assume that the population’s
initial size to be proportional to a parameter K ∈ N

∗ = {1, 2, . . .}, to be interpreted as the area
to which the population is confined, that we will tend to infinity while keeping the density
constant by counting individuals with weight 1/K. The population is assumed to be well mixed
and its density is assumed to be limited by a fixed availability of resources per unit of area. The
population at time t can be described by the following point measure on X

XK(t) =
1

K

NK(t)∑

i=1

δxi
t
, (1.1)

where NK(t) is the total number of individuals in the population at time t and where xit ∈ X

denotes the trait of individual i living at time t, the latter being ranked by lexicographical order.

The population evolves under births and deaths. An individual with trait x ∈ X gives birth
to new individuals with the rate b(x), where b(x) is a continuous positive function on X. With
probability uKp(x) ∈ [0, 1], the daughter is a mutant with trait y, where y is drawn in the
mutation kernel m(x, dy) supported on X. Here uK ∈ [0, 1] is a parameter depending on K
that scales the probability of mutation. With probability 1 − uKp(x) ∈ [0, 1], the daughter is
a clone of her mother, with the same trait x. In a population described by X ∈ MF (X), the
individual with trait x dies at rate d(x) +

∫
X
α(x, y)X(dy), where the natural death rate d(x)

and the competition kernel α(x, y) are positive continuous functions.

Assumption 1.1 We assume that the functions b, d and α satisfy the following hypotheses:

(A) For all x ∈ X, b(x)− d(x) > 0 and p(x) > 0.

(B) “Invasion implies fixation”: For all x and y in X, we either have:

(b(y)− d(y))α(x, x) − (b(x)− d(x))α(y, x) < 0 (1.2)

or

{
(b(y)− d(y))α(x, x) − (b(x)− d(x))α(y, x) > 0
(b(x)− d(x))α(y, y) − (b(y)− d(y))α(x, y) < 0.

(1.3)

(C) There exist α and α > 0 such that for every x, y ∈ X:

0 < α ≤ α(x, y) ≤ α. (1.4)

Assumption 1.1 part (A) says that in the absence of competition, the population has a posi-
tive natural growth rate. Also the probability of having a mutation in positive. Assumption (B)
is a condition known in adaptive dynamics as “invasion implies fixation” and can be obtained
from the analysis of the equiliria of a Lotka-Volterra system. It states that if a mutant appears
and the mutant population manages to reach a sufficiently large size, then it cannot coexist with
the resident population: one of the two types has to become extinct. As a consequence, the
population should be monomorphic away from the mutation events.
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In this paper, we use the methods of Kurtz [13], that are based on martingale problems,
to separate the time scales in measure-valued processes. We show that on one hand, the fast
ecological scale stabilizes the populations around their equilibria, while on the other hand, rare
mutations at the evolutionary time scale may induce switches from one trait to another. This
provides a new proof to the result of Champagnat [2], which we hope may pave the way to
generalizations of the TSS. Our proof differs from [2] in that we do not require comparisons
with partial differential equations and large deviation results to exhibit the stabilization of the
population around the equilibria determined by the resident trait.

In Section 2, we describe the IBM introduced in [2]. In the model there is only trait-structure
and very simple dynamics. Generalization to more general (and possibly functional) trait space
are considered in [10] where the “invasion implies fixation” assumption is also relaxed (see also
[5]). There exist several other possible generations of the TSS, to include age-structured [8, 15]
or diploidy [6] for instance. We consider the process that counts the new traits appearing
due to mutations, and the occupation measure ΓK of the process XK under a changed time
scale. The tightness of the couple of processes is studied in Section 3. The limiting values
are shown to satisfy an equation that is considered in Section 4. This equation says that
when a favorable mutant appears, then the distribution describing the population jumps to
the equilibrium characterized by the new trait with a probability depending on the fitness of
the mutant trait compared to the resident one. From the consideration of monomorphic and
dimorphic populations and using couplings with branching processes, we prove the convergence
in distribution of {ΓK} to the occupation measure Γ of a pure jump Markov process that is
called TSS.
Notation:

Let E be a Polish space and let B(E) be its Borel sigma field. We denote by MF (E) (resp.
MP (E)) the set of nonnegative finite (resp. point) measures on E, embedded with the topology
of weak convergence. If E is compact this topology coincides with the topology of vague conver-
gence (see e.g. [11]). If E is compact, then for any M > 0, the set {µ ∈ MF (E) : µ(E) ≤ M} is
compact in this topology. For a measure µ, we denote its support by supp(µ). If f is a bounded
measurable function on E and µ ∈ MF (E), we use the notation: 〈µ, f〉 =

∫
E f(x)µ(dx). With

an abuse of notation, 〈µ, x〉 =
∫
E xµ(dx). Convergence in distribution of a sequence of random

variables (or processes) is denoted by ‘⇒’. The minimum of any two numbers a, b ∈ R is given
by a∧ b and for any a ∈ R, its positive part is denoted by [a]+. For any two N

∗-valued sequences
{aK : K ∈ N

∗} and {bK : K ∈ N
∗} we say that aK ≪ bK if aK/bK → 0 as K → ∞.

Define a class of test functions on MF (X) by

F
2
b = {Ff : Ff (µ) = F (〈µ, f〉), f ∈ Cb(X,R) and F ∈ C2

b (R,R) with compact support}.

Here Cb(X,R) is the set of all continuous and bounded real functions on X and C2
b (R,R) is the

set of bounded, twice continuously differentiable real-valued functions on R with bounded first
and second derivative. This class F

2
b is separable and it is known (see for example [7]) that it

characterizes the convergence in distribution on MF (X).
The value at time t of a process X is denoted X(t) or sometimes Xt for notational conve-

nience.
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2 IBM in the evolutionary time-scale

The process XK is characterized by its generator LK , defined as follows. To simplify notation,
we define the transition kernel:

MK(x, dy) = uKp(x) m(x, dy) + (1− uKp(x)) δx(dy). (2.5)

For any Ff ∈ F
2
b let

LKFf (X) = K

∫

E
b(x)

[∫

X

(
Ff

(
X +

1

K
δy

)
− Ff (X)

)
MK(x, dy)

]
X(dx)

+K

∫

E

(
d(x) + 〈X,α(x, .)〉

) (
Ff

(
X −

1

K
δx

)
− Ff (X)

)
X(dx). (2.6)

Let K ∈ N
∗ be fixed. The martingale problem for LK has a unique solution for any initial

condition XK(0) ∈ MF (X). It is possible to construct the solution of the martingale problem
by considering a stochastic differential equation (SDE) driven by Poisson point processes and
which corresponds to the IBM used for simulations (see [3, 4]). We need the following estimate
to proceed, which is shown in [2, Lemma 1]

Lemma 2.1 Suppose that supK∈N∗ E
(
〈XK(0), 1〉2

)
< ∞, then

sup
K≥1, t≥0

E

(
〈XK(t), 1〉2

)
< +∞.

In the sequel, we hence make the following assumptions about the initial condition.

Assumption 2.2 Suppose that the sequence of MF (X)-valued random variables {XK(0) : K ∈
N
∗} satisfy the following conditions.

(A) There exists x0 ∈ X such that supp(XK(0)) = {x0} for all K ∈ N
∗.

(B) supK∈N∗ E
(
〈XK(0), 1〉2

)
< ∞.

(C) XK(0) ⇒ X(0) as K → ∞ and 〈X(0), 1〉 > 0 a.s.

From (2.6), we can see that the dynamics has two time scales. The slower time scale is of
order KuK and it corresponds to the occurence of new mutants while the faster time scale is of
order 1 and it corresponds to the birth-death dynamics. We consider rare mutations and will
therefore be lead to suppose that for any c > 0

Assumption 2.3

logK ≪
1

KuK
≪ ecK .

Consider the process

ZK(t) = XK

(
t

KuK

)
, t ≥ 0. (2.7)

In what follows, we denote by {FK
t : t ≥ 0} the canonical filtration associated with ZK . Due to

the change in time, the generator LK of ZK is the generator LK of XK multiplied by (1/KuK).
Hence for any Ff ∈ F

2
b

L
KFf (Z) =

∫

X

p(x)b(x)

[∫

X

(
Ff

(
Z +

1

K
δy
)
− Ff (Z)

)
m(x, dy)

]
Z(dx)
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+
1

KuK

[∫

X

b(x)(1 − uKp(x))K

(
Ff

(
Z +

1

K
δx

)
− Ff (Z)

)
Z(dx)

+

∫

X

(d(x) + 〈Z,α(x, .)〉)K

(
Ff

(
Z −

1

K
δx

)
− Ff (Z)

)
Z(dx)

]
. (2.8)

In the process ZK we have compressed time so that new mutants occur at rate of order 1.
When we work at this time scale we can expect that between subsequent mutations, the fast
birth-death dynamics will average (see e.g. [13]). Our aim is to exploit this separation in the
time scales of ecology (which is related to the births and deaths of individuals) and of evolution
(which is linked to mutations).

To study the averaging phenomenon, for the fast birth-death dynamics, we use the martingale
techniques developed by Kurtz [13]. We introduce the occupation measure ΓK defined for any
t ≥ 0 and for any set A ∈ B (MF (X)) by

ΓK([0, t] ×A) =

∫ t

0
1lA(Z

K(s))ds. (2.9)

Kurtz’s techniques have been used in the context of measure-valued processes in [16, 14] for dif-
ferent population dynamic problems, but an additional difficulty arises here due to the presence
of non-linearities at the fast time scale also.

We introduce a MP (X)-valued process {χK(t) : t ≥ 0} which keeps track of the traits that
have appeared in the population. That is, for each t ≥ 0, χK(t) is a counting measure on X

that weights the traits that have appeared in the population until time t. The process χK is a
pure-jump Markov process that satisfies the following martingale problem. For any Ff ∈ F

2
b

Mχ,K
t :=Ff (χ

K(t))− Ff (χ
K(0)) (2.10)

−

∫ t

0

∫

X

p(x)b(x)

∫

X

(
Ff (χ

K(s) + δy)− Ff (χ
K(s))

)
m(x, dy)ZK(s, dx)ds

=Ff (χ
K(t))− Ff (χ

K(0))

−

∫ t

0

∫

MF (X)

[∫

X

p(x)b(x)

∫

X

(
Ff (χ

K(s) + δy)− Ff (χ
K(s))

)
m(x, dy)µ(dx)

]
ΓK(ds × dµ),

(2.11)

is a square integrable {FK
t }-martingale.

The main result of the paper proves the convergence of {(χK ,ΓK)} to a limit (χ,Γ), where the
slow component χ is a jump Markov process and the fast component stabilizes in an equilibrium
that depends on the value of the slow component.

Theorem 2.4 Suppose that Assumptions 1.1 and 2.2 hold.

(A) There exists a process χ with paths in D (MP (X), [0,∞)) and a random measure Γ ∈
MF ([0,∞)×MF (X)) such that

(
χK ,ΓK

)
⇒ (χ,Γ) as K → ∞, where (χ,Γ) are charac-

terized as follows. For all functions Ff ∈ F
2
b ,

Ff (χ(t))− Ff (χ(0))

−

∫ t

0

∫

MF (X)

[∫

X

b(x)p(x)

∫

X

(
Ff (χ(s) + δy)− Ff (χ(s))

)
m(x, dy)µ(dx)

]
Γ(ds× dµ)

(2.12)
5



is a square integrable martingale for the filtration

Ft = σ {χ(s),Γ ([0, s] ×A) : s ∈ [0, t], A ∈ B (MF (X))} (2.13)

and for any t ≥ 0

∫ t

0

∫

MF (X)
BFf (µ)Γ(ds × dµ) = 0 for all Ff ∈ F

2
b a.s., (2.14)

where the nonlinear operator B is defined by

BFf (µ) = F ′ (〈µ, f〉)

∫

X

(b(x)− (d(x) + 〈µ, α(x, .)〉)) f(x)µ(dx). (2.15)

(B) Moreover for any t > 0 and A ∈ B (MF (X)) we have

Γ([0, t] ×A) =

∫ t

0
1lA
(
n̂χ′(s)δχ′(s)

)
ds, (2.16)

where {χ′(t) : t ≥ 0} is a X-valued Markov jump process with χ′(0) = x0 and generator
given by

Cf(x) = b(x)p(x)n̂x

∫

X

[Fit(y, x)]+

b(y)
(f(y)− f(x))m(x, dy), (2.17)

for any f ∈ Cb(X,R). Here the population equilibrium n̂x and the fitness function Fit(y, x)
are given by:

n̂x = (b(x) − d(x))/α(x, x), and Fit(y, x) = b(y)− d(y)− α(y, x)n̂x. (2.18)

This fitness function provides information on the stability of the Lotka-Volterra system (see
(4.27) below) and describes the growth rate of a negligible mutant population with trait y in an
environment characterized by n̂x.

3 Tightness of {
(
χ
K
,ΓK

)
}

To study the limit when K → +∞, we proceed by a tightness-uniqueness argument. First, we
show the tightness of the distributions of {

(
χK ,ΓK

)
: K ∈ N

∗} and derive certain properties
of the limiting distribution. The limiting values of {ΓK} satisfy an equation that characterizes
the state of the population between two mutations, thanks to the “invasion implies fixation”
assumption.

Theorem 3.1 Suppose that Assumption 1.1 is satisfied and supK≥1 E(〈X
K(0), 1〉2) < ∞. Then

:

(A) The distributions of {(χK ,ΓK) : K ∈ N
∗} are tight in the space

P (D (R+,MP (X))×MF (R+ ×MF (X))) .

(B) Suppose that (χK ,ΓK) ⇒ (χ,Γ), along some subsequence, as K → ∞. Then χ is charac-
terized by the martingale problem given by (2.12) and Γ satisfies the equation (2.14).
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In fact, the Assumption 2.3 can be relaxed and the proof of Theorem 3.1 only requires that
limK→+∞KuK = 0.

Proof.[Proof of Th. 3.1] To prove the tightness of {χK : K ≥ 1}, we use a criterion in [9]. Let
nK(t) = 〈χK(t), 1〉 for t ≥ 0. This process counts the number of mutations in the population.
For any T > 0 we have by Lemma 2.1 that

sup
K≥1

E(nK(T )) ≤‖b‖∞T sup
K≥1,t≤T

E
(
〈ZK(t), 1〉

)
≤ ‖b‖∞T sup

K≥1,t≥0
E
(
〈XK(t), 1〉

)
< ∞. (3.19)

From this estimate and the martingale problem (2.11), it can be checked by using Aldous and
Rebolledo criteria that for every test function f ∈ Cb(X,R), the laws of 〈χK , f〉 are tight in
D([0,∞),R) and that the compact containment condition is satisfied.

Let us now prove the tightness of {ΓK : K ∈ N
∗}. Let ǫ > 0 be fixed. Using Lemma 2.1,

there exists a Nǫ > 0 such that

sup
K≥1,t≥0

P(〈ZK(t), 1〉 > Nǫ) < ǫ. (3.20)

Since X is compact, the set Kǫ = {µ ∈ MF (X), 〈µ, 1〉 ≤ Nǫ} is compact. We deduce that for
any T > 0

inf
K≥1

E
(
ΓK
(
[0, T ] ×Kǫ

))
≥ (1− ǫ)T. (3.21)

Indeed

ΓK
(
[0, T ]×Kǫ

)
=ΓK

(
[0, T ]×MF (X)

)
− ΓK

(
[0, T ]×Kc

ǫ

)
= T −

∫ T

0
1lKc

ǫ
(ZK(t))dt

and the result follows from the Fubini theorem and from (3.20). From Lemma 1.3 of [13],
{ΓK : K ∈ N

∗} is a tight family of random measures. The joint tightness of {
(
χK ,ΓK

)
: K ∈ N

∗}
is immediate from the tightness of {χK : K ∈ N

∗} and {ΓK : K ∈ N
∗}. This proves part (A).

We now prove part (B). Our proof is adapted from the proof of Theorem 2.1 in [13]. From
part (A) we know that the distributions {(χK ,ΓK) : K ∈ N

∗} are tight. Therefore there exists a
subsequence {ηK} along which (χK ,ΓK) converges in distribution to a limit (χ,Γ). We can take
the limit in (2.11) along this subsequence. Except for a denumberable subset of times, Mχ,K

t

converges in distribution to the martingale given by (2.12).
Let us now show that the limiting value Γ satisfies (2.14). From (2.8) for any Ff ∈ F

2
b , we

get that

mF,f,K
t = Ff

(
ZK(t)

)
− Ff

(
ZK(0)

)
−

∫ t

0
L
KFf (Z

K(s))ds

= Ff

(
ZK(t)

)
− Ff

(
ZK(0)

)
−

(
1

KuK

)∫ t

0

∫

MF (X)
BFf (µ)Γ

K(ds× dµ)−
δF,f,K(t)

KuK
(3.22)

is a martingale. Here the operator B is defined by (2.15) and

δF,f,K(t) =

∫ t

0

(
KuKL

KFf (Z
K(s))− BFf (Z

K(s))
)
ds. (3.23)

For any µ ∈ MF (X) we have

7



KuKL
KFf (µ)− BFf (µ)

= KuK

∫

X

p(x)b(x)

[∫

X

(
Ff

(
µ+

1

K
δy

)
− Ff (µ)

)
m(x, dy)

]
µ(dx)

+K

∫

X

b(x)

(
Ff

(
µ+

1

K
δx

)
− Ff (µ)−

1

K
F ′ (〈µ, f〉) f(x)

)
µ(dx)

+K

∫

X

(d(x) + 〈µ, α(x, .)〉)

(
Ff

(
µ−

1

K
δx

)
− Ff (µ) +

1

K
F ′ (〈µ, f〉) f(x)

)
µ(dx)

−KuK

∫

X

p(x)b(x)

(
Ff

(
µ+

1

K
δx

)
− Ff (µ)

)
µ(dx).

For any x ∈ X and µ ∈ MF (X), we have by Taylor expansion that for some α1, α2 ∈ (0, 1):

Ff

(
µ±

1

K
δx

)
− Ff (µ) = ±F ′

(
〈µ, f〉+ α1

f(x)

K

)
f(x)

K

= ±F ′(〈µ, f〉)
f(x)

K
+

f(x)2

2K2
F ′′

(
〈µ, f〉+ α2

f(x)

K

)
.

Therefore we get

∣∣∣∣Ff

(
µ±

1

K
δx

)
− Ff (µ)

∣∣∣∣ ≤
‖F ′‖∞‖f‖2∞

K
.

and
∣∣∣∣K
(
Ff

(
µ±

1

K
δx

)
− Ff (µ)∓

1

K
F ′(〈µ, f〉)f(x)

)∣∣∣∣ ≤
‖F ′′‖∞‖f‖2∞

2K
.

Using these estimates and Assumption 1.1,

∣∣KuKL
KFf (µ)− BFf (µ)

∣∣ ≤ 2uK ‖b‖∞ ‖F ′‖∞‖f‖2∞〈µ, 1〉

+
‖F ′′‖∞‖f‖2∞

2K

(
(‖b‖∞ + ‖d‖∞) 〈µ, 1〉+ α〈µ, 1〉2

)
.

Pick any T > 0. This estimate along with Lemma 2.1 implies that as K → +∞, δF,f,K(t) (given
by (3.23)) converges to 0 in L1(dP), uniformly in t ∈ [0, T ]. Multiplying (3.22) by KuK , we get
that along the subsequence ηK , the sequence of martingales {KuKmF,f,K : K ∈ N

∗} converge in
L1(dP), uniformly in t ∈ [0, T ] to

∫ t
0

∫
MF (X) BFf (µ)Γ(ds × dµ). The limit is itself a martingale.

Since it is continuous and has paths of bounded variation, it must be 0 at all times a.s. Hence
for any Ff ∈ F

2
b , ∫ t

0

∫

MF (X)
BFf (µ)Γ(ds × dµ) = 0 a.s.

Since F
2
b is separable (2.14) also holds. �

4 Characterization of the limiting values

4.1 Dynamics without mutation

As in [2, 3], to understand of the information provided by (2.14), we are lead to consider the
dynamics of monomorphic and dimorphic populations. Our purpose in this section is to show
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that (2.15) and Assumption 1.1 (B) characterize the state of the population between two rare
mutant invasions. Because of the Assumption 1.1 (B), we will see that two different traits
cannot coexist in the long time and thus, we will see that it suffices to work with monomorphic
or dimorphic initial populations (i.e. the support of ZK

0 is one or two singletons).
In Subsection 4.1.1, we consider monomorphic or dimorphic populations and show convergence
of the occupation measures when the final composition in trait of the population is known. For
instance, if the remaining trait is x0, then the occupation measure of ZK(dx, dt) converges to
n̂x0

δx0
(dx)dt. In Subsection 4.1.2, we use couplings with birth and death processes to show

that the distribution of the final trait composition of the population can be computed from the
fitness of the mutant and the resident.

4.1.1 Convergence of the occupation measure ΓK in absence of mutation

First, we show that the “invasion implies fixation” Assumption 1.1 (B) provides information on
the behavior of a dimorphic process when we know which trait is fixed.

Definition 4.1 Let LK
0 be the operator LK (given by (2.6)) with p(x) = 0 for all x ∈ X. We

will denote by Y K a process with generator LK
0 and with a initial condition that varies according

to the case that is studied. Y K has the same birth-death dynamics as a process with generator
LK , but there are no mutations.

In this section we investigate how a process with generator LK
0 behaves at time scales of

order 1/KuK , when the population is monomorphic or dimorphic. We start by proving a simple
proposition.

Proposition 4.2 For any x, y ∈ X suppose that π ∈ P (MF (X)) is such that

π ({µ ∈ MF (X) : {x} ⊂ supp(µ) ⊂ {x, y}}) = 1 (4.24)

and ∫

MF (X)
BFf (µ)π(dµ) = 0 (4.25)

for all Ff ∈ F
2
b . Then for any A ∈ B (MF (X)) we have π(A) = 1lA (n̂xδx) where n̂x has been

defined in (2.18).

Proof. Since π satisfies (4.24), any µ picked from the distribution π has the form µ = nxδx+nyδy
with nx > 0. Let Φ be the map from MF (X) to R+ × R+ defined by

Φ(µ) =
(
〈µ, 1l{x}〉, 〈µ, 1l{y}〉

)
.

Let π∗ = π ◦Φ−1 ∈ P (R+ × R+) be the image distribution of π by Φ−1. From (4.25), replacing
BFf by its definition we obtain

0 =

∫

MF (X)
F ′(〈µ, f〉)

(
〈µ, (b− d)f〉 −

∫

E
f(x)〈µ, α(x, .)〉µ(dx)

)
π(dµ)

=

∫

R+×R+

F ′ (f(x)nx + f(y)ny) [(b(x)− d(x)− α(x, x)nx − α(x, y)ny)nxf(x)

+ (b(y)− d(y)− α(y, x)nx − α(y, y)ny)nyf(y)]π
∗(dnx, dny).
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This equation holds for all Ff ∈ F
2
b only if the support of π∗ consists of (nx, ny) with nx > 0 that

satisfy (b(x)− d(x)− α(x, x)nx − α(x, y)ny)nx = 0 and (b(y)− d(y)− α(y, x)nx − α(y, y)ny)ny =
0. The only possible solutions are (n̂x, 0) and

(ñx, ñy) (4.26)

=

(
(b(x) − d(x))α(y, y) − (b(y)− d(y))α(x, y)

α(x, x)α(y, y) − α(x, y)α(y, x)
,
(b(y)− d(y))α(x, x) − (b(x)− d(x))α(y, x)

α(x, x)α(y, y) − α(x, y)α(y, x)

)
.

However due to Assumptions 1.1, either ñx or ñy is negative and hence (ñx, ñy) cannot be in
the support of π∗. Therefore π∗ ({(n̂x, 0)}) = 1 and this proves the proposition. �

Remark 4.3 Remark that (0, 0), (n̂x, 0), (0, n̂y) and (ñx, ñy) are the stationary solutions of the
following ordinary differential equation that approximates a large population with trait x and y:

dnx

dt
=nx(t)

(
b(x)− d(x)− α(x, x)nx(t)− α(x, y)ny(t)

)

dny

dt
=ny(t)

(
b(y)− d(y)− α(y, x)nx(t)− α(y, y)ny(t)

)
. (4.27)

Heuristically, the “invasion implies fixation” assumption prevents two traits from coexisting
in the long run. If we know which of the trait fixates, Proposition 4.2 provides the form of the
solution π to (4.25). In this case, we can deduce the convergence of the occupation measure of
Y K(·/KuK).

Corollary 4.4 Let x, y ∈ X. For each K ∈ N
∗, let {Y K(t) : t ≥ 0} be a process with generator

LK
0 and supp(Y K(0)) = {x, y}. Let T > 0, and suppose that there exists a δ > 0 such that:

lim
K→∞

P

(
Y K
t {x} < δ for some t ∈

[
0,

T

KuK

])
= 0. (4.28)

Then for any Ff ∈ F
2
b ,

∫ T

0

∫

MF (X)
Ff (µ)Γ

K
0 (dt× dµ) :=

∫ T

0
Ff

(
Y K

(
t

KuK

))
dt ⇒ T × Ff (n̂xδx)

as K → ∞.

Proof. As in part (A) of Theorem 3.1 we can show that {ΓK
0 : K ∈ N

∗} is tight in the space
P (MF ([0, T ]×MF (X))). Let Γ0 be a limit point. Then from part (C) of Theorem 3.1 we get
that

∫ T

0

∫

MF (X)
BFf (µ)Γ0(dt× dµ) = 0 for all Ff ∈ F

2
b a.s., (4.29)

where the operator B is given by (2.15).
Since supp(Y K(0)) ⊂ {x, y} we also have that supp(Y K(t)) ⊂ {x, y} for all t ≥ 0. Let

Sδ = {µ ∈ MF (X) : µ{x} ≤ δ} .

Observe that ΓK
0 ([0, T ] × Sδ) ≤ T a.s. and

0 ≤ E
(
T − ΓK

0 ([0, T ] × Sδ)
)
= KuKE

[∫ T
KuK

0

(
1− 1lSδ

(
Y K(t)

))
dt

]
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≤ T P

(
Y K
t {x} < δ for some t ∈

[
0,

T

KuK

])
.

Hence by (4.28) we get that ΓK
0 ([0, T ] × Sδ)) converges to T in L1(dP). Because Sδ is a closed

set, Γ0 ([0, T ]× Sδ) = T a.s.
Let π be the P (MF (X))-valued random variable defined by π(A) = Γ0([0, T ] × A)/T for

any A ∈ B (MF (X)) . Then π (Sδ) = 1 and hence π satisfies (4.24) almost surely. Furthermore∫
MF (X) BFf (µ)π(dµ) = 0 for all Ff ∈ F

2
b , almost surely. Therefore using Proposition 4.2 proves

this corollary. �

4.1.2 Fixation probabilities

We have seen in Corollary 4.4 that the behavior of a dimorphic population is known provided
we know which trait fixates (see (4.28)). Following Champagnat et al. [2, 3], we can answer
this question by using couplings with branching processes. We consider the process Y K started
with a monomorphic or dimorphic initial condition and examine the fixation probabilities in a
time interval of order 1/KuK .

We begin with some notation. For any x ∈ X and ǫ > 0 let

Nǫ(x) = {µ ∈ MF (X) : supp(µ) = {x} and 〈µ, 1〉 ∈ [n̂x − ǫ, n̂x + ǫ]} . (4.30)

Let K ∈ N
∗, x, y ∈ X. For the process Y K of Definition 4.1 with initial condition Y K(0) =

(zK1 /K)δx+(zK2 /K)δy , we define theN-valued processesNK
1 andNK

2 byNK
1 (t) = K〈Y K(t), 1l{x}〉

and NK
2 (t) = K〈Y K(t), 1l{y}〉. Then {NK(t) = (NK

1 (t), NK
2 (t)) : t ≥ 0} is the N × N-valued

Markov jump process with transition rates given by

mb1 := mb(x) from (m,n) to (m+ 1, n)
nb2 := nb(y) from (m,n) to (m,n+ 1)

md1(m,n) := m
(
d(x) + α(x, x)mK + α(x, y) n

K

)
from (m,n) to (m− 1, n)

n d2(m,n) := n
(
d(y) + α(y, x)mK + α(y, y) n

K

)
from (m,n) to (m,n − 1).

(4.31)

and with initial state (NK
1 (0), NK

2 (0)) = (zK1 , zK2 ). Notice that d1, d2 are increasing functions
in n and m.
Let also SK = [AK , BK)× [CK ,DK) be a subset of R2

+ and define

TSK
= inf

{
t ≥ 0 : NK(t) /∈ SK

}
. (4.32)

The results at the end of this section require comparisons with branching processes, which we
recall in the next proposition whose proof is provided in the Appendix.

Proposition 4.5 For each K ∈ N
∗ let AK , BK , CK , DK ∈ R+ and let SK and (NK

1 , NK
2 ) be

defined as above, with NK(0) ∈ SK . For parts (A) and (B), assume that η > 0, ǫ ∈ (0, 1) are
such that [Kη(1− ǫ),Kη(1 + ǫ)] ⊂ [AK , BK). Let

d−1 (η, ǫ) = inf
K∈N∗

inf{d1(m,n) : (m,n) ∈ [Kη(1− ǫ),Kη(1 + ǫ)]× [CK ,DK)}

d+1 (η, ǫ) = sup
K∈N∗

sup{d1(m,n) : (m,n) ∈ [Kη(1 − ǫ),Kη(1 + ǫ)]× [CK ,DK)}.
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(A) If b1 < d−1 (η, ǫ) and NK
1 (0) ≤ Kη then NK

1 exists [AK , BK) by AK a.s.: for any T > 0

lim
K→∞

P

(
TSK

≤
T

KuK
, NK

1 (TSK
) ≥ BK

)
= 0.

(B) If b1 > d+1 (η, ǫ) and NK
1 (0) ≥ Kη then NK

1 exists [AK , BK) by BK a.s.: for any T > 0

lim
K→∞

P

(
TSK

≤
T

KuK
, NK

1 (TSK
) < AK

)
= 0.

Now assume that there exist ǫ1, ǫ2 ∈ (0, 1) and η1 < η2 such that [Kηi(1 − ǫi),Kηi(1 + ǫi)] ⊂
[AK , BK) for i = 1, 2 and d+1 (η1, ǫ1) < b1 < d−1 (η2, ǫ2). Also suppose that NK

1 (0) ∈ [Kη1,Kη2].

(C) Then for any T > 0

lim
K→∞

P

(
TSK

≤
T

KuK
, NK

1 (TSK
) /∈ [AK , BK)

)
= 0.

Let [CK ,DK) = [1,Kǫ) for some ǫ > 0 and define d−2 (ǫ), d
+
2 (ǫ)

d−2 (ǫ) := inf
K∈N∗

inf{d2(m,n) : (m,n) ∈ [AK , BK)× [1,Kǫ)}

≤ sup
K∈N∗

sup{d2(m,n) : (m,n) ∈ [AK , BK)× [1,Kǫ)} := d+2 (ǫ).

Let tK be any N
∗-valued sequence such that logK ≪ tK ≪ 1

KuK

(D) If b2 < d−2 (ǫ) and NK
2 (0) ≤ Kǫ/2 then

lim
K→∞

P
(
TSK

≤ tK , NK
2 (TSK

) = 0
)
= 1.

(E) If b2 > d+2 (ǫ) and NK
2 (0) = 1 then

1−
d+2 (ǫ)

b2
≤ lim

K→∞
P
(
TSK

≤ tK , NK
2 (TSK

) ≥ ǫK
)
≤ 1−

d−2 (ǫ)

b2

and
d−2 (ǫ)

b2
≤ lim

K→∞
P
(
TSK

≤ tK , NK
2 (TSK

) = 0
)
≤

d+2 (ǫ)

b2
.

Using the results of Proposition 4.5, we can deduce the following result for the fixation
probabilities for a branching process Y K with a dimorphic initial condition and for the behavior
at times of order 1/KuK .

Proposition 4.6 For each K ∈ N
∗ let {Y K(t) : t ≥ 0} be a process with generator LK

0 . Pick
two traits x, y ∈ X initially present in the population and two N

∗-valued sequences {zK1 : K ∈ N
∗}

and {zK2 : K ∈ N
∗} that give the sizes of the populations of trait x and y. Assume that

Y K(0) =
zK1
K

δx +
zK2
K

δy.

Then we have the following for any T > 0.
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(A) A monomorphic population with a sufficiently large size does not die:
Suppose that for some ǫ > 0, zK1 ≥ Kǫ and zK2 = 0 for each K ∈ N

∗. Then for some δ > 0

lim
K→∞

P

(
∃t ∈

[
0,

T

KuK

]
, Y K

t {x} < δ

)
= 0. (4.33)

(B) A monomorphic population with a size around n̂x remains there:
Suppose that for some ǫ > 0, zK1 ∈ [K(n̂x − ǫ),K(n̂x + ǫ)] and zK2 = 0 for each K ∈ N

∗.
Then

lim
K→∞

P

(
∃t ∈

[
0,

T

KuK

]
, Y K(t) /∈ N2ǫ(x)

)
= 0. (4.34)

(C) A favorable mutant with a non-negligible size in a resident population near equilibrium
fixates a.s.:
Suppose that Fit(y, x) > 0 and for some ǫ > 0, zK1 < K(n̂x + ǫ) and zK2 > Kǫ for all
K ∈ N

∗. Then there exists an ǫ0 > 0 such that if ǫ < ǫ0 then

lim
K→∞

P

(
∃t ∈

[
0,

T

KuK

]
, Y K

t {y} <
ǫ

2

)
= 0. (4.35)

For parts (D) and (E), we consider a small mutant population in a resident population near
its equilibrium. We assume that for some ǫ > 0 we have zK1 ∈ [K(n̂x − ǫ),K(n̂x + ǫ)] and
zK2 ∈ [1,Kǫ) for all K ∈ N

∗. Let tK be any N
∗-valued sequence such that logK ≪ tK ≪ 1/KuK .

Let SK = [K(n̂x− 2ǫ),K(n̂x +2ǫ)× [1, 2Kǫ) and let TSK
be the associated stopping time (4.32).

(D) An unfavorable mutant dies out in a time tK .
Let Fit(y, x) < 0. There exists an ǫ0 > 0 such that if ǫ < ǫ0 then

lim
K→∞

P

(
TSK

≤ tK , Y K
TSK

{y} = 0
)
= 1. (4.36)

(E) A favorable mutant invades with probability Fit(y, x)/b(y).
Let Fit(y, x) > 0 and zK2 = 1 for all K ∈ N

∗. Then there exist positive constants c, ǫ0 such
that for all ǫ < ǫ0 we have

lim
K→∞

∣∣∣∣P
(
TSK

≤ tK , Y K
TK(ǫ){y} ≥ 2ǫ

)
−

Fit(y, x)

b(y)

∣∣∣∣ ≤ cǫ, (4.37)

and lim
K→∞

∣∣∣∣P
(
TSK

≤ tK , Y K
TK(ǫ){y} = 0

)
−

(
1−

Fit(y, x)

b(y)

)∣∣∣∣ ≤ cǫ. (4.38)

Proof. Let us prove part (A). Since zK2 = 0, NK
2 (t) = 0 for all t ≥ 0 and K ∈ N

∗. Note that
b(x) − d(x) > 0 and so we can pick a δ > 0 such that b(x) − d(x) − 2α(x, x)δ > 0 and 2δ < ǫ.
Let S ′

K = [Kδ,∞) × {0} and let TS′
K

be given by (4.32). Then

lim
K→∞

P

(
Y K
t {x} < δ for some t ∈

[
0,

T

KuK

])
≤ lim

K→∞
P

(
TS′

K
≤

T

KuK

)

= lim
K→∞

P

(
TS′

K
≤

T

KuK
, NK

1

(
TS′

K

)
< Kδ

)
.
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The last equality above follows from the fact that the only way to exit the set S ′
K is by having

NK
1 go below Kδ. Observe that on the set [Kδ, 2Kδ] × {0}, the supremum of d1 is bounded

above by d(x) + 2α(x, x)δ which is less than b(x). Therefore by part (B) of Proposition 4.5:

lim
K→∞

P

(
TS′

K
≤

T

KuK
, NK

1

(
TS′

K

)
< Kδ

)
= 0,

which proves part (A).

For part (B) we can choose ǫ sufficiently small such that n̂x > 2ǫ. Let η1 = n̂x − ǫ and
η2 = n̂x + ǫ. We can find ǫ1, ǫ2 > 0 such that [η1(1 − ǫ1), η1(1 + ǫ1)] ⊂ [n̂x − 2ǫ, n̂x), [η2(1 −
ǫ2), η2(1 + ǫ2)] ⊂ (n̂x, n̂x + 2ǫ] and on the set [Kη1(1 − ǫ1),Kη1(1 + ǫ1)] × {0} the supremum
of d1 is strictly below b(x) while on the [Kη2(1 − ǫ2),Kη2(1 + ǫ2)] × {0} the infimum of d1 is
strictly above b(x). Let S ′

K = [K(n̂x − 2ǫ),K(n̂x + 2ǫ)) × {0} and let TS′
K

be given by (4.32).
From part (B) of Proposition 4.5 we get

lim
K→∞

P

(
TS′

K
≤

T

KuK
, NK

1

(
TS′

K

)
/∈ [K(n̂x − 2ǫ),K(n̂x + 2ǫ))

)
= 0.

Observe that supp(Y K(t)) = {x} for all t ≥ 0. Hence this limit proves part (B).

For part (C) note that Fit(y, x) > 0. We can choose ǫ0 > 0 such that d(y) + α(y, x)(n̂x +
2ǫ0) + 2α(y, y)ǫ0 = b(y). Now let ǫ < ǫ0 and assume that zK1 < K(n̂x + ǫ) and zK2 > Kǫ for all
K ∈ N

∗, as stated in the proposition. Define the set S ′
K = [0,K(n̂x + 2ǫ)) × [Kǫ/2,∞) and let

TS′
K

be given by (4.32). It is easy to see that

lim
K→∞

P

(
Y K
t {y} <

ǫ

2
for some t ∈

[
0,

T

KuK

])

≤ lim
K→∞

[
P

(
TS′

K
≤

T

KuK
, NK

1

(
TS′

K

)
≥ K(n̂x + 2ǫ)

)
+ P

(
TS′

K
≤

T

KuK
, NK

2

(
TS′

K

)
<

Kǫ

2

)]
.

On the set [K(n̂x+ ǫ/2),K(n̂x+3ǫ/2)]× [Kǫ/2,∞), the infimum of d1 is greater that b(x). Part
(A) of Proposition 4.5 shows that the first limit on the right is 0. On the set [0,K(n̂x + 2ǫ)) ×
[Kǫ/2, 3Kǫ/4), the supremum of d2 is less than b(y). We can use part(B) of Proposition 4.5, to
see that the second limit on the right is also 0. This proves part (C).

For part (D), observe that Fit(y, x) < 0 and let ǫ0 > 0 satisfy d(y)+α(y, x)(n̂x−2ǫ0) = b(y).
Pick an ǫ ∈ (0, ǫ0). On the set [K(n̂x − 2ǫ),K(n̂x + 2ǫ)] × [1, 2Kǫ) the infimum of d2 is greater
than b(y). Part (D) of Proposition 4.5 proves part (D).

For part (E), note that Fit(y, x) > 0 and let ǫ0 > 0 satisfy d(y) + α(y, x)(n̂x + 2ǫ0) +
2α(y, y)ǫ0 = b(y). Pick ǫ ∈ (0, ǫ0). On the set [K(n̂x− 2ǫ),K(n̂x+2ǫ)]× [1, 2Kǫ) the supremum
of d2 is less than d+2 (ǫ) := d(y) + α(y, x)(n̂x + 2ǫ) + 2α(y, y)ǫ and the infimum of d2 is greater
than d−2 (ǫ) := d(y) + α(y, x)(n̂x − 2ǫ). Both d+2 (ǫ) and d−2 (ǫ) are less than b(y). Using part (E)
of Proposition 4.5 proves part (E). �

From the preceding proposition, we can retrieve the state of the process on a large window
[ǫ/KuK , ǫ−1/KuK ] given the initial condition. This allows us to understand what will happen
if we neglect the transitions and large time rare events.

Corollary 4.7 Let us consider the process Y K of Definition 4.1.
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(A) Suppose that for some x ∈ X, supp(Y K(0)) = {x} and Y K
0 {x} > ǫ for all K ∈ N

∗. Then

lim
K→∞

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

])
= 1. (4.39)

(B) Suppose that for some x, y ∈ X such that Fit(y, x) < 0, we have supp(Y K(0)) = {x, y}
with Y K

0 {x} ∈ [n̂x − ǫ, n̂x + ǫ] and Y K
0 {y} < ǫ for all K ∈ N

∗. Then

lim
K→∞

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

])
= 1.

(C) Suppose that for some x, y ∈ X such that Fit(y, x) > 0, we have supp(Y K(0)) = {x, y}
with Y K

0 {x} ∈ [n̂x − ǫ, n̂x + ǫ] and Y K
0 {y} = 1/K for all K ∈ N

∗. Then

lim
ǫ→0

lim
K→∞

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

])

= 1− lim
ǫ→0

lim
K→∞

P

(
Y K(t) ∈ Nǫ(y) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

])

= 1−
Fit(y, x)

b(y)
.

Proof. Let us first consider part (A). Let ǫ > 0 and Y K be the process of Definition 4.1, with
the initial condition stated in the statement of part (A). Proposition 4.6 (A) implies that for
some δ > 0

lim
K→∞

P

(
Y K
t {x} < δ for some t ∈

[
0,

ǫ−1

KuK

])
= 0.

From Corollary 4.4 we know that for any t ≥ 0 and Ff ∈ F
2
b ,

∫ t

0
Ff

(
Y K

(
s

KuK

))
ds ⇒ tFf (n̂xδx)

as K → +∞. Hence if we define σK
ǫ = inf{t ≥ 0 : Y K(t) ∈ Nǫ/2(x)}, then KuKσK

ǫ → 0 in

probability as K → ∞. Now let the process {Ỹ K(t) : t ≥ 0} be given by Ỹ K
ǫ (t) = Y K

ǫ (t+ σK
ǫ ).

By the strong Markov property, this process also has generator LK
0 . Moreover its initial state is

inside Nǫ/2(x). Using part (B) of Proposition 4.6 proves part (A).

For part (B), fix an ǫ > 0 and consider the process Y K with the initial condition specified in
the statement. Let us consider the stopping time TSK

associated with SK = [K(n̂x−2ǫ),K(n̂x+
2ǫ))× [Kǫ, 2Kǫ) by (4.32) and a sequence {tK} as in Proposition 4.6. Since Fit(y, x) < 0, thanks
to Proposition 4.6 (D):

lim
K→∞

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

])

= lim
K→∞

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

]
; TSK

≤ tK ; Y K
TSK

{y} = 0

)
. (4.40)
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Let {Ỹ K(t) : t ≥ 0} be the process given by Ỹ K(t) = Y K
(
TSTK

+ t
)
. By the strong Markov

property, this process also has generator LK
0 . On the event {TSK

≤ tK ; Y K
TSK

{y} = 0}, Ỹ K(0)

is such that supp(Ỹ K(0)) = {x} and Ỹ K
0 {x} ∈ [n̂x − 2ǫ, n̂x + 2ǫ). Applying Part (A) of the

corollary for Ỹ K provides:

lim
K→∞

P

(
Ỹ K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

]
; TSK

≤ tK ; Y K
TSK

{y} = 0

)
= 1.

Moreover, since KuKtK → 0, we obtain (4.39) when TSK
< tK , which proves part (B).

For part (C), fix an ǫ > 0 and define Y K with the initial condition specified in the statement.
Let us consider SK and TSK

as in part (B).We can write

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

])

=
3∑

i=1

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

]
; EK

i (ǫ)

)
, (4.41)

where EK
1 (ǫ) =

{
TSK

≤ tK , Y K
TSK

{y} = 0
}
, EK

2 (ǫ) =
{
TSK

≤ tK , Y K
TSK

{y} ≥ 2ǫ
}

and EK
3 (ǫ) =

(
EK

1 (ǫ) ∪ EK
2 (ǫ)

)c
.

Let us consider the term in (4.41) corresponding to i = 1. Since tK < ǫ/KuK for sufficiently
large K we have

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

]
; EK

1 (ǫ)

)

=E

(
1l{TSK

≤tK ;Y K
TSK

{y}=0}P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

]∣∣∣∣FTSK

))
(4.42)

On the event EK
1 (ǫ), we also have YTSK

{x} ∈ [n̂x − 2ǫ, n̂x + 2ǫ). Thus, applying the strong
Markov property, part (A) and the fact that KuKtK → 0, the probability inside the expectation
in the r.h.s. of (4.42) converges to 1. From part (E) of Proposition 4.6, the term in (4.41)
corresponding to i = 1 converges to 1− Fit(y, x)/b(y) as K → ∞ and ǫ → 0.
For the term corresponding to i = 2, we condition in a way similar to (4.42). On the event
EK

2 (ǫ), Y K
TSK

{y} ≥ 2ǫ and Y K
TSK

{x} ∈ [n̂x − 2ǫ, n̂x + 2ǫ). From part (C) of Proposition 4.6, the

probability of the process Y K
· {y} going below ǫ between TSK

and TSK
+ ǫ−1/KuK tends to 0

when K → +∞. Hence, the condition (4.28) of Corollary 4.4 is satisfied and as a consequence,
the stopping time:

σK,ǫ = inf
{
t ≥ TSK

: Ỹ K
t {x} < ǫ and Ỹ K

t {y} ∈ [n̂y − ǫ, n̂y + ǫ]
}

satisfies KuKσK,ǫ → 0 in probability. Conditioning by FσK,ǫ
, and using part (B), we show that

the term corresponding to i = 2 in (4.41) converges to 0.
The term for i = 3 converges to 0 since limǫ→0 limK→∞ P

(
EK

3 (ǫ)
)
= 0.

Gathering the results for i ∈ {1, 2, 3}, we easily get

lim
ǫ→0

lim
K→∞

P

(
Y K(t) ∈ Nǫ(x) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

])
= 1−

Fit(y, x)

b(y)
.

The proof that limǫ→0 limK→∞ P

(
Y K(t) ∈ Nǫ(y) for all t ∈

[
ǫ

KuK
, ǫ−1

KuK

])
= Fit(y, x)/b(y) is

similar. This completes the proof of part (C) of the corollary. �
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4.2 Proof of Theorem 2.4: convergence to the TSS

We have now the tools to prove Theorem 2.4. By Theorem 3.1, the distributions of {(χK ,ΓK) :
K ∈ N

∗} are tight. Let (χ,Γ) be a limiting value satisfying (2.12) and (2.14). Using Prohorov’s
theorem, there exists a subsequence {(χ̃K , Γ̃K)} that converges in distribution to (χ,Γ). By
Skorokhod representation theorem (see e.g. [1]), there exists on the same probability space as
(χ,Γ) a sequence again denoted by {(χK ,ΓK)} with an abuse of notation, that converges a.s. to
(χ,Γ) and which has the same marginal distributions as {(χ̃K , Γ̃K)}. Observe that the process
{χ′(t) : t ≥ 0} (introduced in the statement of Theorem 2.4) uniquely determines Γ (through
(2.16)) and Γ uniquely determines the process {χ(t) : t ≥ 0} (through the martingale problem
given by (2.12)). It thus remains to prove part (B) of Theorem 2.4.
The main idea to identify the limiting values is that between subsequent appearances of new mu-
tants, our process XK behaves like the process considered in Corollary 4.7. When a fit mutant
appears, it either gets eradicated quickly or the process stabilizes around the new monomorphic
equilibrium characterized by the mutant trait. Between two rare mutations, the trait and size
of the monomorphic equilibrium can be inferred from the occupation measure, because the pop-
ulation is monomorphic and because its size is shown to reach an equilibrium.

For K ∈ N
∗, i ∈ N

∗ let τKi and τi be the i-th jump times of the process χK and χ respectively.
For convenience we define τK0 = τ0 = 0. Since

(
χK ,ΓK

)
→ (χ,Γ) a.s., then for any i ∈ N

∗,(
τKi−1, τ

K
i

)
→ (τi−1, τi) a.s. Using (2.12) and Lemma 2.1, we have that almost surely τi − τi−1 ∈

(0,+∞) for each i ∈ N
∗. Thus

lim
ǫ→0

lim
K→∞

P
(
τKi − τKi−1 ∈ [ǫ, ǫ−1]

)
= 1. (4.43)

In the rest of the proof we will assume that we are always on the set {∀i ∈ N
∗, τKi − τKi−1 ≥ ǫ}.

For ǫ > 0 and t > 0 define:

RK,ǫ
i (t) = 1l{τKi −τKi−1

≥ǫ}

∫ τKi ∧t

(τKi−1
+ǫ)∧t

∫
MF (X)〈µ, x〉Γ

K(ds × dµ)

∫ τKi ∧t

(τKi−1
+ǫ)∧t

∫
MF (X)〈µ, 1〉Γ

K(ds × dµ)

Ri(t) =

∫ τi∧t
τi−1∧t

∫
MF (X)〈µ, x〉Γ(dt× dµ)

∫ τi∧t
τi−1∧t

∫
MF (X)〈µ, 1〉Γ(dt × dµ)

.

Note that if supp(ZK(s)) = {x} for all s ∈ [τKi−1 ∧ t+ ǫ, τKi ∧ t), then RK,ǫ
i (t) = x, and the same

holds for Z and Ri. Heuristically, R
K,ǫ
i and Ri are the estimators of the trait of the monomorphic

population that fixes between the (i− 1)th and the ith mutations.
Let us define:

χ′K,ǫ(t) = x01lt<ǫ +

+∞∑

i=1

RK,ǫ
i (t)1l[τKi−1

+ǫ,τKi +ǫ)(t) and χ′(t) =

+∞∑

i=1

Ri(t)1l[τi−1,τi)(t).

The a.s. convergence
(
χK ,ΓK

)
→ (χ,Γ) also implies that χ′K,ǫ converges to χ′ as K → +∞

and ǫ → 0 in the Skorokhod space D([0, T ],X) for any T > 0.

For any i ∈ N
∗ and ǫ > 0 define an event

EK
i (ǫ) =

{
ZK(t) ∈ Nǫ(R

K,ǫ
i (t)) for all t ∈

[
τKi−1 + ǫ, τKi

)}
,
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where for any x ∈ X, Nǫ(x) is defined by (4.30). On EK
i (ǫ), RK,ǫ

i (t) = RK,ǫ
i (τKi−1 + ǫ) for all

t ∈ [τKi−1 + ǫ, τKi ) and with an abuse of notation, we will write RK,ǫ
i for this value.

Now, thanks to the convergence of the τKi ’s and Lemma 2.1, the proof of part (B) of Theorem
2.4 is done if we prove the following proposition:

Proposition 4.8 Under Assumptions 1.1 and 2.2, we have for all i ∈ N
∗ that:

lim
ǫ→0

lim
K→∞

P
(
EK

i (ǫ)
)
= 1. (4.44)

Indeed, if Proposition 4.8 is proved, then Γ is identified. To see this, let Ff ∈ F
2
b , i ∈ N

∗ and
t ≥ 0, and define two real-valued variables

ρK =

∫ τKi ∧t

τKi−1
∧t

∫

MF (X)
Ff (µ)Γ

K(ds × dµ) and ρ =

∫ τi∧t

τi−1∧t

∫

MF (X)
Ff (µ)Γ(ds × dµ).

Then certainly ρK ⇒ ρ as K → ∞. Take any open set B ∈ R. Then

lim
K→∞

P
(
ρK ∈ B

)
= lim

ǫ→0
lim

K→∞
P
(
ρK ∈ B, EK

i (ǫ)
)

= lim
ǫ→0

lim
K→∞

P

(∫ τKi ∧t

τKi−1
∧t

Ff

(
n̂RK

i (ǫ)δRK,ǫ
i

)
ds ∈ B, EK

i (ǫ)

)

= lim
ǫ→0

lim
K→∞

P

((
τKi ∧ t− τKi−1 ∧ t

)
Ff

(
n̂
RK,ǫ

i

δ
RK,ǫ

i

)
∈ B

)

= P ((τi ∧ t− τi−1 ∧ t)Ff (n̂Ri
δRi

) ∈ B) .

This proves (2.16).
Proof.[Proof of Proposition 4.8] For each i ∈ N

∗, we can construct a process {Y K
i (t) : t ≥ 0}

with generator LK
0 such that

ZK(τKi + t) = Y K
i

(
t

KuK

)
for all t ∈ [0, τKi+1 − τKi ). (4.45)

For i = 1, we obtain from Assumption 2.2 and part (A) of Corollary 4.7 that

lim
K→∞

P

(
Y K
0 (t) ∈ Nǫ(x0) for all t ∈

[
ǫ

KuK
,
ǫ−1

KuK

])
= 1, (4.46)

from which we have (4.44) for i = 1 thanks to (4.45) and (4.43).

We now proceed by induction. Let us assume that for i ≥ 1, we have (4.44). Let UK
i

denote the type of the new mutant that appears at time τKi . Pick x, y ∈ X. On the event

{EK
i (ǫ), RK,ǫ

i = x,UK
i = y}, we have supp(ZK

(
τKi
)
) = {x, y}, ZK

τKi
{y} = 1/K and ZK

τKi
{x} ∈

[n̂x − ǫ, n̂x + ǫ]. Using parts (B) and (C) of Corollary 4.7 and (4.45), we obtain that

lim
ǫ→0

lim
K→∞

P

(
EK

i+1(ǫ), R
K,ǫ
i+1 = x

∣∣∣EK
i (ǫ), RK,ǫ

i = x,UK
i = y

)
=

(
1−

[Fit(y, x)]+

b(y)

)

and lim
ǫ→0

lim
K→∞

P

(
EK

i+1(ǫ), R
K,ǫ
i+1 = y

∣∣∣EK
i (ǫ), RK,ǫ

i = x,UK
i = y

)
=

[Fit(y, x)]+

b(y)
.

18



Since the distribution of UK
i conditionally to {EK

i (ǫ), RK,ǫ
i (τKi ) = x} is m(x, dy),

lim
ǫ→0

lim
K→∞

P

(
EK

i+1(ǫ), R
K,ǫ
i+1 ∈ A

∣∣∣EK
i (ǫ), RK,ǫ

i = x
)

= 1lA(x)

∫

X

(
1−

[Fit(y, x)]+

b(y)

)
m(x, dy) +

∫

A

[Fit(y, x)]+

b(y)
m(x, dy). (4.47)

This along with (4.46) for i = 1 implies that for any i ∈ N
∗ we have limǫ→0 limK→∞ P

(
EK

i (ǫ)
)
=

1. This concludes the proof of Proposition 4.8 and the proof of Theorem 2.4. �

A Appendix.

We start with recalling some useful estimates for birth and death process (Lemma A.2). Coupling
facts between the components of a 2D-birth and death processes on the quadrant (see (4.31))
and 1D-birth and death processes are then given in Proposition A.4. Both results are then used
to obtain estimates for the 2D-birth and death processes on the quadrant.

Definition A.1 For any b, d ∈ R+ and n ∈ N, let P(b, d, n) denote the law of the N-valued con-
tinuous time branching process starting at n with birth rate b and death rate d. For convenience,
we will consider P(b,∞, n) to be the law of the process that is 0 at all times.

Lemma A.2 For each positive integer K let {BK(t) : t ≥ 0} be a continuous time branching
process with law P(b, d,K) with b 6= d. Pick an ǫ ∈ [0, 1] and define a stopping time

σK = inf
{
t ≥ 0 : BK(t) ≤ K(1− ǫ) or BK(t) > K(1 + ǫ)

}
.

Then we have the following.

(A) If b < d then P
(
BK (σK) > K(1 + ǫ)

)
≤ exp (−Kǫ log(d/b))

and if b > d then P
(
BK (σK) ≤ K(1− ǫ)

)
≤ exp (−Kǫ log(b/d)).

(B) If bd = 0 and ǫ /∈ {0, 1} then infK≥1 E (σK) > 0 and supK≥1E
(
σ2
K

)
< ∞.

In parts (C) and (D) let tK be any N
∗-valued sequence satisfying logK ≪ tK

(C) If ǫ = 1 and if b < d then limK→∞ P
(
σK ≤ tK , BK (σK) = 0

)
= 1.

(D) Let {Y (t) : t ≥ 0} be a branching process with law P(b, d, 1), where b > d. For any ǫ > 0
define

γK = inf {t ≥ 0 : Y (t) = 0 or Y (t) ≥ Kǫ)} .

Then

1− lim
K→∞

P (γK ≤ tK , Y (γK) ≥ Kǫ) = lim
K→∞

P (γK ≤ tK , Y (γK) = 0) =
d

b
.

Proof. Note that σK < ∞ a.s. since a branching process either goes to 0 or to ∞ almost surely.
We can easily check that MK(t) = (d/b)B

K (t∧σK ) is a bounded martingale. Then by the optional
sampling theorem we get

E (MK(σK)) = E (MK(0)) =

(
d

b

)K

. (A.1)
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If b < d then E (MK(σK)) ≥ P
(
BK (σK) > K(1 + ǫ)

)
(d/n)K(1+ǫ) and if b > d then E (MK(σK)) ≥

P
(
BK (σK) ≤ K(1− ǫ)

)
(d/b)K(1−ǫ). Plugging these estimates in (A.1) proves part (A).

For part (B) we assume that d = 0 and b > 0. The case where b = 0 and d > 0 is
similar. We can also assume that K(1 + ǫ) is a positive integer. Since d = 0, the process BK is
monotonically increasing and hence BK(σK) = K(1 + ǫ). We can show with Dynkin’s formula
that BK(t)− b

∫ t
0 B

K(s)ds is a martingale, and obtain by the optional sampling theorem that

K = E
(
BK(σK)

)
− bE

(∫ σK

0
BK(s)ds

)
= K(1 + ǫ)− bE

(∫ σK

0
BK(s)ds

)
.

Since BK(t) ∈ [K,K(1+ǫ)] for t ≤ σK we have KE (σK) ≤ E
(∫ σK

0 BK(s)ds
)
≤ K(1+ǫ)E (σK) ,

and hence

ǫ

b(1 + ǫ)
≤ inf

K≥1
E (σK) ≤ sup

K≥1
E (σK) ≤

ǫ

b
. (A.2)

From the fact that tBK(t)−
∫ t
0 B

K(s)(bs + 1)ds is also a martingale, we obtain that

KE

(
b

2
σ2
K + σK

)
≤ E

(∫ σK

0
BK(s)(bs + 1)ds

)
= E

(
σKBK(σK)

)
= K(1 + ǫ)E (σK) .

This along with (A.2), proves part (B). Parts (C) and (D) follow directly from [2, Th. 4]. �

Definition A.3 Suppose that d is a function from N×N to R+. Then for any set S ⊂ R+×R+

we define

inf d(S) = inf {d(m,n) : (m,n) ∈ S ∩ (N × N)}

and sup d(S) = sup {d(m,n) : (m,n) ∈ S ∩ (N× N)} .

Proposition A.4 Let {N(t) = (N1(t), N2(t))} be a N × N-valued pure jump Markov process
with the following transition rates.

mb1 from (m,n) to (m+ 1, n)
nb2 from (m,n) to (m,n+ 1)

md1(m,n) from (m,n) to (m− 1, n)
nd2(m,n) from (m,n) to (m,n− 1).

Here b1, b2 are positive constants and d1, d2 are functions from N×N to R+. Suppose that there
is a set S ⊂ R+ × R+ and constants d+1 , d

−
1 , d

+
2 , d

−
2 ∈ [0,∞] such that

d−1 ≤ inf d1(S) ≤ sup d1(S) ≤ d+1 and

d−2 ≤ inf d2(S) ≤ sup d2(S) ≤ d+2

Assume that (N1(0), N2(0)) ∈ S and let TS be the random time defined by

TS = inf{t ≥ 0 : N(t) /∈ S}.

Let z+1 , z
−
1 , z

+
2 , z

−
1 be positive integers satisfying z−1 ≤ N1(0) ≤ z+1 and z−2 ≤ N2(0) ≤ z+2 . Then

on the same probability space as N , we can construct four N-valued processes B+
1 , B

−
1 , B

+
2 and

B−
2 with laws P(b1, d

−
1 , z

+
1 ), P(b1, d

+
1 , z

−
1 ), P(b2, d

−
2 , z

+
2 ), P(b2, d

+
2 , z

−
1 ) such for all t ≤ TS the

following relations are satisfied almost surely,

B−
1 (t) ≤ N1(t) ≤ B+

1 (t) and B−
2 (t) ≤ N2(t) ≤ B+

2 (t).
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Proof.The proof follows from direct coupling of these processes. �

Proof.[Proof of Proposition 4.5] We prove part (A). Without loss of generality, we can assume
that Kη,Kη(1 − ǫ),Kη(1 + ǫ) are positive integers and NK

1 (0) = Kη. Define

σK = inf
{
t ≥ 0 : NK(t) /∈ [Kη(1− ǫ),Kη(1 + ǫ)]× [CK ,DK)

}
.

In order for the process NK
1 , started at Kη, to go beyond level BK it must exit the interval

[Kη(1− ǫ),Kη(1+ ǫ)] from above. The probability to go from Kη to Kη(1+ ǫ) is exponentially
small. Indeed, since b < d−1 (η, ǫ), by Proposition A.4 we can construct a coupled subcritical
branching process BK

+ with law P(b1, d
−
1 (η, ǫ),K) such that BK

+ (t) ≥ NK
1 (t) for all t ≤ σK

almost surely. Hence if γK is the first time the process BK
+ leaves the set [Kη(1− ǫ),Kη(1 + ǫ)]

then from part (A) of Lemma A.2 we obtain that for some c > 0

P
(
NK

1 (σK) > Kη(1 + ǫ)
)
≤ P

(
BK

+ (γK) > Kη(1 + ǫ)
)
≤ e−cK . (A.3)

Before NK
1 exists [AK , BK) from above, this process crosses the interval [Kη(1− ǫ),Kη] several

times. Let ρK be the number (possibly 0) of these passages in the interval [0,TSK
]. Because of

(A.3), for any n ∈ N,

P (ρK < n) ≤ ne−cK. (A.4)

Let nK = [1/KuK ]2. Then,

P

(
TSK

≤
T

KuK
, NK

1 (TSK
) ≥ BK

)

≤ P

(
TSK

≤
T

KuK
, NK

1 (TSK
) ≥ Kη(1 + ǫ), ρK ≥ nK

)
+ P(ρK < nK)

≤ P

(
nK∑

i=1

τK,i <
T

KuK

)
+ P(ρK < nK),

(A.5)

where the τK,i denotes the durations of the nK ’s first passages of NK
1 from Kη to Kη(1 + ǫ).

The last term in the r.h.s. of (A.5) tends to 0 with K due to our choice of nK , (A.4) and (2.3).
Using the couplings of Proposition A.4, it is possible to dominate NK

1 by a pure birth process
with distribution P(b1, 0,Kη(1 − ǫ)) on each of its excursions of NK

1 from Kη(1 − ǫ) to Kη.
Thus, each τK,i can be bounded above by the time σK,i needed by a pure birth process with
distribution P(b1, 0,Kη(1−ǫ)) to reach Kη. The σK,i’s can be chosen to be i.i.d. and by Lemma
A.2, Part (B), infK≥1 E (τK,1) > 0 and supK≥1 E

(
τ2K,1

)
< ∞. Applying Chebychev’s inequality

we get

P

(
nK∑

i=1

τK,i ≤
T

KuK

)
≤ P

(
1

nK

nK∑

i=1

σK,i − E (σK,i) ≤
T

KuKnK
− E (σK,1)

)

≤
E
(
σ2
K,1

)

nK

(
E (σK,1)−

T
KuKnK

)+ .

As K → ∞, T/(KuKnK) → 0 and nK → ∞. This proves part (A). Proof of part (B) is similar
and part (C) is a direct consequence of parts (A) and (B).
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We now prove part (D). Using Proposition A.4 and since b2 < d−2 (ǫ) and NK
2 (0) ≤ Kǫ/2,

NK
2 can be dominated on [0, TSK

] by a subcritical branching process BK
+ with distribution

P(b2, d
−
2 (ǫ), [Kǫ/2]). Let

γ+K = inf{t ≥ 0 : BK
+ (t) = 0 or BK

+ (t) ≥ Kǫ}. (A.6)

The coupling ensures that if TSK
≥ γ+K and BK

+ (γ+K) = 0 then NK
2 (γ+K) = 0 and TSK

= γ+K .
Since BK

+ (t) ∈ (0,Kǫ) for t ∈ [0, γ+K) we can also see that if TSK
< γ+K then either NK

2 (TSK
) = 0

or NK
1 (TSK

) /∈ [AK , BK). Hence

P
(
γ+K ≤ tK , BK

+ (γ+K) = 0
)

≤ P
(
γ+K ≤ tK , BK

+ (γ+K) = 0, TSK
≥ γ+K

)
+ P

(
γ+K ≤ tK , TSK

< γ+K
)

≤ P
(
TSK

≤ tK , NK
2 (TSK

) = 0, TSK
= γ+K

)
+ P

(
TSK

≤ tK , NK
2 (TSK

) = 0, TSK
< γ+K

)

+ P
(
TSK

≤ tK , NK
1 (TSK

) /∈ [AK , BK), TSK
< γ+K

)

≤ P
(
TSK

≤ tK , NK
2 (TSK

) = 0
)
+ P

(
TSK

≤ tK , NK
1 (TSK

) /∈ [AK , BK)
)
. (A.7)

Due to part (C), the limit of the second term in the r.h.s. of (A.7) is 0. Since part (C) of Lemma
A.2 tells us that the limit of the l.h.s. is 1, this proves part (D).

We now prove part (E). Since b2 > d+2 (ǫ) > d−2 (ǫ) and NK
2 (0) = 1, using Proposition

A.4, we can construct two coupled supercritical branching processes BK
− , BK

+ with distributions
P(b2, d

+
2 (ǫ), 1),P(b2 , d

−
2 (ǫ), 1) such that BK

− (t) ≤ NK
2 (t) ≤ BK

+ (t) for all t ≤ TSK
almost surely.

Let γ+K be given by (A.6) and γ−K be the corresponding stopping time for BK
− . The fact that

BK
− is below NK

2 until time TSK
, (A.7) and part (C) allow us to prove that:

lim
K→+∞

P
(
γ+K ≤ tK , BK

+ (γ+K) = 0
)
≤ lim

K→+∞
P
(
TSK

≤ tK , NK
2 (TSK

) = 0
)

≤ lim
K→+∞

P
(
γ−K ≤ tK , BK

− (γ−K) = 0
)
. (A.8)

Since BK
+ is above NK

2 until time TSK
, we obtain:

lim
K→+∞

P
(
TSK

≤ tK , NK
2 (TSK

) ≥ Kǫ
)
≤ lim

K→+∞
P
(
γ+K ≤ tK , BK

+ (γ+K) ≥ Kǫ
)
. (A.9)

Finally, a proof similar to the one of (A.7), we can prove that:

lim
K→∞

P
(
γ−K ≤ tK , BK

− (γ−K) ≥ Kǫ
)
≤ lim

K→∞
P
(
TSK

≤ tK , NK
2 (TSK

) ≥ Kǫ
)
. (A.10)

From part (D) of Lemma A.2 and Assumption 2.3 we can deduce that

1− lim
K→∞

P
(
γ+K ≤ tK , BK

+

(
γ+K
)
≥ Kǫ

)
= lim

K→∞
P
(
γ+K ≤ tK , BK

+

(
γ+K
)
= 0
)
=

d−2 (ǫ)

b2

and 1− lim
K→∞

P
(
γ−K ≤ tK , BK

−

(
γ−K
)
≥ Kǫ

)
= lim

K→∞
P
(
γ−K ≤ tK , BK

−

(
γ−K
)
= 0
)
=

d+2 (ǫ)

b2
.

These relations along with (A.8), (A.9) and (A.10) prove part (E). �
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