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We study the creation and propagation of exponential moments of solutions to the spatially homogeneous d-dimensional Boltzmann equation. In particular, when the collision kernel is of the form

, and assuming the classical cut-off condition b(cos(θ)) integrable in S d-1 , we prove that there exists a > 0 such that moments with weight exp(a min{t, 1}|v| β ) are finite for t > 0, where a only depends on the collision kernel and the initial mass and energy. We propose a novel method of proof based on a single differential inequality for the exponential moment with time-dependent coefficients.

Introduction

We consider the spatially homogeneous Boltzmann equation in dimension d ≥ 2 with initial condition f 0 ≥ 0, given by (1)

∂ t f = Q(f, f ), f (t, •) = f 0
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f 0 L 1 (1+|v| 2 ) := R d (1 + |v| 2 )f 0 (v) dv < +∞.
For p ∈ [1, +∞], we denote by L p the Lebesgue spaces of p-integrable real functions on R d , and the notation L p (w(v) dv) (or simply L p (w(v))) denotes the L p space with weight w(v). The collision operator Q(f, f ) is given by

Q(f, f )(v) := R d ×S d-1 B(|v -v * | , cos θ)(f ′ * f ′ -f * f ) dv * dσ,
representing the total rate of binary interactions due to particles taking the direction of v due to collisions, minus those that were knocked out from the v direction. We follow the usual notation

f ≡ f (v), f * ≡ f (v * ), f ′ ≡ f (v ′ ), f ′ * ≡ f (v ′ * )
. The vectors v ′ , v ′ * , which denote the velocities after an elastic collision of particles with velocities v, v * , are given by

v ′ := v + v * 2 + |v -v * | 2 σ, v ′ * := v + v * 2 - |v -v * | 2 σ.
The variable θ denotes the angle between v -v * and σ, where σ is the unit vector in the direction of the postcollisional relative velocity. On the collision kernel B we assume that for some β ∈ (0, 2]

(2)

B(|v -v * | , cos θ) = |v -v * | β b(cos θ),
with the following cut-off assumption:

(3) b ∈ L 1 [-1, 1], (1 -z 2 ) d-3 2 
dz .

If we define b(σ) := b(e 1 • σ), with e 1 ∈ S d-1 any fixed vector, then (3) is equivalent to b ∈ L 1 (S d-1 ), which can be easily seen by a spherical change of coordinates. Throughout the paper f always represents a solution to equation (1) on [0, +∞) (in the sense of, e.g., [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]) and we always write, for p ≥ 0 (not necessarily an integer), ( 4)

m p = m p (t) := R d f (t, v) |v| p dv.
Main results. It is known that moments of order p > 2 and exponential moments (L 1 -exponentially weighted estimates) with weight up to exp(a|v| 2 ) for some a > 0 are propagated by equation ( 1) [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF][START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF][START_REF] Bobylev | The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules[END_REF][START_REF] Bobylev | Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems[END_REF][START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF]; that is, they are finite for all times t > 0 if they are initially finite, however with a deterioration of the constant a. In [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF] it was proved that in fact equation ( 1) with β > 0 instantaneously creates all moments of orders p > 2, which then remain finite for all times t > 0. Here the assumption that β > 0 is necessary, since the result is not true for Maxwell molecules for instance [START_REF] Ikenberry | On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory[END_REF]. Moreover, moments with exponential weight up to exp(a|v| β/2 ) for some constant a > 0 were also shown to be instantaneously created in [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar solutions and tail behavior[END_REF][START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF]. In all these proofs it was crucial to assume that the angular function b is in

L q [-1, 1], (1- z 2 ) d-3 2 
dz for q > 1 as done in [START_REF] Bobylev | Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions[END_REF][START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]. We also refer to the recent work [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: Moment production and stability estimates[END_REF] for moment production estimates in the so-called non-cutoff case, in which proofs are based on the optimization of the traditional inductive argument [START_REF] Bobylev | The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules[END_REF][START_REF] Bobylev | Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems[END_REF][START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar solutions and tail behavior[END_REF][START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF].

We have several noticeable contributions in this paper. Indeed, we can extend the existing propagation and creation of L 1 -exponentially weighted estimates to include

the classical cut-off assumption b ∈ L 1 [-1, 1], (1 -z 2 ) d-3 2
dz without using the iterative methods developed in [START_REF] Bobylev | Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions[END_REF][START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]), and also we slightly relax the assumptions on the initial data by requiring only finite mass and energy, and not necessarily finite entropy as in previous works on creation of moments [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF]. In addition, we improve the weights for the creation of L 1 -exponentially weighted moments, with a weight up to exp(a|v| β ) (hence removing the 1/2 factor which was present in [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar solutions and tail behavior[END_REF][START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF]) for solutions with finite mass and energy, assuming only an integrability condition on b. More specifically, Theorem 1 gives an explicit rate of appearance of exponential moments by showing that the coefficient multiplying |v| β in the exponential weight can be taken linearly growing in time.

The most important point is that we introduce a new method of proof that not only does not need iterative arguments but also allows for all these improvements. This approach is also used in Theorem 2 for the propagation of exponential moments, and extends these results to classical cut-off assumptions on the angular cross section b.

Theorem 1 (Creation of exponential moments). Let f be an energy-conserving solution to the homogeneous Boltzmann equation (1) on [0, +∞) with initial data

f 0 ∈ L 1 (1 + |v| 2 )
, and assume (2) and (3) with β ∈ (0, 2]. Then there are some constants C, a > 0 (which depend only on b, β and the initial mass and energy) such that

R d f (t, v) exp a min{t, 1} |v| β dv ≤ C for t ≥ 0.
We remark that the existence and uniqueness of energy-conserving solutions with initial data f 0 ∈ L 1 (1 + |v|

2 ) was proved in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF]. As mentioned above, our approach also provides a new proof of the property of propagation of exponential moments [START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Bobylev | Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions[END_REF]. This is stated in the following theorem:

Theorem 2 (Propagation of exponential moments). Let f be an energy-conserving solution to the homogeneous Boltzmann equation (1) on [0, +∞) with initial data f 0 ∈ L 1 (1 + |v| 2 ), and assume (2) and (3) with β ∈ (0, 2]. Assume moreover that the initial data satisfies for some s ∈ [β, 2]

(5)

R d f 0 (v) exp a 0 |v| s dv ≤ C 0 .
Then there are some constants C, a > 0 (which depend only on b, β and the initial mass, energy and a 0 , C 0 in [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF]) such that

R d f (t, v) exp a |v| s dv ≤ C for t ≥ 0.
We give in Section 3 a novel argument for proving these results which is based on a differential inequality for the exponential moment itself, and the exploitation of a discrete convolution-type estimate for the exponential moment of the gain part of the collision operator. This avoids the intricate combination of induction and maximum principle arguments in the previous proofs of propagation [START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF][START_REF] Bobylev | Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions[END_REF] and appearance [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar solutions and tail behavior[END_REF][START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] of exponential moments. It also clarifies the structure underlying these induction arguments. The starting point of both these previous works and our approach is the creation and propagation of polynomial moments in [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF][START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF] and the Povzner inequalities proved in [START_REF] Bobylev | Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions[END_REF][START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]. We include a short appendix which gathers some of the classical technical results used along the proofs.

Refresher on the sharp Povzner Lemma

The following lemma reflects the angular averaging property of the spherical integral acting on positive convex test functions evaluated at the postcollisional velocities. These estimates are crucial to be able to control in a sharp form the moments of the gain operator by estimates for lower bounds of the loss operator. They were originally introduced in [4, Corollary 1] and further developed in [6, Lemma 3 and 4] and more recently in [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]Lemma 2.6]. We summarize these results as follows:

Lemma 3 (Sharp Povzner (angular averaging) Lemma). Assume that b : (-1, 1) → [0, ∞) satisfies (3), and impose without loss of generality the following normalization condition

(6) 1 -1 b(z)(1 -z 2 ) d-3 2 dz = 1 |S d-2 |
,

where |S d-2 | is the area of the (d -2)-dimensional unit sphere. Then for p ≥ 1 it holds that (7) S d-1 |v ′ | 2p + |v ′ * | 2p b(cos θ) dσ ≤ γ p |v| 2 + |v * | Remark 4. In the case when the symmetrization z → b(z) + b(-z) of b is nonde- creasing in [0, 1], these constants are controlled by (8) γ p ≤ 1 |S d-2 | 1 -1 b(z) 1 + z 2 p (1 -z 2 ) d-3 2 
dz .

Remark 5. In addition, when b ∈ L q ([-1, 1], (1 -z2 ) (d-3)/2 dz) with q > 1, the decay of γ p can be estimated and shown to be polynomial: there exists a constant C > 0 such that

γ p ≤ min 1, C p 1/q ′ (p > 1),
with q ′ the Hölder dual of q (i.e., 1/q +1/q ′ = 1). Furthermore, in the case q = +∞, that is, for b bounded, it holds that

γ p ≤ min 1, 16πb * p + 1 (p > 1), with b * := max -1≤z≤1 b(z).
Let us now state the key a priori estimate on the polynomial moments, which shall be used in the sequel. For later reference, we define the following quantity for any s, p > 0:

(9) S s,p = S s,p (t) := kp k=1 p k m sk+β m s(p-k) + m sk m s(p-k)+β ,
with k p the integer part of (p + 1)/2.

Lemma 6 (A priori estimate on the polynomial moments). For s ∈ (0, 2] and p 0 > 2/s, the following a priori inequality is true whenever all the terms make sense:

(10) d dt m sp ≤ 2γ sp/2 S s,p -K 1 m sp+β + K 2 m sp for t ≥ 0, p ≥ p 0 > 2 s ,
with S s,p given by (9) and constants

(11) K 1 := 2(1 -γ sp0/2 )C β m 0 and K 2 = 2 m β with C β := min{1, 2 1-β }.
Alternatively in the case β ∈ (0, 1], it is possible to get rid of the second constant, and obtain

(12) K 1 := 2(1 -γ sp0/2 ) Cβ m 0 and K 2 = 0
for some constant Cβ depending on β and the initial data.

In both cases, the constant γ sp0/2 depends on the integrability of the angular function b and on p 0 > 2/s. Proof. Using Lemma 3 one obtains for any p ≥ 2/s:

(13) d dt m sp ≤ γ sp/2 R d ×R d f f * |v| 2 + |v * | 2 sp 2 -|v| sp -|v * | sp |v -v * | β dv dv * -2(1 -γ sp/2 ) R d ×R d f f * |v| sp |v -v * | β dv dv * .
In order to estimate the right hand side of (13) we first focus on an upper bound for its positive term. Since 0 < s/2 ≤ 1, then

|v| 2 + |v * | 2 sp 2 ≤ (|v| s + |v * | s ) p .
Hence, using Lemma 11 in the Appendix (a classical result taken from [4, Lemma 2]) and the estimate |v -v * | β ≤ 2|v| β + 2|v * | β we obtain that, for any p ≥ 1, the first integral in (13) is controlled by

(14) γ sp/2 R d ×R d f f * |v| 2 + |v * | 2 sp 2 -|v| sp -|v * | sp |v -v * | β dv dv * ≤ 2γ sp/2 S s,p .
The estimate of the negative term in (13) requires a control from below. When β ∈ (0, 1] it follows from Lemma 12 in the Appendix (taken from [6, Lemma 2]) that the lower bound for the negative term in (13) satisfies

(15) 2(1 -γ sp/2 ) R d ×R d f f * |v| sp |v -v * | β dv dv * ≥ 2 Cβ (1 -γ sp/2 )m 0 m sp+β
for some constant Cβ related to β and the initial data. So estimate [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] follows with K 1 and K 2 as in [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF].

In the general case β ∈ (0, 2], the previous argument does not necessarily follow, yet it is still possible to obtain an easier lower bound that still allows for the control of moments and their summability. We use the fact that |v -

v * | β ≥ 2 1-β |v| β -|v * | β
(which can be obtained from the triangle inequality and the inequality (x + y) β ≤ C -1 β (x β + y β ) for x, y ≥ 0.) This gives a lower bound for the negative term in (13):

(16) 2(1 -γ sp/2 ) R d ×R d f f * |v| sp |v -v * | β dv dv * ≥ 2(1 -γ sp/2 )C β m 0 m sp+β -2m β m sp .
Since γ sp decreases as p → ∞, it follows that 2(1-γ sp/2 )C β m 0 ≥ K 1 for any p ≥ p 0 . Hence, estimate [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] follows with K 1 and K 2 as in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF].

Remark 7. We note that neither in the work [START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF] nor in here the finiteness of the entropy is required, however it was needed in the earlier work [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF] in order to obtain lower bounds for the negative term in (13). If the solution has a finite entropy, then these lower bounds may be obtained by the same technique as in [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF].

Observe however that the constant Cβ in the case β ∈ (0, 1] with K 2 = 0 depends on the initial data in a non-trivial way, through the positive constant C > 0 such that

R d f 0 (v * ) |v -v * | β dv * ≥ C(1 + |v| β )
which cannot be expressed simply in terms of the mass and energy of f 0 . Nevertheless the general argument (involving K 2 > 0) does provide constants only depending on the initial data through its mass and momentum.

Next, we recall and prove a very similar result to that in [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF]Theorem 4.2]. The main difference is that finiteness of the entropy of the initial condition is not required here.

Lemma 8 (Creation and propagation of polynomial moments). Assume (2) and

(3) with 0 < β ≤ 2. Set s ∈ (0, 2], and let f be an energy-conserving solution to the homogeneous Boltzmann equation [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF] with initial data f 0 ∈ L 1 (1 + |v| 2 ). For every p > 0 there exists a constant C sp ≥ 0 depending only on p, s, b and the initial mass and energy, such that

(17) m sp (t) ≤ C sp max{1, t -sp/β } for t > 0.
If m sp (0) is finite, then the control can be improved to simply

(18) m sp (t) ≤ C sp for t ≥ 0
for some constant C sp depending only on p, s, b, the initial mass and energy, and m p (0).

Proof. Following a common procedure (see [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF][START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF]), the estimates can be carried first on a truncated solution (for which all moments are finite and our calculations are rigorously justified), and then proved for the solution to the full problem by relaxing the truncation parameter. Let us prove (17): observe that by Hölder's inequality S s,p ≤ Cm β m sp and m sp+β ≥ Km 1+β/(sp) sp for some constants C, K > 0 depending only on s, p, the initial mass and energy. Since β ≤ 2, we have 1 ≤ 2/β and therefore m β is controlled by the mass and energy. We deduce that m sp satisfies the differential inequality

(19) d dt m sp ≤ C ′ m sp -Km 1+β/(sp)
sp for some other constant C ′ > 0 depending only on s, p, the initial mass and energy. This readily implies the bound (17) by computing an upper solution to this differential inequality, and the bound (18) by a maximum principle argument.

Remark 9. Observe that the polynomial bound O(t -sp/β ) on the appearance of m p is not optimal, as can be seen from [10, Theorem 1.1]. However our rate of appearance of exponential moments can be seen to be optimal by inspection of the simpler equation ∂ t f = -C 1 + |v| β f which provides subsolutions to the Boltzmann equation.

Proof of the main theorems

In this section we give a proof of Theorems 1 and 2 valid for any integrable crosssection b. We first carry out the estimates on a finite sum of polynomial moments, and then pass to the limit.

Our goal is to estimate the quantity

E s (t, z) := R d f (t, v) exp z |v| s dv = ∞ p=0 m sp (t) z p p!
where s = β and z = at for Theorem 1 and s ∈ (0, 2] and z = a for Theorem 2, for some a > 0. For use below let us define the truncated sum as

E n s (t, z) := n p=0 m sp (t) z p p!
for n ∈ N, z ≥ 0, and t ≥ 0. We also define

I n s,β (t, z) := n p=0 m sp+β (t) z p p! .
Let us first prove the key lemma, which identifies the discrete convolution structure. This result gives a control for finite sums of the moments associated to the gain operator. It is uniform in β ∈ (0, 2]: Lemma 10. Assume 0 < β ≤ s ≤ 2. For any p 0 ≥ 2/s, we have the following functional inequality

(20) n p=p0 z p p! S s,p (t) ≤ 2E n s (t, z)I n s,β (t, z)
where S s,p was defined in [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard spheres. II. Self-similar solutions and tail behavior[END_REF].

Proof. Let us recall the definition of S s,p from (9):

S s,p := kp k=1 p k m sk+β m s(p-k) + m sk m s(p-k)+β ,
where k p is the integer part of (p + 1)/2. The first part of the sum in the left hand side of (20) can be bounded as:

n p=p0 z p p! kp k=1 p k m sk+β m s(p-k) = n p=p0 kp k=1 m sk+β z k k! m s(p-k) z p-k (p -k)! ≤ n k=1 m sk+β z k k! n p=max{p0,2k-1} m s(p-k) z p-k (p -k)! ≤ I n s,β (t, z)E n s (t, z).
We carry out a similar estimate for the other part:

n p=p0 z p p! kp k=1 p k m sk m s(p-k)+β = n p=p0 kp k=1 m sk z k k! m s(p-k)+β z p-k (p -k)! ≤ n k=1 m sk z k k! n p=max{p0,2k-1} m s(p-k)+β z p-k (p -k)! ≤ E n s (t, z)I n s,β (t, z)
which concludes the proof.

We now can prove both Theorem 1 and Theorem 2. We write the proof first for the case β ∈ (0, 1] with the choice of constants ( 12) in (10) (hence with K 2 = 0). Later we show the corresponding estimates for the full range β ∈ (0, 2] using the choice of constants [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] in [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF].

Proof of Theorem 1. First we notice that it is enough to prove the following (under the same assumptions): there are some constants T, C, a > 0 (which depend only on b and the initial mass and energy) such that (21)

R d f (t, v) exp at |v| β dv ≤ C for t ∈ [0, T ].
Indeed, since the assumptions of lower and upper bounds on the mass and energy are satisfied uniformly in time along the flow, for t ≥ T it is then possible to apply (21) starting at time (t -T ).

Hence, we aim at proving the estimate (21). We set s = β. Consider a > 0 to be fixed later, n ∈ N and define T > 0 as

T := min 1 ; sup t > 0 s.t. E n β (t, at) < 4m 0 .
The definition is consistent since E n β (0, 0) = m 0 and the Lemma 8 ensures that T > 0 for each given n. The bound of 1 is not essential, and is included just to ensure that T is finite. We note that a priori such T depends on the index n in the sum E n β . However, we will show that T has a lower bound that depends only on b, β and the initial mass and energy, thus proving the theorem. Unless otherwise noted, all equations below which depend on time are valid for t ∈ [0, T ].

Choose an integer p 0 > 2/β, to be fixed later. Starting from Lemma 6 (inequality (10)), we have

(22) d dt m βp ≤ 2γ βp/2 S β,p -K 1 m β(p+1) for t ≥ 0, p ≥ p 0 ,
with S β,p given by ( 9) and K 1 defined in [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF], independent of p with p ≥ p 0 as soon as p 0 is strictly bounded away from 2/β.

In addition, from Lemma 8 (inequality (17)) we know that there exists a constant C p0 > 0 (depending on p 0 ) such that

(23) p0 p=0 m βp (t) t p ≤ C p0 for all t ∈ [0, T ].
Taking any a < 1 and using the product rule,

d dt n p=p0 m βp (at) p p! ≤ n p=p0 (at) p p! 2γ βp/2 S β,p -K 1 m β(p+1) + a n p=p0 m βp (at) p-1 (p -1)! ≤ 2 n p=p0 (at) p p! γ βp/2 S β,p + (a -K 1 )I n β,β (t, at) + (K 1 + a) p0 p=1 m βp (at) p-1 (p -1)! ≤ 2 n p=p0 (at) p p! γ βp/2 S β,p + (a -K 1 )I n β,β (t, at) + 1 t (K 1 + a)C p0 ,
where we have used a < 1 and (23) in the last step. Hence, from Lemma 10 (inequality (20)) we obtain

d dt n p=p0 m βp (at) p p! ≤ I n β,β (t, at) 4γ βp0/2 E n β (t, at) + (a -K 1 ) + 1 t (K 1 + a)C p0 .
Next, choose p 0 large enough such that 16γ βp0/2 m 0 ≤ (1/4)K 1 (or equivalently, by using the definition of K 1 in (11), γ βp0/2 < (32 + Cβ ) -1 ) and restrict further the parameter a, so that a ≤ K 1 /2. Then, as E n β (t, at) ≤ 4m 0 for t ∈ [0, T ], by the definition of T we have

(24) d dt n p=p0 m βp (at) p p! ≤ - 1 4 K 1 I n β,β (t, at) + 1 t (K 1 + a)C p0 ≤ - 1 t K 1 4a (E n β (t, at) -m 0 ) -(K 1 + a)C p0
where for the last inequality we have used that

I n β,β (t, at) ≥ (E n β (t, at) -m 0 ) at .
We make the additional restriction that a < m 0 /(6C p0 ), which together with a < K 1 /2 implies that

K 1 4a m 0 > (K 1 + a)C p0 .
Then, whenever

E n β (t, at) ≥ 2m 0 , (25) d dt n p=p0 m βp (at) p p! ≤ 0
for any time t ∈ [0, T ] for which E n β (t, at) ≥ 2m 0 holds. This is true in particular when n p=p0 m βp (at) p p! ≥ 2m 0 . We deduce that (26)

n p=p0 m βp (at) p p! ≤ 2m 0 for t ∈ [0, T ].
In order to finish the argument we need to bound the initial part of the full sum (from p = 0 to p 0 -1.) Indeed, we note that from (23), ( 27)

p0-1 p=0 m βp (at) p p! ≤ m 0 + aC p0 for t ∈ [0, T ],
so, recalling that 6aC p0 < m 0 and using ( 26) and ( 27)

E n β (t, at) = p0-1 p=0 m βp (at) p p! + n p=p0 m βp (at) p p! ≤ 3m 0 + aC p0 ≤ 19 6 m 0
for t ∈ [0, T ], uniformly in n. Finally, gathering all conditions imposed along the proof on the parameter a, we choose (28)

a := min 1, K 1 2 , m 0 6C p0
independently of n, where K 1 was defined in [START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF] and C p0 in (23). We conclude, from the definition of T , that T = 1 for all n. Sending n → ∞, Theorem 1 follows.

In the general case β ∈ (0, 2], since K 2 in ( 11) is not zero, equation ( 22) has an extra term in the right hand side, namely d dt m βp ≤ 2γ βp/2 S β,p -K 1 m β(p+1) + K 2 m βp for t ≥ 0, p ≥ p 0 .

In this case using again that E n β (t, at) ≤ 4m 0 on [0, T ], (24) is now modified as

(29) d dt n p=p0 m βp (at) p p! ≤ - 1 4 K 1 I n β,β (t, at) + 1 t (K 1 + a)C p0 + K 2 E n β (t, at) ≤ - 1 t K 1 4a (E n β (t, at) -m 0 ) -(K 1 + a)C p0 + 4K 2 m 0 .
Hence by tuning the constants as before, at any time t ∈ [0, T ] for which E n β (t, at) ≥ 2m 0 we have d dt

n p=p0 m βp (at) p p! ≤ K 3 with K 3 = 4K 2 m 0 . The corresponding to equation (26) is then n p=p0 m βp (at) p p! ≤ 2m 0 + K 3 t t ∈ [0, T ].
It follows as before that

E n β (t, at) ≤ 19 6 m 0 + K 3 t , t ∈ [0, T ] ,
uniformly in n. Then T ≥ m 0 /(2K 3 ), where K 3 is a constant which depends only on b, the hard potential exponent β and initial mass and energy. In particular for the same rate a as in (28) the conclusion follows since both a and T are uniform in the index n and the limit in n can be performed as well.

Proof of Theorem 2. Consider again first the case β ∈ (0, 1], and s ∈ [β, 1] as in [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF], a > 0 to be fixed later and n ∈ N. Define T > 0 as

T := sup t > 0 s.t. E n s (t, a) < 4m 0 .
This definition is consistent since E n s (0, a) ≤ E s (0, a) < 4m 0 for a small enough thanks to the assumption (5) on the initial data, and the Lemma 8 ensures that T > 0 for each given n. We will show that, for a chosen small enough, T = +∞ for any n, thus proving the theorem.

Choose an integer p 0 > 2/s, to be fixed later. Starting again from Lemma 6 (inequality [START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] with the choice of constants ( 12)), we have

(30) d dt m sp ≤ 2γ sp/2 S s,p -K 1 m sp+β for t ≥ 0, p ≥ p 0 ,
with S s,p given by ( 9) and K 1 given by ( 12), independent of p with p ≥ 0. Also, from Lemma 8 (inequality (18)) we know that there exists a constant C s,p0 > 0 (depending on s, p 0 ) such that (31) 

m sp a p p! ≤ I n s,β (t, a) 4γ sp0 E n s (t, a) -K 1 + K 1 C s,p0 ,
where, as in the previous proof, we also choose p 0 such that 16γ sp0/2 m 0 ≤ (1/2)K 1 .

Then, as E n s (t, a) ≤ 4m 0 for t ∈ [0, T ] by definition of T we have

d dt n p=p0 m sp a p p! ≤ - 1 2 K 1 I n s,β (t, a)+K 1 C s,p0 ≤ - K 1 2a E n s (t, a)+K 1 m 0 2a + e a +K 1 C s,p0 ,
where for the last inequality we have used that 

I n s,β (t, a) ≥ |v|≥1 n p=1 |v| sp+β a p p! f dv ≥ |v|≥1 n p=1 |v| sp a p p! f dv ≥ R d n p=1 |v| sp a p p! f dv -e a R d f dv ≥ (E n s (t, a) -m 0 ) a -e a , so that (33) d dt n p=p0 m sp a p p! ≤ - K 1 2a E n s (t, a) + K 1 m 0 2a + e a + K 1 C s,p0
K 1 2a E n s (t, a) + K 1 m 0 2a + e a + (K 1 + C ′ )C s,p0 .
This implies, by a maximum principle argument for ODEs, that the bound In particular, making the additional restriction that a < K 1 /(4K 2 ) we obtain the bound E n s (t, a) ≤ 2m 0 + 4a 1 +

E n s (t, a) ≤ m 0 + 2a 1 + C ′ K 1 C s,p0 + e a
K 2 K 1 + C ′ K 1 C s,p0 + e a
uniformly for t ∈ [0, T ], where now a is chosen so that a < min

   1, a 0 , K 1 8K 2 , m 0 2 1 + K2 K1 + C ′ K1 C s,p0 + e a    ,
with K 1 and K 2 given in [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF], with p 0 such that γ sp0/2 < (32 + 2 1-β ) -1 . The proof is then completed as in the case β ∈ (0, 1] above.

Appendix A. Some technical tools on moments

We collect here two technical calculations from previous works.

Lemma 11 (Lemma 2 in [START_REF] Bobylev | Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions[END_REF]). Assume that p > 1, and let k p denote the integer part of (p + 1)/2. Then for all x, y > 0 the following inequalities hold Lemma 12 (Lemma 2 in [START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF]). The energy-conserving solutions to the Boltzmann equation (1) on [0, +∞) with initial data f 0 ∈ L 1 (1 + |v| 2 ) satisfy

∀ t ≥ 0, ∀ v ∈ R d , R d f (t, v * )|v -v * | s dv * ≥ c s R d f 0 (v * )|v -v * | s dv *
for any s ∈ (0, 1] and some constant c s > 0 depending on s. This implies that

∀ t ≥ 0, ∀ v ∈ R d , R d f (t, v * )|v -v * | s dv * ≥ C f 0 ,s (1 + |v| s )
for any s ∈ (0, 1] and some constant C f 0 ,s > 0 depending on s and the initial data f 0 .

where K 1 1 + K 2

 112 holds uniformly for t ∈ [0, T ], as the parameters in the right hand side are uniform in time. Choosing a small enough such thatm 0 + 2a 1 + C ′ K 1 C s,p0+ e a < 4m 0 , was defined in[START_REF] Wennberg | Entropy dissipation and moment production for the Boltzmann equation[END_REF] and C s,p0 in (31), proves by definition of T that T = +∞ for any n. Passing to the limit n → +∞ concludes the proof.In the general case β ∈ (0, 2], again as in the previous proof it follows that equation (30) has the extra positive term in the right hand side K 2 m sp . The corresponding equation to (32) is now (t, a) 4γ sp0 E n s (t, a) -K E n s (t, a) + (K 1 + K 2 )C s,p0 and consequently, arguing as before we get a + (K 1 + K 2 )C s,p0 .

  y p-k + x p-k y k ≤ (x + y) p -x p -y p ≤ kp k=1 p k x k y p-k + x p-k y k .

  . C ′ m sp valid for any p ∈ N and constant C ′ depending only on s, p, initial mass and energy. Summing in p, from 0 to p 0 -1, and using estimate (18) we obtain

	Next, recalling estimate (19) in the proof of Lemma 8
	d dt m sp ≤ d dt E n s (t, a) ≤ -

p where γ p > 0 are constants such that γ 1 = 1, p → γ p is strictly decreasing and tends to 0 as p → ∞.