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Critical catalytic branching random walk on an integer lattice Z d is investigated for all d ∈ N. The branching may occur at the origin only and the start point is arbitrary. The asymptotic behavior, as time grows to infinity, is determined for the mean local particles numbers. The same problem is solved for the probability of particles presence at a fixed lattice point. Moreover, the Yaglom type limit theorem is established for the local number of particles. Our analysis involves construction of an auxiliary Bellman-Harris branching process with six types of particles. The proofs employ the asymptotic properties of the (improper) c.d.f. of hitting times with taboo. The latter notion was recently introduced by the author for a non-branching random walk on Z d .
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Introduction

Catalytic branching random walk (CBRW) on d-dimensional integer lattice is a model of particles population evolution. We recall its main features. Each particle independently of others may perform random walk on Z d and produce offsprings at the source of branching located w.l.g. at the origin. Symmetric branching random walk (SBRW) on Z d studied earlier, e.g., in [START_REF] Albeverio | Asymptotics of branching symmetric random walk on the lattice with a single source[END_REF], [START_REF] Bogachev | The moment analysis of a branching random walk on a lattice with a single source[END_REF] and [START_REF] Yarovaya | A limit theorem for critical branching random walk on Z d with a single source[END_REF] is a particular case of CBRW on Z d (see [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF]).

The model under consideration was proposed in [START_REF] Vatutin | Catalytic branching random walk and queueing systems with random number of independent servers[END_REF] for d = 1 and studied for other d ∈ N in [START_REF] Bulinskaya | Catalytic Branching Random Walk on a Two-Dimensional Lattice[END_REF], [START_REF] Bulinskaya | Catalytic Branching Random Walk on Three-Dimensional Lattice[END_REF], [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] and [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF]. The analysis of CBRW in [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] and [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF] has shown that similarly to many kinds of branching processes (see [START_REF] Sewastianow | [END_REF]) CBRW on Z d is classified as supercritical, critical or subcritical. According to [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF], the exponential growth (as time tends to infinity) of total number of particles in population and local numbers of particles as well is characteristic for the supercritical CBRW on Z d . The term local refers to the (number of) particles located at a lattice point.

Quite different situation occurs for critical CBRW which is the main object of study in this paper. For example, for d = 1 or d = 2 the particles population degenerates with probability 1 but survives with strictly positive probability for d ≥ 3 (see [START_REF] Bulinskaya | Catalytic Branching Random Walk on Three-Dimensional Lattice[END_REF], [START_REF] Bulinskaya | Limit Distributions for the Number of Particles in Branching Random Walks[END_REF], [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] and [START_REF] Vatutin | Catalytic branching random walk and queueing systems with random number of independent servers[END_REF]). Moreover, the total number of particles conditioned on non-degeneracy has non-trivial discrete limit distribution, different for d < 3 and d ≥ 3 (see [START_REF] Bulinskaya | Catalytic Branching Random Walk on a Two-Dimensional Lattice[END_REF], [START_REF] Bulinskaya | Catalytic Branching Random Walk on Three-Dimensional Lattice[END_REF] and [START_REF] Vatutin | Catalytic branching random walk and queueing systems with random number of independent servers[END_REF]). Thus, in the model of critical

Main results

Now we dwell on the definition of a critical CBRW on Z d . At the initial time t = 0 there is a single particle on the lattice located at a point x ∈ Z d . If x = 0, the particle performs a continuous time random walk until the time of the first hitting the origin. The random walk outside the origin is symmetric, homogeneous, irreducible (i.e. a particle passes from an arbitrary u ∈ Z d to any υ ∈ Z d with positive probability within a finite time) and has a finite variance of jumps. Accordingly, we assume this random walk be specified by an infinitesimal matrix A = (a(u, υ)) u, υ∈Z d such that a(u, υ) = a(υ, u), a(u, υ) = a(0, υ -u) := a(υ -u), u, υ ∈ Z d , υ∈Z d a(υ) = 0 where a(0) < 0 and a(υ) ≥ 0 if υ = 0, υ∈Z d υ 2 a(υ) < ∞. If x = 0 or the particle has just hit the origin it spends there an exponentially distributed time (with parameter 1). Afterwards, it either dies with probability α ∈ (0, 1) producing before the death a random number of offsprings ξ or leaves the source of branching with probability 1 -α. In the latter case the intensity of transition from the origin to a point υ = 0 is given by a(0, υ) = -(1 -α) a(υ) a(0) .

At the origin the branching is determined by a probability generating function

f (s) := Es ξ = ∞ k=0 f k s k , s ∈ [0, 1].
In [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] CBRW on Z d is called critical if the following relations hold

αf ′ (1) + (1 -α)(1 -h d ) = 1 and σ 2 := α f ′′ (1) < ∞. (1) 
Here h d is the probability of the event that a particle leaving the origin will never return there. By the recurrence of a random walk on Z and Z 2 one has h 1 = h 2 = 0. It is well known that h d ∈ (0, 1) for d ≥ 3. Newborn particles are located at the origin at the birth moment. They evolve according to the scheme described above independently of each other as well as of the parent particles. The number of particles located at a point y ∈ Z d at time t ≥ 0 is denoted by µ(t; y).

The goal of the paper is three-fold. Firstly, we find the asymptotic behavior (as t → ∞) of the mean number of particles m(t; x, y) := E x µ(t; y) located at a point y ∈ Z d , y = 0, at time t ≥ 0 (everywhere the index x means that our CBRW starts at x ∈ Z d ). Secondly, we retrieve the asymptotic behavior of the probability q(t; x, y) := P x (µ(t; y) > 0) of the presence of particles at the point y at time t. Thirdly, we establish a limit theorem for properly normalized local numbers µ(t; y) conditioned on µ(t; y) > 0 as t → ∞.

To formulate the main results of the paper we introduce some more notation. Let p(t; x, y) be the transition probability from x to y within time t ≥ 0 for a random walk on Z d generated by matrix A. Set

G λ (x, y) := ∞ 0 e -λt p(t; x, y) dt, λ > 0, x, y ∈ Z d .
Note that the Green's function G 0 (x, y) := lim λ→0+ G λ (x, y) is well-defined and takes finite values for d ≥ 3 by virtue of the transience of our random walk on Z d , d ≥ 3. One can check (see [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF]) that h d = (aG 0 (0, 0)) -1 , d ∈ N, where a := -a(0).

As shown in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF], Theorem 2.1.1 (see also [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF]), for any fixed x, y ∈ Z d , one has

p(t; x, y) ∼ γ d t d/2 , p(t; 0, 0) -p(t; x, y) ∼ γd (y -x) t 1+d/2 , t → ∞, (2) 
where

γ d := (2π) d |det φ ′′ θθ (0)| -1/2 , φ(θ) := z∈Z d a(z, 0) cos(z, θ), θ ∈ [-π, π] d , φ ′′ θθ (0) = ∂ 2 φ(θ) ∂θ i ∂θ j θ=0 i,j∈{1,...,d} , γd (z) := 1 2(2π) d R d (υ, z) 2 e (φ ′′ θθ (0)υ,υ)/2 dυ, z ∈ Z d ,
and (•, •) stands for the scalar product in R d . In particular, it follows that the value

m d := 1 -(1 -α)a -1 + 2(1 -α)a -1 G -2 0 (0, 0) ∞ 0 tp(t; 0, 0) dt is finite for d ≥ 5. Set also q(s, t; x, y) := 1 -E x s µ(t;y) , s ∈ [0, 1], t ≥ 0, x, y ∈ Z d . For d = 2 we use the function J(s; y) := α ∞ 0 (f (1 -q(s, u; 0, y)) -1 + q(s, u; 0, y)) du, s ∈ [0, 1], y ∈ Z d .
The main results are contained in the following three theorems. For the sake of completeness their statements include the case y = 0 studied earlier in [START_REF] Bulinskaya | Catalytic Branching Random Walk on a Two-Dimensional Lattice[END_REF]- [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF], [START_REF] Hu | Branching random walk in Z 4 with branching at the origin only[END_REF], [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF], [START_REF] Topchii | Individuals at the origin in the critical catalytic branching random walk[END_REF] and [START_REF] Vatutin | Catalytic branching random walk and queueing systems with random number of independent servers[END_REF].

Theorem 1 Let x, y ∈ Z d . The following relations are valid being different for y = 0 and y = 0, namely, as t → ∞,

m(t; x, y) ∼ γ 1 √ t , m(t; x, 0) ∼ γ 1 a (1 -α) √ t , d = 1, m(t; x, y) ∼ γ 2 t , m(t; x, 0) ∼ γ 2 a (1 -α)t , d = 2, m(t; x, y) ∼ G 0 (x, 0)G 0 (0, y) 2πγ 3 √ t , m(t; x, 0) ∼ aG 0 (x, 0)G 0 (0, 0) 2πγ 3 (1 -α) √ t , d = 3, m(t; x, y) ∼ G 0 (x, 0)G 0 (0, y) γ 4 ln t , m(t; x, 0) ∼ aG 0 (x, 0)G 0 (0, 0) γ 4 (1 -α) ln t , d = 4, m(t; x, y) → (1 -α)G 0 (x, 0)G 0 (0, y) a G 2 0 (0, 0) m d , m(t; x, 0) → G 0 (x, 0) G 0 (0, 0)m d , d ≥ 5.
Theorem 2 For x, y ∈ Z d and t → ∞ the following formulae hold true

q(t; x, y) ∼ 2(1 -α) σ 2 γ 1 a √ t ln t , d = 1, q(t; x, y) ∼ γ 2 t 1 - a 1 -α J(0; y) , y = 0, d = 2, q(t; x, 0) ∼ γ 2 a (1 -α)t (1 -J(0; 0)), d = 2, q(t; x, y) ∼ 4πγ 3 (1 -α)G 0 (x, 0) σ 2 a G 3 0 (0, 0) √ t ln t , d = 3, q(t; x, y) ∼ 3γ 4 (1 -α)G 0 (x, 0) ln t σ 2 a G 3 0 (0, 0) t , d = 4, q(t; x, y) ∼ 2 m d G 0 (x, 0) σ 2 G 0 (0, 0)t , d ≥ 5,
where for d = 2 and s ∈ [0, 1] the strict inequalities J(s; y) < (1 -s)(1 -α)/a, y = 0, and J(s; 0) < 1 -s are valid.

Theorem 3 Given x, y ∈ Z d , λ ∈ [0, ∞) and s ∈ [0, 1], one has, as t → ∞, lim t→∞ E x exp - λ µ(t; y) E x (µ(t; y)|µ(t; y) > 0) µ(t; y) > 0 = 1 λ + 1 , d = 1, d = 3 or d ≥ 5, lim t→∞ E x s µ(t;y) µ(t; y) > 0 = (1 -α)s -a(J(0; y) -J(s; y)) 1 -α -aJ(0; y) , y = 0, d = 2, lim t→∞ E x s µ(t;0) µ(t; 0) > 0 = s -(J(0; 0) -J(s; 0)) 1 -J(0; 0) , d = 2, lim t→∞ E x exp - λ µ(t; y) E x (µ(t; y)|µ(t; y) > 0) µ(t; y) > 0 = 1 3 + 2 3 • 2 2 + 3λ , d = 4.
Observe that the normalizing factor E x (µ(t; y)|µ(t; y) > 0) arising in Theorem 3 is exactly m(t; x, y)/q(t; x, y) and the asymptotic behavior of the functions m(t; x, y) and q(t; x, y) is given by Theorems 1 and 2, respectively.

To establish Theorem 1 it is useful to invoke the forward and backward Kolmogorov's differential equations (considered in appropriate Banach spaces) for mean numbers of particles at different points of the lattice and also the resulting integral equations (see [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF]). As for Theorems 2 and 3, note that for proving results in [START_REF] Bulinskaya | Catalytic Branching Random Walk on a Two-Dimensional Lattice[END_REF], [START_REF] Hu | Branching random walk in Z 4 with branching at the origin only[END_REF], [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF], [START_REF] Topchii | Individuals at the origin in the critical catalytic branching random walk[END_REF] and [START_REF] Vatutin | Catalytic branching random walk and queueing systems with random number of independent servers[END_REF] concerning the number of particles at the origin the method of introduction of an auxiliary Bellman-Harris branching process with particles of two types was efficient. However, for proving Theorems 2 and 3 we have to involve a Bellman-Harris branching process with particles of six types. To apply the latter method we attend to a new notion of the hitting time with taboo in the framework of a (non-branching) random walk on Z d . More precisely, we use our recent results (see [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF]) on the asymptotic behavior of the tail of the (improper) cumulative distribution function of this time. Due to that one can employ the theorems by V.A.Vatutin for Bellman-Harris branching processes with particles of several types (see, e.g., [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF]- [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF]). Afterwards we have to deal with sophisticated analytic estimates of the solutions of the parametric integral equations (see, e.g., [START_REF] Hu | Branching random walk in Z 4 with branching at the origin only[END_REF], [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF], [START_REF] Topchii | Individuals at the origin in the critical catalytic branching random walk[END_REF] and [START_REF] Vatutin | Catalytic branching random walk and queueing systems with random number of independent servers[END_REF]).

Proof of Theorem 1

Let us recall some useful results employed within this section. According to [START_REF] Gikhman | The Theory of Stochastic Processes II[END_REF], Ch.3, Sec.2, the transition probabilities p(t; x, y), t ≥ 0, x, y ∈ Z d , of the random walk generated by matrix A satisfy the backward Kolmogorov's equations

d p(t; x, y) d t = (Ap(t; •, y)) (x), p(0; x, y) = δ y (x). (3) 
Here (Ap(t; •, y))(x) = z∈Z d a(x, z)p(t; z, y) and δ y (•) is a column vector in the space l 2 (Z d ) with zero components except for the component 1 indexed by y. In a similar way, the backward Kolmogorov's equations for m(t; x, y), t ≥ 0, x, y ∈ Z d , (see, e.g., Theorem 2.1 in [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF]) take the form d m(t; x, y) d t = Am(t; •, y) (x) + β c (∆ 0 m(t; •, y)) (x), m(0; x, y) = δ y (x),

where A = (a(u, υ)) u,υ∈Z d := A+(a -1 (1 -α) -1) ∆ 0 A, ∆ 0 := δ 0 δ T 0 (T stands for transposition) and β c := (1 -α)a -1 G -1 0 (0, 0). Here we follow the notation of [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF].

Lemma 1 For each y ∈ Z d , the function m(t; y, y) is non-increasing in t.

Proof. The monotonicity of m(•; y, y) for SBRW on Z d was established in Lemma 3.3.5 of [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF]. The key step of its proof was to use self-adjointness of the operator H := A + β c ∆ 0 where β c := G -1 0 (0, 0). For CBRW the analog of H is the non self-adjoint operator H := A + β c ∆ 0 . However, Lemma 3.1 in [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF] permits to pass to (self-adjoint) symmetrization of H and then apply Lemma 3.3.5 in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF]. Further argument is similar to the proof of Theorem in [START_REF] Yarovaya | The monotonicity of the probability of return into the source in models of branching random walks[END_REF]. Equation (4) was obtained by differentiating at s = 1 the following backward Kolmogorov's equation for the generating function F (s, t; x, y) := E x s µ(t;y) , s ∈ [0, 1], t ≥ 0, x, y ∈ Z d , (see [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF])

∂F (s, t; x, y) ∂t = AF (s, t; •, y) (x) + ∆ 0 f (F (s, t; •, y)) (x), F (s, 0; x, y) = s δy(x) . ( 5 
)
Here

f (s) := α(f (s) -s), s ∈ [0, 1]
, is an infinitesimal generating function of the number of offsprings of a parent particle. We will employ (5) in Section 5.

In Lemma 2 we derive a counterpart of the forward Kolmogorov's equation for the fuction F (s, t; x, y), s ∈ [0, 1], t ≥ 0, x, y ∈ Z d , and, as a consequence, the forward Kolmogorov's equation for m(t; x, y). Recall that A * denotes an adjoint operator for A and

A * m(t; x, •) (y) = z∈Z d m(t; x, z)a(z, y). Lemma 2 For s ∈ [0, 1], t ≥ 0, x, y ∈ Z d , the following relation holds true ∂F (s, t; x, y) ∂t = (s -1)
z∈Z d , z =y a(z, y)E x s µ(t;y) µ(t; z) + (s -1)a(y, y)E x s µ(t;y)-1 µ(t; y)

+ δ 0 (y)f(s)E x s µ(t;y)-1 µ(t; y), F (s, 0; x, y) = s δx(y) . (6) 
Moreover, one has

d m(t; x, y) d t = A * m(t; x, •) (y) + β c (∆ 0 m(t; x, •)) (y), m(0; x, y) = δ x (y). ( 7 
)
Proof. As usual in derivation of forward Kolmogorov's equations, we consider all possible evolutions of the particles population within the time interval [t, t + h) and let h → 0+. To justify arising passages to the limit we involve the Lebesgue theorem on dominated convergence and useful estimates for transition probabilities (see proof of Lemma 3 in [START_REF] Gikhman | The Theory of Stochastic Processes II[END_REF], Ch.3, Sec.2). We also benefit from finiteness of the mean total number of particles M(t; x) := E x z∈Z d µ(t; z) for each x ∈ Z d and t ≥ 0. The latter observation is true since the last function belonging to l ∞ (Z d ) is a solution of the linear differential equation in ( 4) with the initial condition M(0; x) = 1 for all x (instead of δ y (x) in ( 4)), see [START_REF] Yarovaya | Criteria of the exponential growth of particles numbers in models of branching random walks[END_REF]. Equation ( 7) is an immediate consequence of ( 6) due to formula m(t; x, y) = ∂ s F (s, t; x, y)| s=1 . We also take into account that f ′ (1) = β c in view of [START_REF] Albeverio | Asymptotics of branching symmetric random walk on the lattice with a single source[END_REF].

Consider equations ( 4) and ( 7) as inhomogeneous ones for differential equation (3) in Banach space l ∞ (Z d ). Applying the variation of constant formula (see [START_REF] Daletsky Yu | Stability of Solution of Differential Equations in Banach Space[END_REF], Ch.2, Sec.1) we infer that

m(t; x, y) = p(t; x, y) + 1 - a 1 -α t 0 p(t -u; x, 0)m ′ (u; 0, y) du + a β c 1 -α t 0 p(t -u; x, 0)m(u; 0, y) du, (8) 
m(t; x, y) = p(t; x, y) + 1 -α a -1 t 0 m(t -u; x, 0)p ′ (u; 0, y) du + β c t 0 m(t -u; x, 0)p(u; 0, y) du. (9) 
An analogous result for SBRW on Z d can be found in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF], Theorem 1.4.1. Now we can give Proof of Theorem 1. To find the asymptotic behavior of m(t; x, y), t → ∞, x, y ∈ Z d , y = 0, we estimate each of the summands in the right-hand sides of ( 8) and ( 9) when x = 0 and x = 0, respectively, as t → ∞. Namely, we will show that, for d = 1 and d = 2, the main contribution to the asymptotic behavior of the right-hand side of ( 8), as well as of ( 9), is due to the first summand. However, for d ≥ 3, the asymptotic behavior of the right-hand sides of ( 8) and ( 9) is determined only by the third summands. It is worth mentioning that, for d = 1 and d = 2, the third summands in ( 8) and ( 9) vanish in view of equality β c = 0. Let x = 0. The asymptotic behavior of the first summand in the right-hand side of ( 9) is given by [START_REF] Bogachev | The moment analysis of a branching random walk on a lattice with a single source[END_REF]. The estimate of the second summand could be obtained on account of Lemma 6 in [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] and, in particular, relation [START_REF] Vatutin | Catalytic branching random walk and queueing systems with random number of independent servers[END_REF]. However, to avoid verifying the bounded variation of the functions p(t; x, y) and m(t; x, y) in variable t we choose another approach consisting in direct estimation of the second summand. Recall that representation (2.1.15) in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF] entails the inequalities p ′ (t; 0, 0) ≤ 0, p ′ (t; 0, 0) ≤ p ′ (t; 0, y), p ′′ (t; 0, 0) ≥ 0 and p ′′ (t; 0, 0) -p ′′ (t; 0, y) ≥ 0, t ≥ 0. Then by virtue of (2) as well as the classical results on differentiating the asymptotic formulae (see, e.g., [START_REF] Bruijn | Asymptotic methods in analysis[END_REF], Ch.7, Sec.3), for d ∈ N, one has

p ′ (t; 0, 0) ∼ - d γ d 2 t d/2+1 , p ′ (t; 0, 0) -p ′ (t; 0, y) ∼ - (d + 2)γ d (y) 2t d/2+2 , t → ∞.
Whence taking into account Lemma 5.1.2 in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF] ("lemma on convolutions") and the already proved assertion of Theorem 1 for x = 0 and y = 0 we deduce that, as t → ∞,

t 0 m(t -u; 0, 0)p ′ (u; 0, y) du = t 0 m(t -u; 0, 0) (p ′ (u; 0, y) -p ′ (u; 0, 0)) du + t 0 m(t -u; 0, 0)p ′ (u; 0, 0) du = m(t; 0, 0) -m(t; 0, 0) + o(m(t; 0, 0)) = o(m(t; 0, 0)). ( 10 
)
Combining relations (2), ( 9) and ( 10) we establish Theorem 1 for d = 1 and d = 2 when x = 0. The statement of Theorem 1 for d ≥ 3 and x = 0 follows from formulae (2), ( 9) and ( 10) by Lemma 5.1.2 in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF] and in view of Theorem 1 for the known case x = y = 0. Let x = 0. Similarly to the case x = 0 we see that

t 0 p(t -u; x, 0)m ′ (u; 0, y) du = t 0 m(t -u; 0, y)p ′ (u; x, 0) du = o(m(t; 0, y)), t → ∞. (11)
Thus, the combination of ( 2), ( 8) and [START_REF] Hu | Branching random walk in Z 4 with branching at the origin only[END_REF] proves Theorem 1 for d = 1 or d = 2 and x = 0. For d ≥ 3 and x = 0 we estimate the third summand in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] with the help of Lemma 5.1.2 in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF], relation [START_REF] Bogachev | The moment analysis of a branching random walk on a lattice with a single source[END_REF] and the assertion of Theorem 1 for d ≥ 3 and x = 0 established above.

Auxiliary Bellman-Harris branching process

Let us briefly describe a Bellman-Harris branching process with particles of six types. It is initiated by a single particle of type i = 1, . . . , 6. The parent particle has a random life-length with a cumulative distribution function (c.d.f.) G i (t), t ≥ 0. When dying the particle produces offsprings according to a generating function f i ( s ), s = (s 1 , . . . , s 6 ) ∈ [0, 1] 6 . The new particles of type j = 1, . . . , 6 evolve independently with the life-length distribution G j (t) and an offspring generating function f j ( s ). Let M := ∂ s j f i | s=(1,...,1) i,j=1,...,6 be the mean matrix of the process. The Bellman-Harris branching process is called critical indecomposable if the Perron root of M (i.e. eigenvalue having the maximal modulus) equals 1 and for some integer n all elements of M n are positive (see, e.g., [START_REF] Sewastianow | [END_REF], Ch.4, Sec.6 and 7). Denote the number of particles of type j existing at time t by Z j (t), t ≥ 0, j = 1, . . . , 6. Set

F i (t; s ) = E i 6 j=1 s Z j (t) j , i = 1, . . . , 6, t ≥ 0, s ∈ [0, 1] 6
, where the index i means that the parent particle is of type i. In other words, F i (t; s ) is a generating function of the numbers of particles of all types existing at time t given that the process is initiated by a single particle of type i. Before demonstrating how an auxiliary Bellman-Harris process can be constructed in the framework of CBRW on Z d we have to introduce some notation. Recall that in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] a new notion of a hitting time with taboo was proposed for a (non-branching) random walk on Z d generated by matrix A. Namely, let τ - y,z , y, z ∈ Z d , y = z, be the time spent by the particle (performing the random walk) after leaving the starting point until the first hitting y if particle's trajectory does not pass z. Otherwise (if particle's trajectory passes point z before the first hitting y), τ - y,z = ∞. Denote by H - x,y,z (t), t ≥ 0, the improper c.d.f. of τ - y,z given that the starting point of the random walk is x ∈ Z d .

Return to CBRW on Z d . In this section we assume that CBRW may start at the origin or at a fixed point y = 0. We divide the particles population existing at time t ≥ 0 into seven groups. The particles located at time t at the origin (respectively, at y) form the first (respectively, second) group having cardinality µ(t; 0) (respectively, µ(t; y)). Next consider at time t a family of particles labeled by a collection (u, v, w) of lattice points, its cardinality being µ u,v,w (t). It consists of the particles which have left u at least once within time interval [0, t], upon the last leaving u have yet reached neither v nor w but eventually will hit v before possible hitting w. Our third group corresponds to (u, v, w) = (0, y, 0), the fourth to (y, 0, y), the fifth to (0, 0, y) and the sixth to (y, y, 0). The seventh group comprises the rest of particles not included into the above six groups. Note that the last group consists of the particles having infinite life-length since after time t they will not hit the origin any more. So, after time t these particles will not produce any offsprings and have no influence on the numbers of particles in other six groups.

Now we can introduce an auxiliary Bellman-Harris process and use it for the study of CBRW on Z d . Consider a six-dimensional Bellman-Harris process having the following c.d.f. G i and generating function f i , i = 1, . . . , 6,

G 1 (t) = 1 -e -t , f 1 ( s ) = αf (s 1 ) + (1 -α)H - 0,y,0 (0)s 2 + (1 -α)(H - 0,y,0 (∞) -H - 0,y,0 (0))s 3 +(1 -α)H - 0,0,y (∞)s 5 + (1 -α)(1 -H - 0,y,0 (∞) -H - 0,0,y (∞)), G 2 (t) = 1 -e -at , f 2 ( s ) = H - y,0,y (0)s 1 + (H - y,0,y (∞) -H - y,0,y (0))s 4 +H - y,y,0 (∞)s 6 + (1 -H - y,0,y (∞) -H - y,y,0 (∞)), G 3 (t) = H - 0,y,0 (t) -H - 0,y,0 (0) H - 0,y,0 (∞) -H - 0,y,0 (0) , f 3 ( s ) = s 2 , G 4 (t) = H - y,0,y (t) -H - y,0,y (0) H - y,0,y (∞) -H - y,0,y (0) , f 4 ( s ) = s 1 , G 5 (t) = H - 0,0,y (t) H - 0,0,y (∞) , f 5 ( s ) = s 1 , G 6 (t) = H - y,y,0 (t) H - y,y,0 (∞) , f 6 ( s ) = s 2 ,
where H - x,y,z (∞) := lim t→∞ H - x,y,z (t). The symmetry and homogeneity of the random walk generated by matrix A imply identities H - 0,y,0 ≡ H - y,0,y and H - 0,0,y ≡ H - y,y,0 , whence G 3 ≡ G 4 and G 5 ≡ G 6 . It is not difficult to see that for the branching process constructed in this way one has (µ(t; 0), µ(t; y), µ 0,y,0 (t), µ y,0,y (t), µ 0,0,y (t), µ y,y,0 (t)) Law = (Z 1 (t), . . . , Z 6 (t)), t ≥ 0. Observe that the introduced Bellman-Harris branching process with particles of six types is critical indecomposable. Indeed, it is an easy computation task to check that all entries of M 6 are positive. Furthermore, if H - 0,y,0 (0) = 0 (that is a(0, y) > 0) then already all entries of M 4 are positive. Hence, the constructed process is indecomposable. To verify its criticality note that in view of Theorem 3 in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] one can rewrite the first relation in (1) as follows

αf ′ (1) = 1 -(1 -α) H - 0,0,y (∞) + (H - 0,y,0 (∞)) 2 1 -H - 0,0,y (∞) . ( 12 
)
Then by inspecting the explicit expression for the characteristic polynomial of the mean matrix M we deduce that it has the form

det (M -κI) = κ 2 (κ -1)R(κ)
where I is a unit matrix, κ ∈ C and

R(κ) := κ 3 + κ 2 (1 -αf ′ (1)) + κ 1 -αf ′ (1) -(2 -α)H - 0,0,y (∞) -(1 -α)(H - 0,y,0 (0)) 2 + (1 -α)(H - 0,y,0 (∞) -H - 0,y,0 (0)) 2 -(1 -α)(H - 0,0,y (∞)) 2 .
The polynomial R(κ) has no real roots greater than 1 because R(1) > 0 and R ′ (κ) > 0 for κ ≥ 1. In fact, due to identity [START_REF] Sewastianow | [END_REF] we obtain the representation with strictly positive summands

R(1) = (1 -H - 0,0,y (∞))((1 -α)H - 0,0,y (∞) + 1) + (1 -α)H - 0,y,0 (∞)(H - 0,y,0 (∞) -H - 0,y,0 (0)) + (1 -α)H - 0,y,0 (∞)(H - 0,y,0 (∞) -H - 0,y,0 (0)(1 -H - 0,0,y (∞))) 1 -H - 0,0,y (∞) + (1 -α)(H - 0,y,0 (∞)) 2 1 -H - 0,0,y (∞)
.

Moreover, if κ ≥ 1 then R ′ (κ) = 3κ 2 + 2κ(1 -αf ′ (1)) + 1 -αf ′ (1) -(2 -α)H - 0,0,y (∞) -(1 -α)(H - 0,y,0 (0)) 2 > 3 -2H - 0,0,y (∞) -H - 0,y,0 (0) > 0.
Thus, the greatest positive real root of the characteristic polynomial of M is 1. Hence, by the Frobenius theorem (see, e.g., Theorem 2 in [START_REF] Sewastianow | [END_REF], Ch.4, Sec.5) 1 is the Perron root of M. So, the auxiliary Bellman-Harris process is critical.

Denote by v = (v 1 , . . . , v 6 ) and u = (u 1 , . . . , u 6 ) the left and right positive eigenvectors corresponding to the Perron root of M such that ( u, 1 ) = 1 and ( v, u ) = 1 where 1 = (1, . . . , 1) ∈ R 6 . Taking into account [START_REF] Sewastianow | [END_REF] we rewrite the components of u and υ in the convenient form

u 1 = u 4 = u 5 = 1 -H - 0,0,y (∞) U , u 2 = u 3 = u 6 = H - 0,y,0 (∞) U , (13) 
v 1 = U V , v 2 = U(1 -α)H - 0,y,0 (∞) V (1 -H - 0,0,y (∞)) , v 3 = U(1 -α)(H - 0,y,0 (∞) -H - 0,y,0 (0)) V , (14) 
v 4 = v 2 (H - 0,y,0 (∞) -H - 0,y,0 (0)), v 5 = U(1 -α)H - 0,0,y (∞) V , v 6 = v 2 H - 0,0,y (∞) (15)
where the auxiliary variables U and V are defined by way of

U := 3(1 -H - 0,0,y (∞) + H - 0,y,0 (∞)), V := 3-2αf ′ (1)-(2-α)H - 0,0,y (∞)+(1-α)((H - 0,y,0 (∞)-H - 0,y,0 (0)) 2 -(H - 0,y,0 (0)) 2 -(H - 0,0,y (∞)) 2 ).
Using decomposition f (1-x) = 1-f ′ (1)x+f ′′ (1)x 2 /2+o(x 2 ), x → 0+, along with formulae ( 12)-( 15) and the definition of f ( s ) = (f 1 ( s ), . . . , f 6 ( s )), it is not difficult to verify by standard calculations that

x -v, 1 -f 1 -ux ∼ Bx 2 , x → 0+, where B := σ 2 1 -H - 0,0,y (∞) 2 2UV . (16) 
In the next two lemmas we apply theorems proved in papers [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF]- [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF] to the constructed six-dimensional Bellman-Harris branching process and then reformulate the obtained results for CBRW on Z d when d ≥ 5. Common to these theorems are the conditions of criticality and indecomposability of the Bellman-Harris process which were established above. Another common condition on the behavior of the function x -( v, 1 -f ( 1 -ux)) is fulfilled due to [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF]. However, various Vatutin's theorems involve different assumptions on the order of asymptotic decrease of the tails of G k (•), k = 1, . . . , 6. It is worth to mention that such asymptotic behavior was established in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF], Theorem 3. Namely, our result for d ≤ 5 corresponds to condition of Theorem 1 in [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF] whereas the cases d = 6 and d ≥ 7 meet the respective conditions of Theorem 3 in [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF] and Theorem 2 in [START_REF] Vatutin | Limit Theorem for a Critical Multitype Bellman-Harris Branching Process with Infinite Second Moments[END_REF]. Lemma 3 Given y ∈ Z 5 , y = 0, for CBRW on Z 5 one has q(t; 0, y) = o t -3/4 , q(t; y, y) = o t -3/4 , t → ∞.

Proof. To apply Theorem 1 in [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF] to the six-dimensional Bellman-Harris process constructed above for CBRW on Z 5 we verify the conditions of that theorem. According to the definition of G(•) = (G 1 (•), . . . , G 6 (•)) and by Theorem 3 in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] for d = 5, the variable β in condition 2) of Theorem 1 in [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF] is equal to 3/2 whereas the function L 1 (t) in the same condition tends to a constant, as t → ∞. The validity of condition 3) of Theorem 1 in [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF] is implied by Theorem 1 in [START_REF] Vatutin | Limit Theorems for Critical Markov Branching Processes with Several Types of Particles and Infinite Second Moments[END_REF] (for our process the function L 1 (t) in this theorem tends to 1/B, as t → ∞, in view of ( 16)) combined with the definition of G(•) and Theorem 3 in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] for d = 5. Thus, we may employ Theorem 1 in [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF]. Taking into account Theorem 3 in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] for d = 5 and formulae ( 13)- [START_REF] Vatutin | Critical Bellman-Harris Branching Processes Starting with a Large Number of Particles[END_REF] we deduce from Theorem 1 in [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF] that lim t→∞ E i (s

Z 2 (t) 2
| Z(t) = 0 ) = 1 for each s 2 ∈ [0, 1] and i = 1, 2 (as usual, Z(t) = (Z 1 (t), . . . , Z 6 (t)) and 0 = (0, . . . , 0) ∈ R 6 ). Setting s 2 = 0 in the last relation one has P i (Z 2 (t) > 0) = o(P i ( Z(t) = 0 )), as t → ∞. Moreover, examining the proof of Theorem 1 in [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF] we can show that for our Bellman-Harris process the slowly varying function L * (x) in the assertion of that theorem turns equivalent to 1/ √ B, as x → 0+. Consequently, the indicated in [START_REF] Vatutin | Discrete Limit Distributions of the Number of Particles in a Multitype Age-Dependent Branching Processes[END_REF] formula (0.4) can be sharpened in our case, namely, the function P i ( Z(t) = 0 ) has an order of decreasing t -3/4 , as t → ∞. Whence by the connection between CBRW on Z 5 and the auxiliary Bellman-Harris process we complete the proof.

Lemma 4

In the framework of CBRW on Z d with d ≥ 6 the following relations hold true for y ∈ Z d , y = 0,

q(t; 0, y) ∼ 2 m d σ 2 t , q(t; y, y) ∼ 2 m d G 0 (0, y) σ 2 G 0 (0, 0) t , t → ∞.
Proof. Let us apply Theorem 3 in [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF] to our Bellman-Harris branching process when d = 6. To this end we verify whether all the conditions of Theorem 3 in [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF] are satisfied. In view of ( 16) relation ( 6) in [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF] is valid for our process and the function L 1 (n) in ( 6) tends to 1/B, as n → ∞. Equality [START_REF] Bulinskaya | Limit Distributions for the Number of Particles in Branching Random Walks[END_REF] in [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF] is also satisfied due to [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF] in [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF] in view of the definition of G(•) and Theorem 3 in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] for d = 6. Now we may apply Theorem 3 in [START_REF] Vatutin | On a Class of Critical Bellman-Harris Branching Processes with Several Types of Particles[END_REF].

In particular, it follows that for each i = 1, 2 the expressions lim t→∞ P i (Z 1 (t) = 0| Z(t) = 0 ) and lim t→∞ P i (Z 2 (t) = 0| Z(t) = 0 ) coincide, are positive and strictly less than 1. Consequently,

P i (Z 1 (t) > 0) ∼ P i (Z 2 (t) > 0), as t → ∞.
The asymptotic behavior of q(t; 0, 0) = P 1 (Z 1 (t) > 0) and q(t; y, 0) = P 2 (Z 1 (t) > 0) can be found in [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF], Lemmas 2 and 4. Thus, Lemma 4 is proved for d = 6.

For d ≥ 7 we will employ Theorem 2 in [START_REF] Vatutin | Limit Theorem for a Critical Multitype Bellman-Harris Branching Process with Infinite Second Moments[END_REF]. Condition [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF] of that theorem is valid due to Theorem 1 in [START_REF] Vatutin | Limit Theorems for Critical Markov Branching Processes with Several Types of Particles and Infinite Second Moments[END_REF] (for our process, the function L 1 (t) in this theorem tends to 1/B, as t → ∞) by virtue of the definition of G(•) and Theorem 3 in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] for d ≥ 7. The definition of G k (•) and Theorem 3 in [START_REF] Bulinskaya | The Hitting Times with Taboo for a Random Walk on an Integer Lattice[END_REF] for d ≥ 7 also imply that ∞ 0 t dG k < ∞ for each k = 1, . . . , 6. So, all the conditions of Theorem 2 in [START_REF] Vatutin | Limit Theorem for a Critical Multitype Bellman-Harris Branching Process with Infinite Second Moments[END_REF] are satisfied and it follows that lim t→∞ P i (Z k (t) = 0| Z(t) = 0 ) = 0 for each k = 1, . . . , 6 and i = 1, 2. Hence,

P i (Z 1 (t) > 0) ∼ P i (Z 2 (t) > 0), t → ∞.
Notably, the asymptotic behavior of q(t; 0, 0) = P 1 (Z 1 (t) > 0) and q(t; y, 0) = P 2 (Z 1 (t) > 0) can be found in [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF], Lemmas 2 and 4. Lemma 4 is proved for d ≥ 7.

Concluding this section we derive an integral equation in function q(•; 0, y), y = 0, which is a counterpart of equation (2.6) in [START_REF] Hu | Branching random walk in Z 4 with branching at the origin only[END_REF] for q(•; 0, 0). Our integral equation will be essentially used for proving Theorem 2 when d = 4. Before formulating the corresponding statement we have to introduce some more notation. Let τ z be the time spent by a particle performing a random walk generated by matrix A until the first hitting a point z ∈ Z d . In a similar way, τ - z is the time spent by the particle after leaving the starting point of the random walk until the first hitting the point z. If the starting point of the random walk is z then the first hitting z means the first return to z. Denote by H x,z (t) and H - x,z (t), t ≥ 0, the (improper) c.d.f. of τ z and τ - z , respectively, given that the starting point of the ran-

dom walk is x ∈ Z d . Obviously, H x,z (t) = G 2 * H - x,z (t) for t ≥ 0 and x, z ∈ Z d . Set also K(t) := αf ′ (1)G 1 (t) + (1 -α)G 1 * H - 0,0 (t) and h(s) := α(f (1 -s) -1 + f ′ (1)s), s ∈ [0, 1]
. Note that the function K(t) and the function K d (t), d ∈ N, arising in [START_REF] Hu | Branching random walk in Z 4 with branching at the origin only[END_REF] and [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF], coincide for each t ≥ 0. Thus, Lemma 2.3 in [START_REF] Hu | Branching random walk in Z 4 with branching at the origin only[END_REF] and Lemma 11 in [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] in which the asymptotic properties of c.d.f. K d (t) and its density k d (t) are established, as t → ∞, may be applied to our function K.

Lemma 5 For y ∈ Z d , y = 0, one has

q(t; 0, y) = (1 -α)G 1 * H - 0,y (t) -H 0,y (t) + q(•; 0, y) * K(t) -h(q(•; 0, y)) * G 1 (t). (17) 
Proof. Recall integral equations (see, e.g., [START_REF] Sewastianow | [END_REF], Ch.8, Sec.1) for probability generating functions F (t; s ) := (F 1 (t; s ), . . . , F 6 (t; s )) of a six-dimensional Bellman-Harris process

F i (t; s ) = s i (1 -G i (t)) + t 0 f i F (t -u; s ) dG i (u), t ≥ 0, s i ∈ [0, 1], i = 1, . . . , 6.
By setting here s = (1, 0, 1, 1, 1, 1) and substituting the explicit formulae for G j , j = 3, 4, 5, 6, and f i , i = 1, . . . , 6, we get six integral equations in functions F i (t) := F i (t; (1, 0, 1, 1, 1, 1)), t ≥ 0, i = 1, . . . , 6. Substituting the fourth and the sixth ones into the second equation and solving the obtained renewal equation in F 2 (•) we find

F 2 (t) = G 2 * 1 -H - 0,y,0 (t) -H - 0,0,y * ∞ k=0 H * k 0,0,y (t) + F 1 * G 2 * H - 0,y,0 (0) + H - 0,y,0 (•) -H - 0,y,0 (0) * ∞ k=0 H * k 0,0,y (t) 
where H x,z,r (t) := G 2 * H - x,z,r (t), t ≥ 0, x, z, r ∈ Z d , z = r. Now we substitute the last equation as well as the third and the fifth equations in functions F i into the first one. After some algebraic transformations we obtain the following non-linear integral equation in function

F 1 F 1 (t) = 1 -αG 1 * (1 -f (F 1 (t))) -(1 -α)G 1 * (1 -F 1 (•)) * H - 0,0 (t) -(1 -α)G 1 * (H - 0,y (t) -H 0,y (t)) (18) 
provided that the following two equalities are valid

H - 0,0 (t) = H - 0,0,y (t) + ∞ k=0 H - 0,y,0 * H * k y,y,0 * H y,0,y (t), H - 0,y (t) = H - 0,y,0 * ∞ k=0 H * k 0,0,y (t),
for each t ≥ 0. The first of them is true since any trajectory from 0 to 0 of a particle performing a random walk on Z d either passes y exactly k times, k = 1, 2, . . . , or does not hit y until the first returning to 0. Similar argument justifies the second equality as well. Recall that due to the connection between the CBRW on Z d and the constructed Bellman-Harris process one has q(t; 0, y)

= P 1 (Z 2 (t) > 0) = 1 -F 1 (t)
. Hence, rewriting [START_REF] Vatutin | Limit Theorem for a Critical Multitype Bellman-Harris Branching Process with Infinite Second Moments[END_REF] as an equation in q(t; 0, y) we come to [START_REF] Vatutin | Limit Theorems for Critical Markov Branching Processes with Several Types of Particles and Infinite Second Moments[END_REF].

Proofs of Theorems 2 and 3

First of all, we derive some integral equations to be treated in this section. Consider equation ( 5) as inhomogeneous one for differential equation ( 4) in Banach space l ∞ (Z d ). By the variation of constant formula we infer (for a similar deduction see [START_REF] Bulinskaya | Catalytic Branching Random Walk on Three-Dimensional Lattice[END_REF]) that

q(s, t; x, y) = (1 -s)m(t; x, y) - t 0 m(t -u; x, 0)h(q(s, u; 0, y)) du (19) 
where q(s, t; x, y) = 1 -F (s, t; x, y), s ∈ [0, 1], t ≥ 0, x, y ∈ Z d . Substituting x = 0 in the last equation we come to an integral equation in function q(s, t; 0, y) q(s, t; 0, y) = (1 -s)m(t; 0, y) -t 0 m(t -u; 0, 0)h(q(s, u; 0, y)) du.

Note that q(0, t; x, y) is equal to q(t; x, y). Thus, on account of ( 19) one has q(t; x, y) = m(t; x, y) -t 0 m(t -u; x, 0)h(q(u; 0, y)) du.

Substituting x = 0 in [START_REF] Yarovaya | A limit theorem for critical branching random walk on Z d with a single source[END_REF] we derive an integral equation in function q(t; 0, y) q(t; 0, y) = m(t; 0, y) -t 0 m(t -u; 0, 0)h(q(u; 0, y)) du. [START_REF] Vatutin | Catalytic branching random walk and queueing systems with random number of independent servers[END_REF], Theorem 2 in [START_REF] Bulinskaya | Catalytic Branching Random Walk on a Two-Dimensional Lattice[END_REF], Theorem 4 in [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] (item 3) and Theorem 4 in [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] (item 4). Moreover, by virtue of Lemma 5 the proof of Theorem 2 for x = 0 and d = 4 is similar to that of Theorem 1.1 in [START_REF] Hu | Branching random walk in Z 4 with branching at the origin only[END_REF]. So, we give only a few comments on the proof of Theorem 2 for x = 0 and d ≤ 5.

If d = 1 then the equality ∞ 0 h(q(u; 0, y)) du = (1 -α)a -1 is valid. Furthermore, in view of (2), ( 8), [START_REF] Daletsky Yu | Stability of Solution of Differential Equations in Banach Space[END_REF] and Theorem 5 in [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF] one gets the useful estimate

m(t; 0, y) -(1 -α)a -1 m(t; 0, 0) = O t -3/2 , t → ∞.
When d = 2 one can check the strict inequality J(0; y) = ∞ 0 h(q(u; 0, y)) du < (1 -α)a -1 . However, if d = 3 then ∞ 0 h(q(u; 0, y)) du = (1 -α)a -1 G 0 (0, y)G -1 0 (0, 0) and

m(t; 0, y) -(1 -α)a -1 G 0 (0, y)G -1 0 (0, 0) m(t; 0, 0) = O(t -1 ), t → ∞,
by virtue of ( 2), ( 9) and Theorem 5 in [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF]. For d = 4 the first summand in [START_REF] Vatutin | Limit Theorems for Critical Markov Branching Processes with Several Types of Particles and Infinite Second Moments[END_REF] is o(t -1 ), t → ∞, by Lemma 3 in [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF] and it does not contribute to the (main term of) asymptotic behavior of q(t; 0, y). As for d = 5, one has ∞ 0 h(q(u; 0, y)) du = (1 -α)a -1 G 0 (0, y)G -1 0 (0, 0) and

m(t; 0, y) -(1 -α)a -1 G 0 (0, y)G -1 0 (0, 0) m(t; 0, 0) = O t -3/2 , t → ∞,
in view of ( 2), ( 9), Theorem 5 and Corollary 1 in [START_REF] Topchii | Catalytic Branching Random Walk in Z d with branching at the origin only[END_REF]. Thus, Theorem 2 is proved for x = 0. Turn to Theorem 3 when x = 0. The proof of Theorem 3 for x = 0 is similar to those of Theorem 4 in [START_REF] Topchii | Individuals at the origin in the critical catalytic branching random walk[END_REF], Theorem 2 in [START_REF] Bulinskaya | Catalytic Branching Random Walk on a Two-Dimensional Lattice[END_REF] and Theorem 4 in [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF] for d = 1, 3, d = 2 and d ≥ 5, respectively. Note only that the constant c * arising in the proof of Theorem 3 for x = 0 in contrast to its counterpart in Theorem 4 in [START_REF] Topchii | Individuals at the origin in the critical catalytic branching random walk[END_REF] is equal to σ 2 γ 2 1 a/(2(1-α)) and σ 2 aG 3 0 (0, 0)G 0 (0, y)/(8π 2 γ 2 3 (1-α)) when d = 1 and d = 3, respectively. At last, the constant c * d appearing in Theorem 4 in [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF] equals (1 -α)G 0 (0, y)σ 2 / (2a G 0 (0, 0)m 2 d ) in the case of Theorem 3 for x = 0 and d ≥ 5. Since the limit theorem for µ(t; 0) when d = 4 was established by another approach, namely the moment method, we give the detailed proof of the limit theorem for µ(t; y) when d = 4. So, to complete the proof of Theorem 3 for x = 0 we dwell on the case d = 4 in detail.

Set s(t) := s(t; λ) = exp{-λ ln 2 t/(c * t)} where c * := σ 2 aG 3 0 (0, 0)G 0 (0, y)/(3γ 2 4 (1-α)), t > 0 and λ ≥ 0. By Theorems 1 and 2 for x = 0 and d = 4 we see that E 0 ( µ(t; y)| µ(t; y) > 0) = m(t; 0, y) q(t; 0, y)

∼ c * t ln 2 t , t → ∞. (23) 
The inequality 1 -e -z ≤ z for z ≥ 0 yields q(s(t), u;

0, y) = E 0 1 -exp - λ ln 2 t µ(u; y) c * t ≤ λ ln 2 t c * t E 0 µ(u; y) = λ ln 2 t c * t m(u; 0, y)
where u ≥ 0 and t > 0. By virtue of this estimate combined with Theorem 1 and the inequality h(z) ≤ σ 2 z 2 (being true for z ≥ 0 small enough) one has for t large enough t/ ln 3 t 0 m(t -u; 0, 0)h(q(s(t), u; 0, y))du

≤ σ 2 λ 2 ln 4 t c * 2 t 2 t/ ln 3 t 0 m 2 (u; 0, y)m(t -u; 0, 0)du = ρ 1 (t; λ) ln t t . (24) 
Here ρ 1 ∈ U and U is the class of all bounded functions ρ(t; λ) vanishing as t → ∞ uniformly in λ ∈ [0, b], whatever positive b is taken. In a similar way, we obtain where ρ 3 ∈ U. After changing the variable u = tυ and using Theorems 1 and 2 for x = 0 and d = 4 we get

I(t; λ) = 3 2q(t; 0, y) 1-1/ ln 2 t 1/ ln 3 t q 2 (s(t), tυ; 0, y) dυ (1 + ρ 4 (t; λ)), ρ 4 ∈ U. (27) 
In the last integral the function q(s(t; λ), tυ; 0, y) can be replaced by q(s(tυ; λυ), tυ; 0, y). Indeed, as 1 -e -z ≤ z for z ≥ 0, we have |q(s(t; λ), tυ; 0, y) -q(s(tυ; λυ), tυ; 0, y)|

= E 0 exp - λυ ln 2 (tυ) c * tυ µ(tυ; y) -exp - λ ln 2 t c * t µ(tυ; y) ≤ E 0 1 -exp - λ(-2 ln t ln υ -ln 2 υ) c * t µ(tυ; y) ≤ λ(-2 ln t ln υ -ln 2 υ) c * t m(tυ; 0, y).
Since functions z ln z and z ln 2 z are bounded for z ∈ (0, 1), by virtue of Theorems 1 and 2 for x = 0 along with relation (26) we see that uniformly in υ ∈ [1/ ln 3 t, 1 -1/ ln 2 t] and 0 ≤ λ ≤ Λ with an arbitrary positive Λ q(s(t; λ), tυ; 0, y) q(tυ; 0, y) -q(s(tυ; λυ), tυ; 0, y) q(tυ; 0, y) → 0, t → ∞.

Set ϕ(t; λ) := q(s(t; λ), t; 0, y)/(λq(t; 0, y)), t > 0, λ ≥ 0. Then dividing both sides of (20) by λq(t; 0, y) and using ( 24)-(28) along with Theorem 2 for x = 0 and relation 1 -e -z ∼ z, z → 0, we obtain ϕ(t; λ) = 1 + ρ 5 (t; λ) -3λ 2 The argument similar to the proof of Theorem 4 in [START_REF] Topchii | Individuals at the origin in the critical catalytic branching random walk[END_REF] establishes that

lim t→∞ ϕ(t; λ) = ϕ(λ) = 2 3λ + 2 , 0 < λ ≤ Λ 0 , (29) 
where Λ 0 is some positive number and ϕ(λ) is the unique solution of the equation

ϕ(λ) = 1 - 3 2 λ 0 ϕ 2 (w) dw, λ ≥ 0.
Invoking the definition of ϕ(t; λ) we rewrite relation (29) by way of

lim t→∞ E 0 exp - λ ln 2 t µ(t; y) c * t µ(t; y) > 0 = 1 -λ lim t→∞ ϕ(t; λ) = 1 3 + 2 3 • 2 3λ + 2 (30) 
for 0 < λ ≤ Λ 0 . Since both the Laplace transform of a non-negative random variable and the function 1/3 + 2/3 • 2/(3λ + 2) are analytic and bounded in the domain {λ : Re λ > 0} ⊂ C, by the uniqueness theorem for analytic functions relation (30) is valid for each λ with Re λ > 0 (for an analogous deduction see, e.g., [START_REF] Vatutin | Critical Bellman-Harris Branching Processes Starting with a Large Number of Particles[END_REF]). Combining ( 23) and (30) we complete the proof of Theorem 3 for x = 0 and d = 4. Thus, Theorem 3 is proved for x = 0. Next we prove Theorems 2 and 3 when x = 0. As a preliminary we derive some more integral equations. In the framework of CBRW on Z d , the parent particle can either hit the point 0 or not within time interval [0, t]. In the latter case at time t there is a single particle on Z d located at the point y or outside it. Consequently, E x s µ(t;y) = E x s µ(t;y) I(τ 0 ≤ t) + E x s µ(t;y) I(τ 0 > t, µ(t; y) = 1) + E x s µ(t;y) I(τ 0 > t, µ(t; y) = 0) = E x s µ(t;y) I(τ 0 ≤ t) + sP x (τ 0 > t, µ(t; y) = 1) + P x (τ 0 > t, µ(t; y) = 0) (31)

where I(•) stands for the indicator of a set. Evidently, the first summand in (31) can be rewritten in the form q(s, t -u; 0, y) dH y,0 (u).

In particular, for s = 0 one has q(t; x, y) = H x,y,0 * ∞ k=0 H * k y,y,0 * (1 -G 2 (t)) + t 0 q(t -u; 0, y) dH x,0 (u) when x = y, (37) q(t; y, y) = ∞ k=0 H * k y,y,0 * (1 -G 2 (t)) + t 0 q(t -u; 0, y) dH y,0 (u).

(38)

Now we have the tools for proving Theorems 2 and 3 for x = 0. To establish Theorem 2 for x = 0 and d = 2 we employ equations (37) and (38). It is not difficult to see that the first summands in the right side of (37) and (38) are equal to p(t; x, y) -t 0 p(t -u; 0, y) dH x,0 (u) for x = y and x = y, respectively. The latter expression can be rewritten as follows p(t; x, y) -t 0 p(t -u; 0, y)dH x,0 (u) = p(t; x, y) -p(t; x, 0) + t 0 (p(t -u; 0, 0) -p(t -u; 0, y))dH x,0 (u) (39) due to the obvious relation p(t; x, 0) = t 0 p(t -u; 0, 0) dH x,0 (u). The asymptotic behavior of the first summand at the right-hand side of (39) is given by formula (2) whereas the asymptotic behavior of the second summand in (39) can be found with the help of relation (2), Lemma 3 in [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF] and Lemma 5.1.2 in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF]. Finally, the first summands in (37) and (38) are O(t -3/2 ) when d = 1 and O(t -d/2 ) when d ≥ 3. Hence, the first summands in (37) and (38) are o(q(t; 0, y)), as t → ∞, by Theorem 2 for x = 0. Moreover, on account of Lemma 3 in [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF] and Lemma 5.1.2 in [START_REF] Yarovaya | Branching Random Walks in Inhomogeneous Medium[END_REF] we reveal that the last summands in (37) and (38) are equivalent to q(t; 0, y) and q(t; 0, y) G 0 (x, 0)G -1 0 (0, 0) for d = 1 and d ≥ 3, respectively, as t → ∞. Hence Theorem 2 is proved for x = 0 and d = 2. As for Theorem 2 when x = 0 and d = 2 as well as Theorem 3 for x = 0, we only note that their proofs bear on analysis of equations ( 19) and [START_REF] Yarovaya | A limit theorem for critical branching random walk on Z d with a single source[END_REF]. Since the proofs are similar to that of Theorem 5 in [START_REF] Bulinskaya | Limit Distributions Arising in Branching Random Walks on Integer Lattices[END_REF], they are omitted. So, Theorems 2 and 3 are proved completely.

( 22 )

 22 Now let us prove Theorems 2 and 3 for x = 0. Since their proofs depend on d ∈ N essentially, we have to consider the cases d = 1, d = 2, d = 3, d = 4 and d ≥ 5 separately. Evidently, Theorem 2 for x = 0 and d ≥ 6 is implied by Lemma 4. Due to Lemmas 1-3 and equation (22) the proof of Theorem 2 for x = 0 in the respective cases d = 1, d = 2, d = 3 and d = 5 mainly follows the scheme proving, respectively, Theorem 2 in

E 0 E 0 E

 00 x s µ(t;y) I(τ 0 ≤ t) = {τ 0 ≤t} s µ(t;y) d P x = {τ 0 ≤t} E x s µ(t;y) τ 0 d Px = t x s µ(t;y) τ 0 = u dH x,0 (u) = t 0 s µ(t-u;y) dH x,0 (u). (32)It is easily seen that the probability at the second summand in (31) can be represented as followsP x (τ 0 > t, µ(t; y) = 1) = H x,y,0 * ∞ k=0 H * k y,y,0 * (1 -G 2 (t)) when x = y,(33)P y (τ 0 > t, µ(t; y) = 1) = ∞ k=0 H * k y,y,0 * (1 -G 2 (t)). (34)It also turns convenient to write the third summand in (31) in the formP x (τ 0 > t, µ(t; y) = 0) = 1 -H x,0 (t) -H x,y,0 * ∞ k=0 H * k y,y,0 * (1 -G 2 (t)) if x = y, (35) P y (τ 0 > t, µ(t; y) = 0) = 1 -H y,0 (t) -∞ k=0 H * k y,y,0 * (1 -G 2 (t)).(36)Combining relations (31)-(36) we come to the desired integral equations q(s, t; x, y)= (1 -s)H x,y,0 * ∞ k=0 H * k y,y,0 * (1 -G 2 (t)) + t 0q(s, t -u; 0, y) dH x,0 (u) if x = y, q(s, t; y, y) = (1 -s) ∞ k=0 H * k y,y,0 * (1 -G 2 (t)) + t 0

  It is not difficult to show that uniformly in u ∈ [t/ ln 3 t, t -t/ ln 2 t]

		t				
		t-t/ ln 2 t	m(t -u; 0, 0)h(q(s(t), u; 0, y))du
	≤	σ 2 λ 2 ln 4 t c * 2 t 2	t t-t/ ln 2 t	m 2 (u; 0, y)m(t -u; 0, 0)du =	ρ 2 (t; λ) ln t t	(25)
	for ρ 2 ∈ U. ln u ∼ ln t, ln(t -u) ∼ ln t, t → ∞.	(26)
	These facts, Theorem 1 and the relation h(z) ∼ σ 2 z 2 /2, z → 0, allow us to claim that
					t-t/ ln 2 t	
	I(t; λ) : =		t/ ln 3 t	h(q(s(t), u; 0, y))m(t -u; 0, 0)du
		=	σ 2 m(t; 0, 0) 2	t-t/ ln 2 t t/ ln 3 t

q 2 (s(t), u; 0, y)du (1 + ρ 3 (t; λ))
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