
HAL Id: hal-00677883
https://hal.science/hal-00677883

Preprint submitted on 17 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing transformation languages for the
implementation of certified model transformations

Arnaud Dieumegard, Andres Toom, Marc Pantel

To cite this version:
Arnaud Dieumegard, Andres Toom, Marc Pantel. Comparing transformation languages for the im-
plementation of certified model transformations. 2012. �hal-00677883�

https://hal.science/hal-00677883
https://hal.archives-ouvertes.fr

Comparing transformation languages for the implementation
of certified model transformations

Arnaud Dieumegard1, Andres Toom1,2, and Marc Pantel1

1 IRIT - ENSEEIHT, Université de Toulouse, 2, rue Charles Camichel, 31071 Toulouse Cedex, France
FirstName.LastName@enseeiht.fr

2 Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, EE-12618 Tallinn,
Estonia

FirstName@krates.ee

Abstract. Precise specifications are needed for verifying and certifying the correct behavior
of critical systems. However, traditional proofreading and test based verification techniques
are usually not exhaustive and as systems become more complex, their coverage is less and
less adequate. Use of models allows early verification, validation and automated building of
“correct by construction” systems. Our work targets formal specification and verification of
model transformations. In a previous paper we tackled the problem of writing formal speci-
fications for model transformations independently to the implementation technique. In this
paper we investigate the implementation phase of these specifications as model transforma-
tions using traditional MDE techniques and the difficulties encountered while generating the
verification materials.

1 Introduction

Model Driven Engineering (MDE) is one of the techniques that has been successfully applied for
designing complex systems. Splitting a system into layers and abstracting different system proper-
ties into respective models makes large systems manageable. In an iterative or V-like development
process high-level system requirements and initial coarse models are refined until the requirements
and models are precise enough to be implemented. In many cases, software code can be largely
or fully automatically generated from low-level models. On the other hand, modeling languages
have often (but not always) clearly defined syntax and semantics. This makes a model a formal
specification analysable by formal mathematically based methods. Besides complexity, in critical
embedded systems there is also a related strong concern regarding safety for the end-users and the
environment. A critical software system cannot be released and embedded without complying fully
with the certification of its corresponding domain, for example DO-178C in the avionics, ISO26262
in the automotive and ECSS for space systems. An important aspect in these normative guidelines
is the need for clear separation between specification, implementation and verification. Splitting
these concerns to separate tasks that can be allocated to independent parties (a requirement for
highly critical systems) helps to eliminate both specification and implementation flaws. Most com-
monly the final implementation is verified against the low level requirements via extensive testing.
If however, the requirements are in a formal language, then automatic verification or test gener-
ation can be applied. Ideally, the implementation can be even automatically generated from the
requirement specification, as for example in the CompCert compiler project from Leroy [11] that
is currently being experimented for flight control software by one of the authors [8]. This approach

was experimented in the GeneAuto project where this experiment also takes place by one of the
authors [9]. However, the proof assistant technologies it relies on is costly and requires expert users
that are currently not available in the software engineering industry that implements development
tools for safety critical systems.

2 Case study: Verifying transformations in the GeneAuto code
generator

GeneAuto3 is an open code generator project for transforming a set of high-level graphical mod-
eling languages to selected common textual programming languages (see [14, 10, 13, 1] that describe
the evolution of the toolset in the last 6 years). It currently supports subsets of Simulink, Stateflow
and Scicos as input and C, Ada and Java language as output. It is intended to be used and certi-
fied for critical embedded systems. That is why its design follows a clear modular MDE approach
allowing to independently verify different transformation phases. After the initial importing step,
transformations are carried out as a sequence of refinements of intermediate models.

There are about 50 transformations in the GeneAuto tool. Some of them are rather small
and simple structure preserving transformations, but others are complex or change significantly the
model structure. Related transformations are combined into independent executables that read and
output the models to files. The transformation specifications are written with respect to these ob-
servable intermediate models. However, often these are a result of several successive transformations
and verifying the structural correspondence between the input and output models is non-trivial.
Here, explicit transformation links provided by the transformation tool can be very helpful, as
shown by the next example.

Signal

Block

blockType : EString

Port

SystemBlock

Outport Inport

emf

dstPort 1srcPort 1

signals
0..*

inPorts 0..*outPorts0..*

blocks

0..*

Fig. 1. A fragment of the simplified GASystemModel metamodel

3 www.geneauto.org

Currently, the specification for most of the elementary tools in GeneAuto have been specified
in the English language, with a notable exception of the Block Sequencer tool that has been spec-
ified and implemented in the Coq proof assistant [9]. In our case study we have formalized some
of these requirements in a way that the specification can be directly used for transformation verifi-
cation using a standard OCL checker. We will look at some transformations done by a tool called
Functional Model Pre-Processor (FMPreProcessor), which handles normalizing and refinement of
block diagrams. Figure 1 shows a section of the simplified GASystemModel metamodel with the
relevant concepts.

The FMPreProcessor tool performs several quite simple transformations. Some of these are:

– Replaces system blocks that have corresponding library equivalents by library blocks
– Flattens virtual subsystems
– Matches and replaces primitive blocks with library blocks
– Removes Goto-From block pairs
– Determines the execution priorities of concurrent blocks based on their graphical position

As a concrete example we will look at removing Goto-From block pairs. Goto-From blocks
(see Figure 2) allow to avoid visual clutter in block diagrams and split signals to sections. The
GeneAuto tool removes such block pairs during the model preprocessing. A matching Goto-From
pair is deleted, the endpoint of the first signal is moved to the endpoint of the second signal and
the second signal is also deleted.

Out1

1

In1

1

Out1

1

Goto2

[B]

Goto1

[A]

From2

[B]

From1

[A]

In1

1

Fig. 2. Simulink diagram with chained Goto-From blocks before the normalizing trans-
formation (above) and after it (below)

Verifying the correctness of this transformation is easy, provided that this is the only transforma-
tion. However, if transformations add up, even repetitive applications of the same transformation,
like on figure 2, where the endpoint of the signal from From1 to Goto2 is also removed, then it will
be much harder to verify the transformations correctness. Such analysis would have to determine in
the source model the whole flow path from the block In1 to the first block that will not be removed.
It would have to know a lot more about the model and transformation semantics. On the other
hand, if the transformation tool maintains a link relating each port to a port in a target model,
then a property like the correctness of a Goto-From removal can be specified and verified with a
few simple OCL rules. All that the transformation tool has to do to allow it, is to store that after
the first transformation:

1. Goto1, From1 and s2 were replaced by s1
2. The port corresponding to the input port of Goto1 is now the input port of Goto2

And after the second transformation:

1. Goto1, From1 and s2 were replaced by s1
2. The port corresponding to the input port of Goto1 is now the input port of Out1
3. Goto2, From2 and s3 were replaced by s1
4. The port corresponding to the input port of Goto2 is now the input port of Out1.

3 Metamodel based transformation specification

In the context of MDE the manipulated artefacts are models. The type of models is usually re-
ferred to as a metamodel: a model that defines the concepts of an instance model. This relation is
purely syntactical. The Meta-Object Facility (MOF)4 OMG standard defines a formal four-layered
(M0..M3) metamodeling architecture. For example, the metamodel of the widely used Unified Mod-
eling Language (UML) is a M2 MOF model. Similarly, all domain specific languages can also be
expressed as MOF models. The core of MOF allows only expressing simple structural properties,
like associations between elements, containment, cardinality etc.

The Object Constraints Language (OCL)5 is a standard declarative first order constraint and
query language, which can be used to refine MOF models. For instance, one can specify structural
invariants, definitions and pre-post contracts of abstract MOF operations in the OCL language.
Model transformations can also be specified as models and transformation constraints as correctness
properties of the transformation model. These metamodels consist of a basic structural specification
with possibly additional OCL constraints.

The transformation metamodel contains three essential parts: source, target and a transforma-
tion relation. The transformation relation is a set of explicit links between elements in the source
and target model. These explicit links play a key role in our approach. These links must be explic-
itly given along with the transformation instance to allow feasible verification of the correctness of
the transformation. In our approach these links are part of the specification and it is the respon-
sibility of the transformation performer, be it a tool or even human, to provide these links. The
relation metamodel defines the structure of the links and the properties they must satisfy and the
transformation metamodel defines, which links must exist.

4 Transformation Metamodel

To perform model-based specification and verification of the transformation, we express the trans-
formation of interest also as a model. Figure 3 shows our metamodel of the transformation model.
This model has three main parts: references to source and target models and the relation links. The
links refer to some elements in the source and target models and we expect the transformation tool
to provide them.

A valid transformation model needs to comply with the transformation metamodel and a set
of additional OCL constraints. Some of these constraints just specify the basic consistency of a

4 http://www.omg.org/mof
5 http://www.omg.org/spec/OCL/2.2

TransformationModel

GenericModel

GenericLink
GenericModelElement

inSrcModel : EBoolean

inTgtModel : EBoolean

LinkModel

src1 tgt1 links
1

elements
0..*

src 1..*

tgt
1..*

srcLinks

0..*

links 0..*

tgtLinks 0..*

Fig. 3. Transformation Metamodel

transformation model. For example, to ensure the correctness of the relation links, we define the
following OCL constraints (represented partially, the OCL keyword inv defines an invariant and
the keyword context specifies, for which class the constraint applies to).

context GenericModelElement
inv s r c h a s o n l y s r c l i n k s : inSrcModel

implies tgtLinks−>isEmpty ()
inv t g t h a s o n l y t g t l i n k s : inTgtModel

implies s rcLinks−>isEmpty ()
inv s r c l i n k s s t a r t f r o m s r c : . . .
inv t g t l i n k s e n d i n t g t : . . .

context GenericLink
inv s r c e l e m s a l l d e f i n e d : . . .
inv t g t e l e m s a l l d e f i n e d : . . .

Other constraints are transformation specific and are specified in either the context of the
respective model elements or the relation links. We use a following general pattern: for source and
target metamodel elements we specify as class invariants which links they must have and for links
we specify as class invariants the respective transformation’s correctness properties.

5 Implementing the specified model transformation

There exists a wide quantity of model transformation techniques that can be used to fulfill this
purpose. We will describe in this section what are the main techniques that can be used in order
to encode these transformations with languages that are accessible to common engineers. We will
focus on the use of MOF-based6 model transformations techniques.

6 http://www.omg.org/spec/MOF/

5.1 Model to model transformations

In [6], the authors propose a classification of model transformation approaches:

– Direct manipulation of the models. Using some API to manipulate the model, the model trans-
former need to implement all the necessary methods and techniques to do the transformation.

– Relational approaches. Defining relations between source and target elements and specifying
the constraints that must be verified by the relation.

– Graph transformation based approaches. This approach is based on the graph transformation
theories. Some LHS graph patterns are transformed in RHS graph patterns.

– Structure driven approaches. First the hierarchical structure of the target model is created and
then the attributes and references are set on the target model.

– Hybrid approaches. This approach combines techniques from the previous categories.

Within the Eclipse toolset, the EMF7 framework has been developed in order to provide a Java
API to manipulate models. The model transformations used in eclipse are based on this API. The
Ecore metamodel can be seen as the EMF version of the MOF standard (more precisely the EMOF
standard). Based on the EMF framework it is now possible to implement a direct manipulation of
models.

Using directly a programming language like Java to implement a model transformation is the
most obvious way to perform the transformation. This language is widely used and known by
engineers. The input model of the transformation must be loaded and methods must be implemented
in order to do the transformation. But this approach has the main drawback of being painful to
implement as it is mostly mandatory to rewrite every mechanism for each implementation of a
transformation.

OMG has defined a standard for model transformations: QVT8. This work started in 2002 and
the first version of this standard was released in 2008. In the QVT standard, three metamodels are
defined in order to provide declarative (with the Relation and Core languages) and imperative (with
the Operational language) ways of performing the desired transformation. This hybrid approach
allows users to implement simple transformations using the declarative languages and more complex
ones using the imperative language.

5.2 Implementation

Our purpose in the previous sections and paper was to express how a formal model transformation
specification can be written based on a transformation metamodel and OCL constraints. Here
we will detail some experiments we did on the implementation of the Goto-From transformation
specified in the section 2. The complete source code of the examples can be found at http://

dieumegard.perso.enseeiht.fr/implementation.
In order to implement the transformation described in section 2 we need to follow the following

algorithm:

1. The unmodified elements must be translated on the target model without modifications
– all the blocks that are not Goto or From blocks (with their ports)
– all the signals that are not involved in Goto-From pairs

7 http://www.eclipse.org/modeling/emf/
8 Query/View/Transformation: http://www.omg.org/spec/QVT/

2. A link must be created between each translated element of the first step.
3. Foreach signal leaving a not From block and going to a Goto block, a recursive treatment must

be done to implement the Goto-From pairs elimination.
4. A link must be created on each iteration of the third step. This link contains as source all the

signals and blocks involved in the Goto-From pairs and as target the resulting signal of the
transformation.

Java/EMF based implementation Our Java based experiment is a slight retroactive extension
of the existing FMPreProcessor component of the GeneAuto toolset. As explained in Section 2
most transformations in GeneAuto are endogenous (same source and target metamodels) model
refinements in one of the two intermediate languages. The metamodel (abstract syntax) of these lan-
guages has been specified in UML and the skeleton Java classes have been automatically generated.
Most transformations are manually coded. In our case study we have used the GeneAuto-EMF
bridge and built a transformation metamodel on top of the GeneAuto metamodels. This trans-
formation metamodel is the same one that was used also in the other experiments described in the
current paper.

We augmented the existing transformation with the creation of explicit relation links between
selected source and target model elements. This change was unintrusive and only made some internal
information externally observable. To manage the links we employed a following strategy. First, the
tool creates a partial identity relation (all elements are mapped to themselves) between selected
elements (all instances of certain element classes) of the input model. Then, the tool performs
an in-place transformation of the model and each time, when an element is replaced by another
one in the course of the refinement or the model structure is otherwise changed the respective
links are also modified. For example, if a Goto-From block pair is removed from the model a
GotoFrom2SignalLink is added to the link relation and existing Port2PortLinks are updated. The
fact that in our transformation metamodel the relation links and model elements are doubly linked
makes this kind of updates very simple and efficient.

Such approach can also be extended to exogenous (different source and target metamodels)
model transformations. In that case the initial identity relation creation phase is not relevant and
the tool just has to output target model along with the the relation links.

QVT-Relational implementation In order to implement the transformation in QVTr we use
the medini-QVT 9 tool set. There are many possibilities in QVTr to implement this transformation.
The target and links of the transformation can be generated directly using a single transformation
but it is necessary to launch the transformation in direction of the target model then in the direction
of the link model to ensure that every element is created. An other possibility is to generate only
the target element and here there are two ways of generating the transformation model:

– As the tooling generates automatically a trace model and metamodel for the transformation,
an other transformation can be written in order to translate this automatic trace into a trace
as specified in the section 4. This second solution has a major drawback because automatically
generated traces are quite verbose and relies on the structure of the first QVTr transforma-
tion code (name of the relations and attributes). This implementation is not easily done and
difficultly maintainable.

9 http://projects.ikv.de/qvt/

– A transformation can be written taking as input the source and target models and generating
the transformation model. This solution is easier to implement but a proofreading must be
done between the first and second transformation in order to ensure that the links elements are
created according to the first transformation.

We choose to implement the first version because of the drawbacks specified below.
The first part of the algorithm is quite easy to implement using the pattern recognition mech-

anism of QVTr. A mapping relation is written for each type of elements that must be directly
translated to the target model. A specific relation is created to generate the GenericLink related
to the translation and called directly on the where clause of the mapping relation. In order to
implement the second part (the Goto-From transformation), a relation matching the entry point is
written. A call to an other relation witch does the recursion over the Signals and Blocks and a final
relation is used to create the resulting signal. During all this process, the Signals and Blocks used
must be stored in order to fill the GenericLink for the trace. The same mechanism is used to call
the trace creation relation but this time with the stored Blocks and Signals.

ATL implementation As ATL is a QVT-like transformation language, the principle of the trans-
formation is the same as previously stated. The particularity of ATL is the possibility to add
imperative treatments in the rules (relation in QVTr) at the end of each transformation rule. This
eases the coding work but on the other hand does not helps on the readability of the transforma-
tion code. A lot of treatments needs to be done using helpers and the usage of filter in the pattern
matching for rules is necessary to ensure that no mistakes are made on the application of the rules
in the first or the second part of the algorithm. With ATL, the transformation is direct and it’s
possible to directly generate the target model and the links model using a unique execution flow.

6 Advantages and drawbacks of the experimented model
transformations techniques

In this section we will discuss on the different implementations of the model transformations we
describe on the previous section. We will base our comparison according to three criteria.

– Ease in generating the links model. Is it difficult to add a generation of the links model in
addition to the target model.

– Expressiveness. What are the limits of the approach to express model transformations?
– Performance. What is the performance of the transformation?

6.1 Ease of implementing the transformation

Java/EMF Using either an UML or Ecore metamodel, the EMF toolkit can be used to generate
the java classes representing the model elements. This capability is available also in most UML
modeling tools. The transformation itself needs to be implemented manually. The main drawback
of this approach is the amount of required manual coding. Every mapping mechanism or pattern
recognition must be implemented directly using the Java language. In a larger project like Ge-
neAuto it is likely that some kind of a framework or set of utility functions will be created first
and then used for coding several transformations.

Creating the explicit relation links that we propose to use for verification does not add much
overhead. The transformation tool only needs to keep and maintain some internal information
that would otherwise be discarded. It is of course best, if the exact requirements for these links are
specified in full detail before implementing the transformation. However, if the tool is well-structured
it should not be complicated to add this also retroactively, as we did in our experiment.

QVTr The version we choose to implement in the section 5 is quite easy to implement. The
mapping mechanism of QVTr is well suited for this usage. Every time a direct mapping is done, a
relation creating the links is called in its where clause in order to create the link related to the source
and target elements of the relation. The transitive closure aspect of our transformation requires to
use the OCL conditional statements and a recursive relation but the QVTr language is well fitted
for this usage. Some tweaks are necessary to store the Signals and Blocks during the transitive
closure step of the transformation and use them to generate the links in a dedicated relation.

ATL Writing this transformation in ATL is quite easy and as we said on the previous section the
imperative part of an ATL rule helps a lot to manage the creation of the elements and the flow of
execution. It’s also possible to generate the target and link models directly in one execution so it
makes the rule writing more intuitive.

6.2 Expressiveness

Java/EMF Using an API in a full programming language like Java brings the expressiveness of
that language to the transformation implementation. This makes any computable transformation
possible.

QVTr By its nature, QVTr is limited to relations between source and target model elements.
QVTr allows to express high level representation of model to model transformations. But it is
sometimes difficult to do complex transformations in a declarative style as used in QVTr.

ATL As we previously said, ATL is an implantation of the QVT proposal, but it is a hybrid of
declarative and imperative programming. This improves its expressiveness and grants it with the
ability to express any kind of transformations but contrary to QVT, ATL transformations are
unidirectional.

6.3 Performance

Performance evaluations have been done on an average computer with various generated models
containing from a hundred of elements to nearly ten thousand. Two kinds of models have been
used, casual ones containing a low common rate of Goto-From pairs in sequence and unusual
ones with higher rate of these elements (about half of the model elements are involved in Goto-
From sequences). The second kind of models are only there for evaluation of the computational
performance of the transitive closure. The results of this benchmark are displayed in Table 1.

Java/EMF The Java/EMF implementation had the best performance in our study. This is rather
expected from a hand made “optimal” implementation.

Technology(execution time in s)
Model type Elements in model QVTr ATL Java/EMF

Low rate ' 150 379,556 3,441 1,057

Low rate ' 1500 — 32,802 4,660

Low rate ' 15000 — 5189,391 261,552

High rate ' 150 430,508 3,699 1,059

High rate ' 1500 — 29,771 4,681

High rate ' 15000 — 2647,606 132,752

Table 1. Model transformation performance

QVTr The performance of the medini QVT implementation of QVTr is very low. It is possible to
handle small models containing a few hundreds of elements but using it with bigger models results
in huge execution times. The main reason for that is the pattern recognition mechanism and the
fact that every relation must hold for the transformation to be successful. For every relation in the
transformation, it’s necessary to go over all the model to find every matching and make them hold.

ATL In QVTr, the calls from a relation to another is done via the where clause but in ATL,
this is not the only way to call other rules. It is possible to specify in a rule that the specified
mapped element must be transformed by transforming a specific element of the source model.
Using this mechanism, it’s possible to reduce the number of elements that needs to be matched
in a transformation rule. The fact that ATL is also compiled and executed in a virtual machine
makes the execution faster than classical interpretation of the transformation rules. Using ATL
we experienced good transformation performance. However, the fact that we developed only small
transformations is not irrelevant.

7 Perspectives

As we target this work to be used in the modeling community and in industrial contexts, we plan
to extend it to other different transformations in order to test the scalability of the approach both
in size and practical complexity.

We plan to continue the GeneAuto experiment and formalise a larger part of the transformation
specification in the style proposed in Section 3, adapt parts of the existing GeneAuto tool to
produce the required trace links and study the correctness of the model transformation and the
feasibility of this verification approach on realistic models.

We also plan to address the verification of the specification itself by developing a methodology
for combining the syntactic transformation specification with additional semantics-based analysis
to show the soundness and completeness of the transformation specification with respect to the
semantics of the source and target languages. By verifying the conservation of the semantic prop-
erties by the application of the transformation we may be able to prove the soundness of the whole
transformation independently of the implementation language.

And last, we plan to experiment with other model transformation languages like Kermeta, QVTo
and graph rewriting based transformation engines. These elements will be added on the http:

//dieumegard.perso.enseeiht.fr/implementation web page during the forthcoming weeks.

8 Related works

Many authors target the verification of model transformations or code generation with various
purposes and technologies (see [7] for a compiler verification bibliography). The main specific as-
pects of our proposal are that: a) we target qualification with respect to certification standards; b)
thus we must consider the global process including independent specification, implementation and
verification activities; c) we rely on OMG standards for the specification and do not enforce any
technology on the implementation; d) we target only structural properties and propose to handle
semantic aspects using more appropriate technologies for the specification validation in a separate
phase done by different people than the one that implement the transformation; and e) we must be
able to handle industrial size models. As this paper mainly focuses on the implementation part of
this approach, we will compare this to others present in the literature. We detailed in our previous
paper a comparison of the other aspects of our approach.

Most of the related works, as [5, 4, 3] or [2] relies on the links inside the transformation model in
order to ease the verification of transformation. They propose to extract the links from declarative
transformation languages. However, these links are most of the time implementation links that
appear each time a transformation rule is applied. Thus, either the rules are written in order
to ease the implementation and you usually get much more links than needed, or you introduce
constraints on the way you can implement the transformation in order to produce exactly the links
needed for the verification. Also, there is no implementation aspect described in these proposals.

Narayanan et al. have also proposed something very similar to our proposal in [12]. They ad-
vocate to focus on structural properties, to specify the transformation as relations between the
source and target metamodels and then to extract these links from the cross-links used for the
implementation of the transformation with the GReaT language. There is a potential drawback
if the structures of the source and target metamodels are very different. It might be required to
build the transformation using several intermediate models as it is usually the case with declarative
languages. Then it might get complicated to retrieve the specification link that is a composition of
many implementation links.

The transitive closure of a transformation rule is already a complex case: should it be translated
to a single specification link, to all the intermediate links, to only the implementation links? We
enforce the implementation to build exactly the right links that must be precisely described in the
specification. This introduces a cost on the implementation side but it also relieves the implemen-
tation team from the constraint of using a declarative transformation language. Moreover, as in
our approach it is possible to reference the links in the transformation specification, complex and
composed transformations can be specified and implemented more flexibly.

9 Conclusion

We have described in this paper a pragmatic approach for the implementation of formally specified
model transformation and some examples to describe how the creation of the transformation model
can be done. This approach is well suited to the development process of complex and critical soft-
ware. Verification of the implementation with respect to the specification is performed automatically
using an OCL checker.

We have shown through the implementation of the same transformation with Java/EMF, QVTr
and ATL that on one hand, such a model transformation specification is implementable in quite

different ways, of which some can be applied on industrial size models, and on the other hand, the
same automatic verification technique can be used on all of those different implementations.

Further testing of the scalability of the approach for multiple and more complex model trans-
formations needs to be done in order to assert the usability for more complex use cases. We plan
also to develop a methodology for combining the syntactic transformation specification with ad-
ditional semantics-based analysis to show the soundness and completeness of the transformation
specification with respect to the semantics of the source and target languages.

References

1. Bordin, M., Naks, T., Toom, A., Pantel, M.: Compilation of heterogeneous models: Motivations and
challenges. In: European symposium on Real Time Software and Systems (ERTS2), Toulouse, 29/01/08-
01/02/08. p. (electronic medium). Société des Ingénieurs de l’Automobile, http://www.sia.fr (2012)

2. Büttner, F., Cabot, J., Gogolla, M.: On Validation of ATL Transformation Rules By Transformation
Models. In: Cichos, H., Fondement, F., Lucio, L., Weissleder, S. (eds.) Proc. Workshop on Model-Driven
Engineering, Verification, and Validation (MODEVVA’2011). IEEE (2011)

3. Cariou, E., Ballagny, C., Feugas, A., Barbier, F.: Contracts for model execution verification. In: France,
R.B., Küster, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA. Lecture Notes in Computer Science, vol.
6698, pp. 3–18. Springer (2011)

4. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: Ocl contracts for the verification of model transfor-
mations. In: OCL workshop of MoDELS (oct 2009)

5. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: Ocl for the specification of model transformation
contracts. In: Workshop OCL and Model Driven Engineering of the Seventh International Conference
on UML Modeling Languages and Applications (UML 2004) (oct 2004)

6. Czarnecki, K., Helsen, S.: Classification of model transformation approaches (2003)
7. Dave, M.A.: Compiler verification: a bibliography. ACM SIGSOFT Software Engineering Notes 28(6),

2 (2003)
8. França, R.B., Favre-Felix, D., Leroy, X., Pantel, M., Souyris, J.: Towards formally verified optimizing

compilation in flight control software. In: Lucas, P., Thiele, L., Triquet, B., Ungerer, T., Wilhelm, R.
(eds.) PPES. OASICS, vol. 18, pp. 59–68. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany
(2011)

9. Izerrouken, N., Pantel, M., Thirioux, X.: Machine-checked sequencer for critical embedded code gen-
erator. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. Lecture Notes in Computer Science, vol. 5885,
pp. 521–540. Springer (2009)

10. Izerrouken, N., Thirioux, X., Pantel, M., Strecker, M.: Certifying an automated code generator using
formal tools : Preliminary experiments in the geneauto project. In: European Congress on Embedded
Real-Time Software (ERTS), Toulouse, 29/01/2008-01/02/2008. p. (electronic medium). Société des
Ingénieurs de l’Automobile, http://www.sia.fr (2008)

11. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
12. Narayanan, A., Karsai, G.: Verifying model transformations by structural correspondence. ECEASST

10 (2008)
13. Toom, A., Izerrouken, N., Naks, T., Pantel, M., Ssi-Yan-Kai, O.: Towards reliable code generation with

an open tool: Evolutions of the gene-auto toolset. In: European symposium on Real Time Software
and Systems (ERTS2), Toulouse, 29/01/08-01/02/08. p. (electronic medium). Société des Ingénieurs de
l’Automobile, http://www.sia.fr (2010)

14. Toom, A., Naks, T., Pantel, M., Gandriau, M., Wati, I.: Gene-auto - an automatic code generator
for a safe subset of simulink-stateflow and scicos. In: European symposium on Real Time Systems
(ERTS), Toulouse, 29/01/08-01/02/08. p. (electronic medium). Société des Ingénieurs de l’Automobile,
http://www.sia.fr (2008)

