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X-ray diffraction method was applied to measure residual stresses and stored elastic energy in 
deformed and annealed polycrystalline ferritic and austenitic steel samples. Orientation 
distribution of plastic incompatibility second order stresses created during elastoplastic 
deformation was determined and presented in Euler space. Using deformation models, these 
stresses were correlated with different types of intergranular interactions occurring in the studied 
materials. An important decrease of the first and the second order residual stresses was observed 
during recovery and recrystallization processes. Also diffraction peak widths, related to 
dislocations density, were studied and correlated with stress variation during annealing process. 
Differences in stress relaxation between ferritic and austenitic samples were explained by 
different values of the stacking fault energy, which influences dislocation climb and cross-slip.  

 
Keywords: X-ray diffraction, residual stress, stacking fault energy, plasticity of metals, deformation 
model, recovery and recrystallization 

 

1.  Introduction  

Mechanical or/and thermal treatment applied to a polycrystalline sample can generate a field 
of internal stresses. Usually the stress field is heterogeneous and anisotropic. In many 
processes internal stresses are retained after the treatment. These stresses are called residual 
stresses and they can be described at different scales of interest [1,2]. The first order residual 
stresses (macrostresses),

 
I

ijσ , are the mean stresses averaged over a large sample volume (VA) 

containing  many polycrystalline grains:  

dV
V

V

ij

I

ij ∫=
A

)(
1

A

rσσ                                       (1) 

where )(rijσ is the local stress tensor at r position. 

These stresses arise from mechanical or thermal treatment due to heterogeneous deformation 
of different parts of the material. The deviation of the stress in a particular grain (denoted by 
g) from the first order value is characterized by the second order residual stresses: 

                              I

ij

g

ij

IIg

ij σσσ −= .                                                        (2) 

where g

ijσ  is the mean stress in the grain g. The second order stresses, called also the 

incompatibility stresses or microstresses, occur because of material heterogeneity, e.g., due 
to the mismatch in coefficient of thermal expansion, elastic constants or differences in the 
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plastic flow between grains of the polycrystalline material. Finally, the  third-order residual 
stresses σ III(r) characterize the heterogeneity of a single grain and originate from such 
phenomena as local stress fields around defects of the lattice (e.g., single dislocations or 
dislocation walls):  

g

ijij

III

ij σσσ −= )()( rr .                                                   (3) 

Obviously, the stress at a given point is the sum of the first, the second and the third order 
stress components: 

      )()( rr
III

ij

IIg

ij

I

ijij σσσσ ++=                                              (4) 

Residual stress of each type contributes to the stored elastic energy remaining in the material 
after deformation process. The residual stresses produce distortion of the crystallographic 
lattice, which can be observed in diffraction as the displacement, asymmetries and 
broadening of the recorded peak [3-5]. Analysis of such effects enables us not only to 
measure the internal stresses but also to determine the elastoplastic properties of 
polycrystalline materials [6-8].    

The main advantages of diffraction methods are their non-destructive character and 
the possibility of  macrostress and average micro-stress analysis for multiphase and 
anisotropic materials. Neutron and X-ray diffraction experiments with multiple reflections  

have been used successfully to determine the average plastic incompatibility stresses )( piIIg

ijσ  

(due to mismatch of the plastic deformation in neighbouring  grains) directly from the lattice 
strains measured for groups of crystallites contributing to different reflections [9,10].  

Knowledge of the dependence between the distribution of the crystallographic 
orientations in the polycrystalline material (described by the orientation distribution function, 
shortly ODF [11]) and the distribution of the residual stresses (described by the stress 
orientation distribution function, shortly SODF) can be useful for tailoring the material 
anisotropy. Significant effort has been done to determine SODF from the lattice strains 
measured for many orientations of the scattering vectors and for different  hkl reflections. 
For this purpose the components of stress tensor (depending on lattice orientation) are 
usually expanded into generalised spherical harmonics [12-16] and correlated with the 
measured lattice strains. In this methodology, at least 5-6 independent hkl reflections have to 
be used. However, usually such measurements are not possible in the conventional 
laboratory diffractometry due to low intensity of the measured diffraction peaks, especially 
for textured materials (they are possible in neutron TOF  and energy-dispersive synchrotron 
XRD methods). Finally, to obtain a unique solution of SODF additional assumptions such as 
minimum of stress or strain variance [14-16] or stress-strain relation based on Hill's 
constraint tensor [12,13] are needed.  

Another methodology, developed by authors of the present paper, combines the 
diffraction data with predictions of the physical behaviour of crystallites during the material 
deformation calculated by  elasto-plastic models. For this purpose, the self-consistent model 
was successfully applied [17,18].  This method allows a quantitative evaluation of the 

macrostresses, I

ijσ , and the average plastic incompatibility stresses - )( piIIg

ijσ  (i.e., the second 

order intergranular stresses generated due to plastic deformation). Such methodology was 
described in detail in our previous works and some examples of its application to plastically 
deformed single and two-phase materials with cubic and hexagonal structure were shown 
[17-22]. In these works the residual stresses were determined using classical laboratory X-
ray diffraction or neutron TOF method.  The methodology was also  applied to determine 
SODF and specific elastic energy stored in the unloaded material (SSEE –specific stored 
elastic energy), related to the first and the second order residual stresses, induced by plastic 
deformation [23-25]. Additionally, the influence of tensile load on the stress field and the 
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stored energy was studied. It was  confirmed that, the external uniaxial stress superposes 
with the internal residual stresses and in elastic range of macroscopic deformation the 
process is fully reversible at the level of polycrystalline grains, i.e.,  relaxation of the second 
order stresses is not observed and the residual stress field remains unchanged after unloading 
of the sample [23]. On the contrary, even small plastic deformation (a few percent) modifies 
significantly residual stresses, which mostly depends on the symmetry of the imposed 
deformation. It was found that the influence of crystallographic texture and of initial residual 
stresses on the final residual stress is often not significant; moreover the sample easily 
“forgets” its initial stress stage [24].  

The knowledge of residual stress and of corresponding stored elastic energy 
distributions versus crystal orientation is an important information concerning material 
properties. It is very useful in the study of recrystallization kinetics and especially in 
modelling of this process. In the recent study of recrystallization process using Monte Carlo 
and Vertex models [26,27], the distribution of the stored energy (connected with dislocation 
density) played a leading role. Also the second order residual stresses remaining after 
recovery process would influence the recrystallization. The characterization of stress field is 
also of primary importance in the study of mechanical behaviour of polycrystalline materials, 
including plasticity [28], fracture and damage phenomena [29-31]. Indeed, the critical stress 
initiating plastic deformation or damage at the grain level depends on the external load 
subjected to the sample but also on the  first and second order residual stresses. It is known 
that stress field significantly changes during sample annealing. This phenomenon has an 
important practical application for relaxation of the residual stresses induced in machined 
and formed parts or in deposited coatings. These undesirable stresses can contribute to  
cracking when the parts are used. For example, tensile residual stresses can initiate and 
accelerate crack growth and they can result in failure of the coating when the external loads 
are superimposed. For these reasons, stress relieving process is often necessary.  

 Thermal relaxation of the first and the third order stresses was already deeply 
studied [32-35], while the evolution of the second order stresses during recovery process was 
not yet investigated. In the present work our methodology of stress determination is applied 
to study the evolution of a stress field in cold rolled ferritic and austenitic steels subjected to 
thermal treatment at different temperatures. The aim of this work is to describe the evolution 
of both the first and the second order residual stresses and corresponding stored elastic 
energy during recovery of plastically deformed metals. To complete the description of the 
processes occurring during annealing, the stress relaxation is correlated with variation of the 
diffraction peak width (related to the density of dislocations and the third order stresses) and 
with the crystallographic texture. The results of this work can be directly used in the study of 
mechanical properties (yield stress, damage initiation) and of recrystallization process, i.e., 
the values of determined grain stresses, characterizing initial sample, are the input data for 
deformation [28,31] or recrystallization models [26,27]. 

 

2. Elastoplastic deformation models 

As mentioned above, thermal relaxation of stresses was studied by diffraction methods, 
however, in the analysis of experimental data the results of elastoplastic deformation models 
were used. These models enable us to predict the second order incompatibility stresses 
( )( piIIg

ijσ ) generated by a deformation process in a material. These stresses arise due to the 

anisotropy of plastic flow in different grains. The scheme of behaviour of two exemplary 
grains having various orientations of slip systems with respect to the local stress (σ ) is 
shown in Fig. 1. The local stress is the result of the macroscopic stress ( Σ ) applied to the 
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sample. After plastic deformation and unloading of the boundary forces (i.e., 0→Σ ), the 
grains do not fit to the surrounding mean matrix. Due to such misfit of  grains, the second 
order incompatibility stress  and corresponding lattice strain arise. 

To predict plastic incompatibility stresses two scale transition models, assuming 
different approaches concerning localization of stresses in polycrystalline grains, were 
applied. In both models elastoplastic deformation is considered at two scales, i.e., for a grain 
and  for a polycrystalline material.  

 

2.1. Deformation of polycrystalline grain 

On the grain-scale, plastic deformation occurs due to slip on the crystallographic planes. 
According to Schmid’s law, the slip can be activated only on  such slip system [uvw] (hkl) 
(the slip direction and slip plane are specified) for which the resolved shear stress 

)(
[uvw](hkl)

gσ   reaches a critical value cτ , i.e. [36-38]: 

c[uvw](hkl)
)( τσ =g ,                                                    (5) 

where :         )()mnn(m
2

1
)(

g

ijjiji[uvw](hkl)
gg σσ +=   ,                       (6) 

 g  is the orientation of grain lattice, n = [n1, n2, n3 ] is the unit vector normal to the (hkl) 
slip plane and m = [m1, m2, m3 ] is the unit vector parallel to the [uvw] slip direction. 

During plastic deformation, the multiplication of dislocations and evolution of their 
spatial distribution inside grains leads to the hardening of slip systems (τc  increases with 
deformation). The hardening of slip system can be approximately described by the work 

hardening matrix relating the rate of the critical shear stress on the s-th system (
•
s

cτ ) with the 

rate of the plastic glide (
•

tγ ) on the t-the active system [36-38], i.e.: 

                           
••

∑= tst

t

s

c H γτ   ,                                            (7) 

where dot denotes time derivative 
t∂

∂
.  

Slips on the crystallographic planes cause deformation of the grain g and rotation of 

its crystal lattice, which can be described by the plastic strain rate )(
ij

g(pl)
g

•

ε  and the lattice 

rotation rate )(w
ij

g(cr)
g

•

 tensors, respectively [36-38]:                                 

    ∑
••

+=
t

t

j

t

i

t

j

t

i

t

ij

g(pl) mnnm)( γε )(
2
1

g    and   t

t
j

t

i

t

j

t

i

t

ij

g(cr) mnnm)(w
••

∑ −−= γ)(
2
1

g  .       (8) 

To predict elastoplastic deformation of polycrystalline material, the relations 
between global variables (Σij, Eij – stresses and strains applied to the sample) and the local 

variables ( )(g

ij gσ , )(g

ij gε
 
- stresses and strains defined for a grain)

 
have to be established.  

To this aim the idea of scale transition theory based on the self-consistent approach 
[36-38] and Leffers-Wierzbanowski (LW) [39-41] model are used in this work. These 
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models are fully described in the mentioned references, hence only basic characteristics of 
them are recalled in two following sub-sections. 

2.2. Scale transition models   

(1) Leffers-Wierzbanowski model  

The LW plastic model is based on that of Leffers [39] and developed and generalised by 
Wierzbanowski [40,41] with some concepts of the self-consistent method and of the work-
hardening mechanism. The scale transition law in LW model is based on Hill theory [42], 

which  defines the stress rate of a grain )(g

ij g

•

σ  
as the sum of the rates of the applied 

•

Σ ij and 

the grain interaction stresses, i.e.:  

)(
••••

−+Σ= ∗ )(EL)( g

klklijklij

g

ij gg εσ                                          (9) 

where ∗L  is the so-called Hill's constraint tensor  relating the rate of interaction stresses with 

the difference between the sample (
•

klE ) and the grain ( kl

•

ε )( g ) strain rates. It is assumed in 
LW model that total strain can be replaced by the plastic one if the plastic range of 
deformation is studied. Therefore the grain stress rate is:  

)(
••••

−+Σ= ∗ )(EL)( g(pl)

kl

(pl)

klijklij

g

ij gg εσ                                          (10) 

In such a way one has an explicit relation for local stress if the applied stress and sample and 
grain plastic strains are known. 

The second term of  Eq. 10 describes the interaction stresses resulting from the 
incompatibilities of a grain with the surrounding aggregate (called matrix), caused by 
different  sample and grain plastic strain  rates. In the standard version of LW model, the *L  
constraint tensor is replaced by the product of the elastic shear modulus µ of the studied 
material and the so-called elastoplastic accommodation parameter α [43], i.e.,: 

  ijijkl uµαL =*
                 for    ij=kl                             (11) 

                0L
*

ijkl =                     for     ij≠ kl   

where: iju (equals to 0 or 1) describes the anisotropy of elastoplastic accommodation, while 

α can change from 0 (Sachs model [44]) up to infinity (Taylor model [45]) and reflects 
interactions between a grain and the surrounding matrix.  

The elastoplastic accommodation parameters are free factors which can be modified 
in order to find the best agreement of the model results with those obtained experimentally.   
 

(2) self-consistent elastoplastic model 

In the self-consistent model the idea of scale transition theory is based on the hypothesis of 

the existence of a concentration tensor )(A
g

ijkl g  relating the  macrostrain rate klE
•

  with the 

grain strain rate )(g

ij g

•

ε , i.e.[36-38]: 

kl
g

ijkl

g

ij E)(A)(
••

= ggε                                               (12) 

The polycrystalline material in macroscopic scale is approximated by a 
homogeneous continuum characterized by effective eff

ijklL  tangent modulus tensor relating the 

global strain (
kl

E
•

) and the stress (
ij

•

Σ ) rates:  
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kl

eff

ijklij
EL
••

=Σ                                                              (13) 

Assuming that the grain behaviour is described by: 

)()(l)(
kl

gg

ijklij

g
ggg

••

= εσ                                                 (14) 

the effective tensor eff

ijklL  can be expressed through: 

                           )(A)(lfL
g

mnkl

g

ijmn

Ng

g

g

ijkl

eff
gg∑

=

=
1

                                           (15) 

where: )(l
g

ijmn g  is a local tangent modulus tensor (depending on a choice of active slip 

systems), gf  is  a volume fraction of  g-th grain and Ng  is the number of grains. 

The aim of the self-consistent method is to find such concentration tensor )(Amnkl g
g  

for which the local and global relations given by Eqs. 13 and 14 are simultaneously fulfilled. 
In this study, the "one-site" self-consistent approximation is used for the calculation of the 
strain and stress concentration tensors [36-38] and consequently: 

 [ ] [ ]effggg1g
mnklmnklijmnijklijkl

L)(l)(TI)(A −−=
−

ggg                                    (16) 

where )(Tijmn g
gg  is an interaction tensor calculated for ellipsoidal shape of inclusion 

embedded in a homogenous medium with a tangent modulus eff
ijklL  and ijklI  is the fourth-rank 

unit tensor. The above interaction tensor is calculated as: 
 

')',(
1

dVdVΓ
V

T

g gV V

ijmn

g

gg

ijmn ∫ ∫= rr  

where Γijmn
 is the Green tensor [36] and r, r’, dV, dV’ vary within the grain g of the volume 

Vg. 
Comparing Eq. 15 with Eq. 16, it can be concluded that the eff

ijklL  tensor can be 

calculated only if the )(Amnkl g
g  tensor is known, and vice versa. To find both tensors, the 

self-consistent procedure must be used. Knowing the )(Amnkl g
g  and eff

ijklL  tensors, the rate of 

strain at grain )(ij g

•
gε  can be determined from a global strain rate klE

•

 (Eq. 12) or from the 

stress rate kl

•

Σ  (Eqs. 12  and 13). Subsequently, other variables (see section 2.1) 

characterizing grain evolution and depending on )(ij g

•
gε  rate can be calculated. 

2.3. Numerical algorithm 
An incremental formulation of the above models was developed for its numerical 
implementation. Calculations are performed for a given set of polycrystalline grains (in the 
case of self-consistent model represented by ellipsoidal inclusions) characterized by single 
crystal elastic constants, initial lattice orientations and initial critical resolved shear stresses 
for slip systems. In this procedure, all local and global variables describing the polycrystal 
are known at the end of step (i-1). For current values of grain stresses )(ij g

gσ and critical 

resolved stresses 
c

sτ , the Schmid’s criterion (Eq. 5)  is checked and the active slip systems 
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are selected. In the case of self-consistent approach, the tangent modulus )(l
ijkl

g
g (Eq. 14) and 

concentration tensor )(A
ijkl

g
g (Eq. 16) are determined for selected glides in each grain [38]. 

At step i, the new increment of external loading is applied, i.e. increment kl∆Σ  or kl∆Ε  is 

specified and corresponding increments of: grain stresses )(
g

ij gσ∆  (from Eqs. 9 or 12and 

14), critical resolved stresses 
c

sτ∆
 
(Eq. 7), rotation of the lattice )(w

ij

g(cr)
g∆  (Eq. 8) and grain 

deformation )(
g

ij gε∆
 
are calculated. Finally, the local and global variables are upgraded and 

in the case of self-consistent model, the effective tangent modulus 
ijkl

effL (Eq. 15) is calculated 

at i- th step. 
The model calculations are performed up to a given sample  strain klΕ   and next the elastic 

unloading of the sample is performed in the last step, i.e., kl∆Σ = - klΣ  increment is applied, 

leading the global stress to zero value, i.e., 0→klΣ . After unloading of the sample only the 
residual second order incompatibility stresses  remain in the polycrystalline grains (these 

model stresses will be denoted by 
≈≈≈≈≈≈≈≈≈≈≈≈

)()(
g

piIIg

ijσ ). 

 

2.4. Differences between applied models and assumptions used in calculations 
The models applied in this work approximate plastic deformation of polycrystalline material 
using different assumptions concerning localization of the stress (or strain) in grains. 
Nevertheless, the calculations are based on the same scheme (described above) and many 
assumptions are common for both algorithms. Let us specify the differences and similarities 
between models, explaining advantages and reasons of the used approximations for our 
methodology. 
 
Assumptions common for both models (at grain level):    

 

- The Schmid’s criterion (Eq. 5) is used to select combination of slip system active 
during increment kl∆Σ  or kl∆Ε . The same value of initial critical resolved shear 
stress was assumed for all grains. 

- A constant value of the H parameter is assumed for all components of hardening 
matrix (i.e., Hst  

= H in Eq. 7), i.e. the constant and isotropic hardening is applied to 

generate theoretical plastic incompatibility stresses (
≈≈≈≈≈≈≈≈≈≈≈≈

)()(
g

piIIg

ijσ . The reason is that 

the real hardening of the material cannot be measured during cold rolling process and 
the parameters of nonlinear law (for example Voce law [47]) cannot be found. Thus 
the modelling is performed with constant hardening, not for the whole process but 
only for some increment of deformation (specified below for the studied samples). As 

the result, the dependence of 
≈≈≈≈≈≈≈≈≈≈≈≈

)()(
g

piIIg

ijσ  on grain orientation can be found, however 

exact magnitude of these stresses, depending on the material hardening, remains 
unknown. The aim of the methodology described below is to find the real values of 
plastic incompatibility stresses from so obtained theoretical results using X-ray 
diffraction data. Moreover, the simplest assumption of the isotropic hardening (i.e. 
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H
st  

= H in Eq. 7) was used because no improvement of the results was achieved 
when different values of self and latent hardening [48] were introduced in 
calculations. 

- Experimental crystallographic texture measured for the studied sample is imposed for 
the initial set of grains used in calculations, i.e. orientations of the grains are 
distributed according to measured ODF. Rotation of grain lattice is taken into account 
in calculations (plastic deformation and lattice rotation are calculated according Eq. 
8). Model prediction is performed for limited range of deformation for which texture 
is not significantly modified.  
 

Differences between models (localization approach):    

 
The self-consistent model used in this work is based on the local constitutive relation 
given by Eq. 14 and strain concentration tensor (Eq. 16) calculated for ellipsoidal 
inclusion embedded in homogenous medium (Eshelby type model [49]). To calculate   
concentration tensor the Green function technique and the self-consistent method are 
used [36]. Thus the stress concentration and grains interaction is determined by 
sample and grain properties varying during plastic deformation. Although this model 
is based on strict mechanical description it fails in some cases of calculations (for 
example the crystallographic texture of cold rolled brass cannot be correctly 
predicted). The main disadvantage of the model is that the concentration tensor is 
strictly defined and additional phenomena changing localization (for example stress 
relaxation on the grain boundary) cannot be taken into account in calculations. In the 
case of LW model the stress applied to the sample is localized in the grain according 
to Eq. 10. In this approach the interaction between grains is approximated by the 

term: )(
••

−∗ )(EL g(pl)

kl

(pl)

klijkl gε  in which ∗
ijklL tensor is constant during deformation and it 

does not depend on the grain or sample properties. Although significant 
simplification is used in LW model, the main advantage of this algorithm is its 
flexibility, i.e. the interaction term can be easily modified changing accommodation 
parameters α  and iju  in Eq. 11 (e.g. crystallographic texture can be predicted 

assuming small value of α  
[40,41]). On the other hand LW model does not take into 

account the influence of elastic and plastic anisotropy on the stress localization, thus 
the prediction is not so accurate as with the self-consistent model (in the case when 
localisation is correctly described by Eshelby approach). In the present work it will 
be demonstrated that the differences between two described models play a key role in 
the prediction of plastic deformation in real sample. 

 

3. Experimental technique 

The sin
2ψ  X-ray diffraction method [3,4] of stress analysis is based on the measurement of 

peak positions for a given hkl reflection and for various orientations of the scattering vector . 
In the sample reference system these orientations are defined by φ and ψ angles (Fig. 2). 
Next, the interplanar spacings <d(φ,ψ)>{hkl}  are calculated using Bragg’s law. Statistically 
more representative results are obtained when the average interplanar spacings 

>),d( < hkl}{ψφ  are measured for more than one hkl reflection. Then, so called multi-
reflection method for data analysis can be used to determine the stress field from equivalent 

lattice parameters, defined as <a(φ,ψ)>{hkl} = 222 lkh ++ <d(φ,ψ)>{hkl}  for cubic crystal 
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structure [32,46]. 
In the absence of the second order stresses and in the case of a quasi-isotropic 

sample (without texture), the equivalent lattice parameters <a(φ,ψ)>{hkl} measured in L3 
direction (Fig. 2) are given by the well known relation [3,4,32]:  
 

( ) ( )[ ]

[ ] [ ]
    

a sin2)sin+ cos(hkls
2

1
+hkls

2

1
+σ+σ+σhkls

ψsin sin2φσφ+sinσσφ+cosσσhkls
2

1
a=>)a(<

I
23

I
132

I
332

I
33

I
22

I
111

2I
12

2II2II
112hkl

0

332233
0

}{

)()()(

)(,

+


+



 −−

ψφσφσσ

ψφ
 

(17)  

 

where )(1 hkls and )(2 hkls are the diffraction elastic constants (DEC) for quasi-isotropic 

polycrystal, oa  is the strain free lattice parameter and the first order stresses I

ijσ are defined 

with respect to the X system (Fig. 2). 
 
It should be stated that the measured <a(φ,ψ)>{hkl} parameter is defined as the mean value 
over the volume of diffracting grains for a chosen hkl reflection (this is noted by <...>{hkl}). 
Thus the diffraction elastic constants relate  the first order stress I

ijσ  (averaged over the 

whole gauge volume irradiated by X-rays) with the strain in the direction of the scattering 
vector in a given orientation (averaged over volume of selected grains for which the 
scattering vector is perpendicular to {hkl} planes).  The DEC can be calculated by different 
models from single crystal elastic constants [3,4] and they are not equal to the values of 
macroscopic or single crystal elastic modulus. When the material is not textured (quasi-
isotropic) only two  DEC are defined: )(1 hkls and )(2 hkls . They depend on a chosen 
reflection hkl but do not depend on the orientation of the scattering vector (φ,ψ) defining 
direction of strain measurement.    

In the case of one phase material, due to low penetration depth of X-ray radiation, 
the force perpendicular to the sample surface is not present in the analysed volume, and the 

I

33σ  is assumed to be zero. The <a(φ,ψ)>{hkl} parameters are determined as a function of  

sin
2ψ  for constant hkl reflection and φ angle, as well. In this case, the above equation 

exhibits a linear dependence of  <a(φ,ψ)>{hkl} vs. sin
2ψ for a biaxial stress state (i.e., for 

0231333 === III σσσ ) or it shows a splitting phenomenon if non-zero shear stresses 
I

13σ  and I

23σ  are present in the sample. The splitting, i.e., the opposite curvature of the 

sin
2ψ  plots, can be observed when the measurements are performed for the φ and φ+π  

angles, respectively [3,4]. In the conventional sin
2ψ  method, a linear or elliptical regression 

is used to determine the stresses from the <a(φ,ψ)>{hkl}  vs.  sin
2ψ  graphs, measured by X-

ray diffraction for the given hkl and φ parameters. Consequently, the I

11σ , I

22σ , I

12σ , I

13σ , I

23σ  

stresses and oa  (strain free lattice parameter) can be determined if the sin
2ψ  plots are 

measured for different φ  angles.  
For textured samples DECs depend on ODF and they vary with φ and ψ angles. In 

this case the plots of <a(φ,ψ)>{hkl}  vs.  sin
2ψ  are no longer linear or elliptical. The measured 

interplanar spacingshave to be expressed by the macrostresses I

ijσ using a more general 

equation: 
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                    00

}{ aa]   ),(hkl, F [ = >),a( < I
ijijhkl +σψφψφ                                     (18) 

 
where:  ),(hkl, F ij ψφ are DEC defined for an anisotropic (textured) material.  

 
When the polycrystalline material is textured (but second order stresses are not present) 
small nonlinearities appear on the <a(φ,ψ)>{hkl} vs. sin

2ψ plots due the dependence 
of  ),(hkl, F ij ψφ  on ψ angle. The magnitude of nonlinearities is proportional to the value of 

the first order stresses. This effect was deeply studied by many authors and different methods 
for calculations of  ),(hkl, F ij ψφ from single crystal elastic constants and measured ODF, 

characterizing crystallographic texture, were proposed [4,17,18,23]. Knowing values of  

 ),(hkl, F ij ψφ  five components of macrostress tensor I

ijσ  and oa  strain free lattice parameter 

can be determined using the least square fitting procedure (the analysis of diffraction data 
with assumption that the second order are not taken into account will be called “standard 
sin

2ψ method”). 

3.1. Method for determination of the first and the second order stresses 

The effects of the intergranular second order stresses have been observed as strong 
nonlinearities of the <a(φ,ψ)>{hkl} vs. sin

2ψ  plots measured by X-ray or neutron diffraction 
for polycrystalline samples subjected to elastoplastic deformations [2, 12-20, 23-25]. The 
character and magnitude of these nonlinearities are definitively different from those which 
are caused only by the elastic anisotropy of textured sample (as mentioned, effect of texture 
can be taken into account by  ),(hkl, F ij ψφ constants). Thus, not only the elastic anisotropy 

but mostly the second order incompatibility stresses ( IIg

ijσ ) are responsible for non-linear 

character of the <a(φ,ψ)>{hkl} vs. sin
2ψ plots.  

To analyse <a(φ,ψ)>{hkl} vs. sin
2ψ curves measured for plastically deformed 

materials the modified sin
2ψ method allowing the separation of the macrostresses I

ijσ  and 

the second order plastic incompatibility stresses ( )()(
g

piIIg

ijσ ) was developed [17,18]. In this 

method it is assumed that the dependence of 
≈≈≈≈≈≈≈≈≈≈≈≈

)()(
g

piIIg

ijσ
 
on latticeorientation g , can be 

qualitatively predicted by the elastoplastic model. However, the absolute values of the 
stresses will depend on the hardening during plastic deformation and on the relaxation 
processes occurring due to annealing. These processes are difficult to model and in general 
the amplitude of the stress tensor cannot be exactly predicted. To relate the magnitude of 

theoretical 
≈≈≈≈≈≈≈≈≈≈≈≈

)()(
g

piIIg

ijσ
 
stresses to the  real ones, an unknown scaling factor q is introduced 

[17,18]. This factor does not depend on a grain orientation g and it rescales only the 

amplitude of the stress tensor, i.e. the second order incompatibility stress )()(
g

piIIg

ijσ  in the 

real sample is equal to:               

                   
≈≈≈≈≈≈≈≈≈≈≈≈

= )()( )()(
gg

piIIg

ij

piIIg

ij q σσ                                             (19) 

where q is the scaling parameter and  piIIg

ij )()(
gσ  is the plastic incompatibility stress for a 

grain with g orientation as predicted by the elastoplastic model after sample unloading 
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( 0→klΣ , see section 2.3).    

The equivalent lattice parameters  >)a( < hkl}{,ψφ  measured in the direction of the 
scattering vector by use of the {hkl} diffraction planes, can be expressed as:  

oo
hkl

piIIg

ijmnijnm
M
ijijhkl aa >  sq+ )(hkl,F = >)a( < +<

≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈

])(,[, }{
)(

33}{ gσγγσψφψφ  ,           (20)   

where: )(gmnijs  are the single crystal elastic constants defined with respect to the sample 

system (X in Fig. 2), γkm are the direction cosines relating strains expressed in the sample 
frame (X) to the strain along the direction of scattering vector (see Fig. 2) and 

≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈

< >  s hkl
piIIg

ijmnijnm }{
)(

33 )(gσγγ  are the model predicted strains in unloaded sample, caused by 

the second order plastic incompatibility stresses.  

Using the least square method to adjust the calculated >)a( < hkl}{,ψφ  values (Eq. 

20) to experimental ones, the fitting parameters (i.e., σ I
ij , q and oa ) can be determined for 

cold rolled and annealed samples. The procedure used in this work is based on the 
minimization of the merit function, called 2χ , and defined by:  

2
N

1n n

cal

{hkl}nn

exp

{hkl}nn2
 a a

MN

1
 = ∑

=









 ><−><

− δ
ψφψφ

χ
,(,(

                         (21)                                         

where exp

{hkl}nna >< ψφ ,(  and  a cal

{hkl}nn >< ψφ ,( are the experimental and calculated equivalent 

lattice parameters measured using hkl reflections, ),( }{>)a( < hklnn ψφδδ =  is the 

measurement error (standard deviation) of the determined spacing >)a( < hkl}{,ψφ for the n-th 
measurement, N and M are the numbers of measured points and fitting parameters, 
respectively. 

It should be emphasized that the term 
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈

< >  s hkl
piIIg

ijmnijnm }{
)(

33 )(gσγγ  predicted by the 

deformation model and characterizing the nonlinearities of the sin
2ψ  plot is adjusted to the 

experimental data obtained for the initial as well as annealed samples. Thus, in this approach 
it was assumed that the orientation distribution of the plastic incompatibility stresses does 
not change significantly during thermal treatment. Only the magnitude of these stresses 
(described by q parameter in Eq. 19) decreases due to recovery processes.   

3.2. Diffraction measurements  

Cold rolled ferritic low carbon steel (reduction of 85%) was subjected to the annealing in 
different temperatures (200oC, 400oC, 600oC, 800oC) in CO2+CO atmosphere for 30 
minutes. In the case of cold rolled austenitic stainless steel (reduction of 70 %) the annealing 
was performed in temperatures: 0 oC, 400 oC, 450 oC, 500 oC, 600 oC and 650 oC for 120 
minutes, in argon atmosphere.  

The X-ray patterns were recorded using a Seifert diffractometer, equipped with a 
chromium anode (λΚα1 = 2.29090 Å) for ferritic steel and manganese anode (λΚα1 =2.10310 
Å) for austenitic steel. In order to avoid surface effects the layer of 200 µm was removed 
from each sample by electropolishing method. ODFs characterizing crystallographic 
textures, were calculated from measured incomplete pole figures ({110}, {200}, {211} for 
ferrite and {111}, {200}, {220} for austenite) using WIMV method [50]. The measurements 
were done in the range of α between 00 and 650 with angular step of 50 for α and β. The 
obtained ODFs are shown in Figs. 3 and 4 for two materials and different temperatures of 
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annealing. It can be seen that the distribution of orientations did not change significantly 
when the cold rolled ferritic steel was annealed at 200oC and 400oC. A considerable 
modification of ODF, corresponding to the recrystallization process occurred in 600oC. In 
the case of austenitic steel the texture of cold rolled sample remained almost unchanged until 
600oC and only in 650oC a small but clear changes in texture typical for its transformation 
towards the recrystallization texture were registered.  

To determine the equivalent lattice parameters 
}{

)(
hkl

,a >< φψ , the 211 and 200 

reflections were used for ferritic steel, while the 311 and 220 reflections were used in the 
case of austenitic steel. In analysis of the experimental data the background  approximated 
by linear function was subtracted from recorded diffraction peaks and Kα2 component was 
eliminated. Then, the peaks profiles were fitted with pseudo-Voigt function and interplanar 
spacings were calculated from peaks positions using Bragg law. The <a(φ,ψ)>{hkl} vs. sin

2ψ  
curves were determined using the side-inclination method (ψ-goniometer geometry) with 
point focus (1.5 mm diameter of collimator). Diffraction profiles were obtained for 17 

different ψ directions (for +ψ and -ψ inclinations) in each of the four φ  angles fixed at 0°, 
30°, 60° and 90° for ferrite and in three φ  angles 0°, 45°, 90° for austenite. Because of the 
sample symmetry the results obtained for +ψ  and -ψ  inclinations are symmetrical and they 
are presented in the same plot (see Figs. 5 and 6). The nonlinearities of the measured 
<a(φ,ψ)>{hkl} vs. sin

2ψ  curves confirmed a strong anisotropy of the second order plastic 
incompatibility stresses ( )()(

g
piIIg

ijσ ) in both cold rolled steels.  

Finally, the integral width of diffraction peak profile was also studied (see Fig.7).  
Variation of this parameter is usually related to changes of dislocation density. In the ferritic 
steel (Fig. 7a), the integral width of the peaks (and consequently dislocation densities) 
decreases during samples annealing until 600oC, where recrystallization of the material 
begins. Next, at  800oC  the width of the peak (reflection 211) did not change. In the case of 
austenitic steel the width of the diffraction peaks decreases slightly until 400oC, and after this 
threshold a significant reduction of peaks broadening occurs  (see Fig. 7b). 
 

4. Results and discussion 

The crucial point of stress analysis is a correct modelling of the processes occurring during 
elastoplastic deformation. The analysis performed by so called modified sin

2ψ method 
requires almost exact prediction of the nonlinearities on the  <a(φ,ψ)>{hkl} vs. sin

2ψ  curves 
(only the amplitude of nonlinearities is scaled by q factor). If  theoretically predicted 

variation of lattice strains 
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈

< >  s hkl
piIIg

ijmnijnm }{
)(

33 )(gσγγ  (see Eq. 20) does not agree with  

experimentally determined oscillations of <a(φ,ψ)>{hkl} vs. sin
2ψ  plots, the fitting procedure 

fails and the value of q parameter approaches zero. The disagreement of theoretical and 
experimental data can be observed directly on the <a(φ,ψ)>{hkl} vs. sin

2ψ  plot and can be 
also quantitatively characterized by 2χ parameter defined in Eq. 21.  
 

 

4.1. Determination of the second order plastic incompatibility stresses 

Model calculations were carried out for 106 polycrystalline grains,  having forms of spherical 
inclusions, embedded in an elastically and plastically homogeneous matrix in the case of the 
self-consistent model. The crystal lattice orientations were assigned according to the initial 
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ODFs measured by X-ray diffraction (see Figs. 3 and 4). The initial critical resolved shear 
stresses (τ0), the work hardening parameter (H), single crystal elasticity constants (Cij) [51], 
elastic shear modulus (µ) and plastic accommodation matrix (uij) [40,41] are quoted in Table 
1. The two first parameters were assumed arbitrary (τ0 and H mostly influence magnitude of 

the 
≈≈≈≈≈≈≈≈≈≈≈≈

)()(
g

piIIg

ijσ  stresses but not significantly change their dependence on grain orientation), 

while the other ones are taken from the cited literature for the studied materials. It was 
assumed that the <110>{111} slip systems were active during plastic deformation of the 
austenitic sample  (f.c.c. structure), while two slip system families, i.e.: <111>{110} and 
<111>{211},  were active in the ferritic steel (b.c.c. structure). It should be stated that the 
processes occurring during large deformation (as cold rolling) cannot be exactly predicted by 
models due to unknown variation of hardening process. Thus to find out the orientation 
distribution of theoretical incompatibility stresses we perform a model calculation for a given 
increment of deformation for a set of grains having orientations corresponding to the 
crystallographic texture measured for a cold rolled sample [23,24]. To generate the second 
order plastic incompatibility residual stress, the cold rolling process followed by unloading 

( 0)ij →Σ
 
is simulated. The assumed increment of deformation should be large enough to 

activate sets of slip systems corresponding to those which operate  in the real sample during 
cold rolling process. On the other hand the deformation increment should not be too large 
because the final model texture can be significantly modified and different from the 
experimental texture (initial one for model). The appropriate deformation range (usually 
between 5-20%) depends on the interaction between grains as well as on the crystallographic 
texture and it is estimated by fitting the model lattice strains to experimental results (see 
procedure based on Eqs. 19 and 20). For the studied samples the best fit (the lowest value of 

2χ ) was obtained when the model calculations were performed  for the sample deformation 
of E11=10% for ferritic steel and E11=20% for austenitic steel. 

Next, the stress analysis based on the least square fitting procedure (Eq. 20) was 
performed. Diffraction elastic constants  ),(hkl, F ij ψφ  were calculated from single crystal 

elastic constants (Table 1) and ODFs measured for cold rolled and annealed samples (Figs. 3 
and 4), using the Free Surface Method. This method is described in [23], where also its 
application for textured materials was theoretically and experimentally justified. The number 
and distribution (with respect to φ angle) of measured <a(φ,ψ)>{hkl} vs. sin

2ψ  plots enabled 
us to calculate five components of the macrostress tensor with assumption that I

33σ  = 0. 

Thus, I

11σ  (in the rolling direction – RD), I

22σ  (in the transverse direction – TD ) and I

12σ , 
I

13σ and I

23σ  components were treated as the fitting parameters. Simultaneously, the values 

of the strain free interplanar spacing oa
 
and of q scaling factor were adjusted. As expected, 

due to the orthorhombic sample symmetry of cold rolled materials only two principal 
components of the macrostress tensor ( I

11σ  and I

22σ ) were significant, while the shear 
stresses were negligible (values of several MPa). It was also verified that almost the same 
values of I

11σ  and I

22σ  stresses were obtained when other components of macrostress tensor 

( I

12σ , I

13σ and I

23σ ) were assumed equal to zero in fitting procedure. Thus in further analysis 

only the evolution of I

11σ  and I

22σ  stresses generated during cold rolling and modified by 
annealing process are considered in section 4.3. Finally, the next  adjusted parameter, i.e., q , 
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can be used to calculate the average second order plastic incompatibility stresses 

( )()(
g

piIIg

ijσ ) from theoretical results (
≈≈≈≈≈≈≈≈≈≈≈≈

)()(
g

piIIg

ijσ ) for each lattice orientation g (see Eq. 19).    

Before presentation of the final results of analysis, different model assumptions 
concerning stress localisation were tested. To verify a type of grains interaction, model 
calculations were done for different α values of accommodation parameter in LW model (see 
Eqs. 10 and 11). In the case of the ferritic steel the best fit of theoretical lattice strains to the 
experimental results was obtained for α = 0.06 (see Fig. 8a, where 2χ  for different α is 
shown). Comparing von Mises stresses [52] averaged for all grain orientations, it was 
checked that for the same  initial critical shear stress τ0  and work hardening parameter H 
(see Table 1), the level of plastic incompatibility stresses generated by LW model with α = 
0.06 corresponds directly to those predicted by self-consistent model. In this case an 
equivalent interaction level between grains occurs in both models. Additional point (*) 
shown in Fig. 8a presents the 2χ  obtained from fitting procedure for theoretical strains 
predicted by the self-consistent model (presented at α = 0.06), while the horizontal dotted 
line corresponds to 2χ  value resulting from assumption that the second order plastic 

incompatibility stresses ( )( piIIg

ijσ ) are not taken into account. Analysing Fig. 8a, it can be 

concluded that both the self-consistent and LW (for α = 0.06) models equivalently predict 
distribution of plastic incompatibility stresses (practically the same 2χ  in both cases). The 
quality of fitting is definitively better when plastic incompatibility stresses are taken into 
account in fitting procedure (compare: 2χ =12 for standard sin

2ψ   method based on Eq.18  

and 2χ =2.2 when the model date are used in fitting, see Eq. 20). 
Similar analysis as for ferrite was performed for the cold rolled austenitic steel. In 

this case, however, the best fitting of theoretical results was obtained when very low value of 
α was assumed in LW model; in fact 2χ  decreases when α approaches zero value 

corresponding to Sachs model (Fig 8b). In  Fig. 8b also the 2χ  values for self-consistent 
model (eq. 20) and for the standard sin

2ψ   method (Eq. 18) are shown. In the case of self-
consistent model it was checked that the level of incompatibility stresses corresponds to 
these predicted by LW model with α = 0.09. The advantage of LW model is that the quality 
of fitting can be improved by tuning of α parameter, what cannot be done in the case of self-
consistent model. Note, that we have achieved  two times lower 2χ  for α  between 10-4 and 
10-3  than in the case when plastic incompatibility stresses are not taken into account in 
standard sin

2ψ   method (compare dotted line drawn in Fig. 8b). 
The above  results  agree with our previous conclusions  concerning  the modelling 

of cold rolling textures [40,41]. It was found that experimental texture of b.c.c. polycrystals 
(ferrite) can be predicted by LW model with relatively high α, however in the case of f.c.c. 
structure two characteristic textures exist. So called “copper type texture”, characteristic for  
pure f.c.c. polycrystalline metals with high stacking fault energy (SFE) can be calculated by 
Taylor type models (or LW model with high value of α). On the contrary, the “brass type 
texture”  occurring in metal alloys (brass or austenite) with low SFE, is obtained from Sachs 
type models (or LW model with low values of α). It can be concluded that crystallographic 
texture and plastic incompatibility stresses are correctly predicted for cold rolled austenite if 
a low value of α is assumed in LW model, while a high value of α is required in the case of 
cold rolled ferritic steel. 
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In the further analysis of the experimental data, only the results obtained for the best 
fit of theoretical data to the measured values were considered (i.e. results of the self-
consistent model were used for analysis in the case of ferritic sample, while LW model with 
α = 10-3 was applied for austenite). Comparing plots presented in Figs. 5 and 6, we can 
notice that the agreement of measured <a(φ,ψ)>{hkl} lattice parameter with theoretical results 
is excellent for cold rolled ferritic steel and a little worse for cold rolled austenite. This is 
mainly due to difficulty in proper prediction of plastic accommodation, which is more 
important in austenitic steel than in ferrite. However, for both cold rolled steels the quality of 

fitting is good enough to find the first order stresses ( I

ijσ  presented in Table 2) and 

approximate value of  q factor which is used to rescale the model stresses (Eq. 19) and to 
estimate the values of real plastic incompatibility stresses. The second order plastic 
incompatibility stresses (von Mises values) determined for each grain orientation g  are  
presented in Euler space in Fig. 9. So obtained maps of SODF are compared with 
experimental ODFs shown by contour lines. We can see that for both studied steels the 
maxima of ODF correspond to the lowest or medium values of incompatibility stresses, 
while the highest second order stresses are found for some orientations related to low number 
of grains (low values of ODF). This can be explained due to small incompatibilities 
occurring for grains having preferred orientations and deformed similarly like the whole 
sample (surrounding matrix). In contrary, the grains having orientations far from ODF 
maxima can accumulate large stresses if their plastic strains are significantly different from 
the average strain characterizing sample behaviour (however, these strains contribute to the 
average with low weights).    

 

4.2. Remarks concerning unique solution for residual stresses  

It should be stated that the measured lattice strains (or <a(φ,ψ)>{hkl} vs. sin
2ψ  curves)  can 

correspond to different combination of the first and second order stresses (or even different 
components of those stresses), i.e. in general case it is not possible to find out a unique stress 
field from diffraction data. The problem of non unique solution is well known in another 
examples of interpretation of diffraction results like the structure refinement from measured 
diffractogram or ODF determination from measured pole figures. In such cases additional 
constrains should be introduced to reduce the number of possible solution and to find out the 
real physical one. In the present methodology of stress analysis the constraints are introduced 
for orientation distribution of the second order stresses, which is in fact determined by 
theoretical models and scaled by only one parameter adjusting the magnitude of these 
stresses. Then the model data are strictly verified by fitting procedure, i.e. the shapes of 
measured nonlinearities on <a(φ,ψ)>{hkl} vs. sin

2ψ  curves are reproduced only if the 
distribution of second order stresses is correctly predicted by the model.  In Fig. 10 the 
results of standard stress analysis, i.e. assuming zero values of second order plastic 
incompatibility stresses (see Eq. 18) is shown. In such the case a large misfit between 
experimental and calculated data occurs (small nonlinearities of the <a(φ,ψ)>{hkl} vs. sin

2ψ  
curves are caused by texture influence on DECs). As shown in Figs. 5 and 6, a significant 
improvement of fitting quality (characterized also by χ2 , compare Fig. 8) is obtained using 
the additional term with correctly predicted the second order stresses scaled by q parameter 
(Eq. 20). However, if the theoretical data do not correspond to experimental ones, the fitting 
fails and χ2 parameter significantly increases as shown in Fig. 8. It should be underlined  that 
considerable improvement of fitting results occurs if only one fitting  parameter (q) is added 
to those which are usually adjusted in the standard stress analysis (i.e., the σ I

ij  and o
a  

values). 
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In this work the theoretical prediction of the second order stresses is verified by  
fitting lattice strains for only two reflections for each sample. However, our methodology 
was already successfully tested using three or even four reflections simultaneously for the 
interpretation of the TOF diffraction measurements [19]. We can conclude that the 
theoretical data obtained by the model represent the unique physical solution for the second 
order stresses (scaled by q factor), which is strictly verified by experimental results.     

 

4.3.     Stress evolution during recovery process 

The recovery process in cold rolled ferritic and austenitic steels causes a gradual reduction of 
dislocations density correlated with a decrease of diffraction peak width, as shown in  Fig. 7. 
On the other hand, insignificant changes of crystallographic textures up to 600 0C for ferrite 
and up to 6500C for austenite (Figs. 3 and 4), indicate the ranges of annealing temperature 
for which the recrystallization process still does not occur. In this section the relaxation of 
the first and the second order stresses during recovery is discussed and compared with the 
evolution of the integral widths of diffraction peaks. 

Changes of  slope and  effects of nonlinearity  in the <a(φ,ψ)>{hkl} vs. sin
2ψ  curves, 

shown in Figs. 5 and 6  for different temperatures,  reflect  modifications  of the first order 
residual stress (macrostress) and of the second order incompatibility stress values, 
respectively. An excellent agreement between measured values and fitted theoretical curves 
confirms that only the magnitude of incompatibility stresses changes during annealing and 
our  procedure of stress analysis works correctly for all temperatures and for both studied 
materials (see Figs. 5 and 6). The observed nonlinearities of  <a(φ,ψ)>{hkl} vs. sin

2ψ  curves 
are caused by a strong anisotropy (i.e., dependence on crystal orientation) of the second 
order plastic incompatibility stresses in both cold rolled steels. Their anisotropy is also well 
visible on SODF shown in Fig. 9.  

Evolution of the macrostresses ( I

11σ  in RD and I

22σ  in TD) and of the second order 
plastic incompatibility stress (mean von Mises value)  vs. annealing temperature is shown in 

Fig. 11 ( ∑
=

=
gN

1g

)(
_______

)( )(
1

g
piIIg

Mises

g

piII

Mises
N

σσ  where Ng is the number of grains). Both kinds of stress 

were estimated using the fitting procedure based on Eq. 20. In  the ferritic steel the relaxation 
of macrostress ( I

11σ and I

22σ ) started in relatively low temperature (quite below 200 0C), 

while plastic incompatibility stresses (
_______

)( piII

Misesσ ) started to relax at temperatures above 200 0C. 
It can be noticed that the residual stresses relaxed completely due to the start of 
recrystalization over 600 0C (confirmed by beginning of texture transformation in Fig. 3), 
which is also visible as the  stabilization of integral peak width between 600 oC and 800 oC 
(Fig. 7). On the contrary, in austenitic steel both kinds of stress relaxed very little till 400 0C, 
but this process strongly accelerated above 400 0C. Finally, the first order stresses ( I

11σ and 
I

22σ ) in austenite relax faster with temperature and they disappear completely at 650oC 
(however, no significant texture change is observed - Fig. 4), while incompatibility stresses 
are still present at this temperature (Figs. 11). 

The above observations agree very well with the results presented in the paper of 
Wang et al. [14], where the relaxation of the first and the second order stresses after 
annealing of austeno-ferritic steel at 500oC was studied (other temperatures were not 
considered). At this temperature, the second order incompatibility stresses completely 
relaxed in ferritc phase but only decreased in austenite.  
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Evolution of specific stored elastic energy (SSEE) 
_____

totW  versus annealing 
temperature is presented in Fig. 12. SSEE was calculated as:  

         ∑
=

=
gN

1g

)(
_______

)(
1

g
totg

g

tot
W

N
W                                               (22) 

where:
 

)()()(
2
1

)( g)(
gggg

g

klijkl

g

ij

totg sW σσ=  and )(gg

ijσ  is a total grain stress calculated as a 

superposition of )()(
g

piIIg

ijσ  and  a stress induced by I

ijσ  in the considered grain. 

The observed rapid decrease of SSEE confirms that residual stress relaxation is 
thermally activated and it occurs after some temperature threshold, which is lower than 
200oC for ferrite and equal approximately to 400oC for austenite.  Also faster relaxation of 
the first order stresses in comparison with plastic incompatibility stresses is confirmed by the 
behaviour of SSEE components, calculated separately for macrostresses ( I

11σ and I

22σ ) and 

plastic incompatibility stresses ( )()(
g

piIIg

ijσ ).
 
These mean values are denoted by 

_____
)( piIIW  and 

_____
IW , respectively, and their evolution vs. annealing temperature is shown in Fig. 12.  

Different rates of relaxation process in austenitic and ferritic steels can be explained 
considering two kinds of dislocation movements: conservative (slip/twinning) and non-
conservative (climb) ones. A higher number of available slip planes in ferrite  than in 
austenite (i.e., {110}, {112} in comparison to {111}) can be responsible for easier cross slip 
of dislocations, which facilitates their annihilation. Moreover, the cross slip easiness is  
proportional to SFE. Higher SFE makes difficult dissociation of dislocations and 
consequently increases the rate of dislocation cross slip and climb. In metals of low SFE 
such as austenitic stainless steel, cross slip and climb are much more difficult. In 
consequence, only a small recovery can be observed in austenite just before recrystallization, 
so directly before this process the energy stored in dislocation stress fields is relatively high. 
Moreover, the plastic incompatibility stresses still remain in the sample, even for temperature 
of 6500C. The stored elastic energy supports thermal activation and accelerates the 
recrystallization processes. On the contrary, in metals of high SFE such as ferritic steel, 
climb and cross-slip are frequent, and recovery is well separated from recrystallization 
process, because it occurs in much lower temperature [53]. The lower energy accumulated in 
the microstructure directly before recrystallization is responsible for lower rate of 
recrystallization in ferrite.  

We can also conclude that the stress relaxation during recovery can be explained in 

different ways for the first and the second order stresses. The macrostresses ( I

ijσ ) caused by 

interaction of large sample volumes introduce grain stresses which can be relaxed at lower 
temperatures or faster,  e.g., by polygonisation process. During this process the thermally 
activated movement of dislocations leads to creation of low angle boundaries dividing 
polycrystalline grains into smaller parts. Annihilation of dislocations during this process 
causes some decrease of dislocation density, observed as a reduction of integral width of 
diffraction peak (Fig. 7), while texture does not change significantly (Figs. 3 and 4). In the 
case of ferritic sample significant relaxation of the first order stresses starts below 200oC, 
while the incompatibility stresses do not change at this temperature (Figs. 11 and 12). For 
austenite both types of stresses start to relax at approximately the same temperature, however 
faster relaxation occurs for the first order stresses. Poligonisation mechanism,  is probably 

not  sufficient to relax strongly anisotropic plastic incompatibility stresses ( )( piIIg

ijσ ) created 
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by misfits occurring between grains with different crystal orientations and, consequently, 
separated by high angle boundaries. To relax these stresses higher temperatures, causing 
more significant rearrangement of dislocations structure (including their annihilation), are 
required. This is clearly seen in both materials: in ferritic steel the plastic incompatibility 
stresses start to relax above  200 oC and in austenitic steel – above 400 oC. Moreover, the 
relaxation of incompatibility stresses in austenite is slower than the first order stress. The 
decrease of peak width confirms that the relaxation processes are connected with continuous 
reduction of dislocation density (Fig. 7).  

5. General conclusions 

The macrostreses and the second order incompatibility stresses were determined in cold 
rolled and annealed austenitic and ferritic steels using diffraction measurements and models 
of elastoplastic deformation.  The following conclusions can be formulated: 
 

(1) Analysis of incompatibility residual stresses from nonlinearities of <a(φ,ψ)>{hkl} vs. 
sin

2ψ  plots  shows a type of interaction occurring between grains during elastoplastic 
deformation. It was found that the self-consistent model correctly predicts plastic 
incompatibility stresses in ferritic steel. However, this type of stress  in austenite can 
be modelled only using LW model with low plastic accommodation parameter α < 
10-3 (close to Sachs model). This difference between materials was confirmed by 
other authors studying evolution of crystallographic texture.  

(2) Orientation distribution of incompatibility stresses (visualized by SODF) created 
during elastoplastic deformation can be determined from <a(φ,ψ)>{hkl} vs. sin

2ψ  
plots. It was shown that the highest residual stresses are accumulated in the grains 
having orientations far from the main ODF maxima. Low incompatibility stresses are 
generated in grains with preferred crystal orientations.  

(3) The relaxation of the residual stresses occurs during recovery process. This process is 
thermally activated and begins at lower temperature for ferritic steel in comparison 
with austenite. These differences can be explained by the facility of dislocation cross 
slip and climb, which depends on crystal structure and on SFE. 

(4) Relaxation of the first order stresses occurs at lower temperatures than relaxation of 
plastic incompatibility stresses. Correlation of stress evolution with the variation of 
integral width of diffraction peak shows that small rearrangement of dislocations 
leads to macrostresses relaxation, while significant decrease of dislocation is 
necessary to relax plastic incompatibility stresses.      

 
As a general conclusion it can be stated that the first and the second order residual stresses  
can be determined quantitatively if diffraction measurements are combined with deformation 
model predictions. Theresidual stresses and orientation distribution of the elastic energy 
contain important information for understanding the deformation and recrystallization 
mechanisms as well as damage initialization. It was found that two kinds of residual stresses 
(the first and the second order) relax differently during annealing and this thermally activated 
relaxation depends on the stacking fault energy of the studied material. 
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Table 1.  Parameters used in the deformation models. 

Self-consistent model LW model 

Single crystal elastic 
constants (GPa) 

Sample Initial critical 
resolved shear 

stress  

 τ0  (MPa) 

Hardening 
parameter  

H (MPa) 

C11 C12 C44 

elastic shear 
modulus  

µe  (GPa) 

Elastoplastic 
accommodation 

matrix uij 

Austenitic steel 200 80 197.5 124.5 122 80 u13= u13=0  

uij =1 for other ij 

Ferritic steel 200 80 231 134.4 116.4 80 uij =1 for all ij 

 

 

 

Table 2.  Values of  the first order stresses determined for cold rolled samples ( I

33σ = 0) . 

Macrostresses (first order streses)      
(MPa) 

Sample Model used in 
analysis of 

experimental data  
I

11σ  I

22σ  I

12σ  I

13σ  I

23σ  

 

2χ  

cold rolled 
ferrite 

self-consistent -124.0 

± 2.4 

-30.2 

±2.8 

8.9 

± 2.4 

-4.2 

±1.0  

-0.8 

±1.0 

2.2 
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FIGURES CAPTIONS  

 
Figure 1.   Scheme of plastic behaviour of two exemplary grains having various orientations 
of slip systems with respect to the local stress σ. After plastic deformation and unloading of 
the applied stresses ( 0→Σ ) the grains do not fit to the surrounding matrix and the plastic 

incompatibility stresses IIg

ijσ are generated. 

 
Figure. 2. Orientation of the scattering vector in relation to the directions of rolling defined 
by ψ and φ  angles (RD: rolling directions; TD: transverse directions; ND: normal 
directions). 
 
Figure 3. Orientation distribution functions for cold rolled ferritic steel annealed at different 
temperatures. Sections through Euler space at intervals 5o along the φ2 axis are presented. 
 
Figure 4. Orientation distribution functions for cold rolled austenitic steel annealed at 
different temperatures. Sections through Euler space at intervals 5o along the φ2 axis are 
presented. 
 
Figure 5.   Measured lattice parameters (points) and  theoretical predictions of self-consistent 
model (lines) fitted using modified sin

2ψ  method. Results for cold rolled and annealed 
ferritic steel obtained with 211 and 200 reflections are shown vs. sin

2ψ  for different values 
of φ angle. 
 
Figure 6.  Measured lattice parameters (points) and  theoretical predictions of LW model 
(α = 10-3; lines) fitted using modified sin

2ψ  method. Results for cold rolled and annealed 
austenitic steel obtained with 311 and 220 reflections are shown vs. sin

2ψ for different values 
of φ angle. 
 
Figure 7.  Integral width of diffraction peaks for different temperatures of annealing. Results 
for ferritic steel (211 and 200 reflections) and austenitic steel (200 reflection) are shown. 
 
Figure 8. Quality of fitting (expressed by 2χ ) obtained in modified sin

2ψ  method (Eq. 20) 
versus elastoplastic accommodation level characterized by α parameter in LW model. The 

2χ obtained with self-consistent model (*) and using standard sin
2ψ  method based on Eq. 18 

(dotted line) are also shown for comparison. 
 
Figure 9. Maps of plastic incompatibility stresses (von Mises values in MPa) presented in 
Euler space (SODF) for cold rolled steels. ODF is also shown by contour lines. Sections 
through Euler space at intervals 5o along the φ2 axis are presented.  
 
Figure. 10. Measured lattice parameters (points) and  theoretical predictions obtained when 
the influence of plastic incompatibility stresses was neglected in standard sin

2ψ  method (see 
Eq. 18). Example results for ferritic and austenitic steels are shown. 
 
 
Figure 11. Evolution of  macrostress  ( I

11σ  and I

22σ  )  and of plastic incompatibility stresses 
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(mean von Mises stress
 

_______
)( piII

Misesσ  calculated from )( piIIg

ijσ ) for different temperatures of 

annealing. Results obtained for ferritic and austenitic steels are shown. 
 
Figure 12.  Evolution of the average stored specific elastic energy for cold rolled and 

annealed steel samples. The SSEE corresponding to total stresses (
_____

tot
W ),  plastic 

incompatibility stresses (
_____

)( piIIW ) and  macrostresses (
_____

I
W ) are presented. 
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Fig. 6.  
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Fig. 8.  
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Fig. 11.  
 

 

 

 

 

 

 
 

 

 

 

Fig. 12.  
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