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Abstract. We consider the operator H := ∂t − ∆ + V in 2D or 3D waveguide.

With an adapted global Carleman estimate with singular weight functions we give a

stability result for the time dependent part of the potential for this particular geometry.

Two cases are considered: the bounded waveguide with mixed Dirichlet and Neumann

conditions and the open waveguide with Dirichlet boundary conditions.
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1. Introduction

We first consider a bounded waveguide Ω = (−L,L) × D in Rd with d = 2 or d = 3.

In the two-dimensional case, D = (0, h), where h is a fixed positive constant, while in

the three-dimensional case, D is a connected, bounded and open domain of R2 with C∞
boundary denoted Γ1. We denote Γ1 = Γ+

1 ∪ Γ−1 . We will denote x = (x1, x2) a generic

point of Ω where x1 ∈ (−L,L) and x2 ∈ D. We consider the heat equation
∂tu−∆u+ V (t, x)u = 0, in (0, T )× Ω,

u(t, x) = b(t, x), on (0, T )× [−L,L]× ∂D,
∂νu(t,±L, x2) = k±(t, x2), on (0, T )×D,
u(0, x) = u0(x), on Ω,

(1.1)

where V (t, x) = q(t, x2)f(x1) and f(x1) > 0. The aim of this paper is to give a stability

and uniqueness result for the time dependent part of the potential q(t, x2) using global

Carleman estimates. We denote by ν the outward unit normal to Ω on ∂Ω.

We shall use the following notations Q = (0, T )× Ω and Σ = (0, T )× ∂Ω.

Our problem can be stated as follows:

Is it possible to determine the coefficient q(t, x2) from the measurement of ∂ν(∂x1u) on

(0, T )× (−L,L)× Γ+
1 , where Γ+

1 is a part of ∂D?

Let u (resp. ũ) be a solution of (1.1) associated with (q, f , b, u0) (resp. (q̃, f , b,

u0)).

Our main result is

‖q − q̃‖2
L2((ε,T−ε)×D) ≤ Cε‖∂ν(∂x1u)− ∂ν(∂x1ũ)‖2

L2((0,T )×(−L,L)×Γ+
1 )
, 0 < ε <

T

2
,

where Cε is a positive constant which depends on (Ω,Γ+
1 , ε, T ) and where the above

norms are weighted Sobolev norms.

Using a method introduce in [AT], we first derive a global Carleman estimate with

singular weight for the operator H := ∂t −∆ with a boundary term on a part Γ of the

boundary Γ of D. Then using these estimate and following the method developed by

Choulli and Yamamoto [CY06], we give a stability and uniqueness result for the time

dependent part q(t, x2) of the potential V (t, x).

For the first time, the method of Carleman estimates was introduced in the field of

inverse problems in the work of Bukhgeim and Klibanov [BK]. A recent book by

Klibanov and Timonov [KT] is devoted to the Carleman estimates applied to inverse

coefficient problems.

The problem of recovering time independent coefficients has attracted considerable

attention recently and many theoretical results exist. Regarding time dependent

coefficient few results exist. In the case of source term, Canon and Esteva [CE]

established uniqueness and a priori estimates for the heat conduction equation with
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over specified data. Choulli and Yamamoto [CY06] obtained a stability result, in

a restricted class, for the inverse problem of determining a source term f(x, t) from

Neumann boundary data for the heat equation in a bounded domain. In a recent

work, Choulli and Yamamoto [CY11] considered the inverse problem of finding a control

parameter p(t) that reach a desired temperature h(t) along a curve γ(t) for a parabolic

semi-linear equation with homogeneous Neumann boundary data and they established

existence, uniqueness as well as Lipschitz stability. Using optic geometric solution,

Choulli [Ch09] considered the inverse problem of determining a general time dependent

coefficient of order zero for parabolic equations from Dirichlet to Neumann map and

he proved uniqueness as well as stability. In [E07] and [E08], Eskin considered the

same inverse problem for hyperbolic and the Schrödinger equations with time-dependent

electric and magnetic potential and he established uniqueness by gauge invariance.

The idea introduce in [Y] allows us to take into account the particular geometry of our

domain. Indeed, the x1-derivative do not alter the Dirichlet condition.

In a second part, we will consider an open waveguide Ω = R×D in Rd. We will denote

x = (x1, x2) a generic point of Ω where x1 ∈ R and x2 ∈ D. We consider the heat

equation 
∂tu−∆u+ V (t, x)u = 0 in (0, T )× Ω,

u(t, x) = b(t, x) on (0, T )× ∂Ω,

u(0, x) = u0(x) on Ω,

(1.2)

where V (t, x) = q(t, x2)f(x1) and f(x1) ≥ cmin > 0. Using an approach similar to the

previous case we will give a stability and uniqueness result for the time dependent part

of the potential q(t, x2) using global Carleman estimates. We denote by ν the outward

unit normal to Ω on ∂Ω = R× ∂D.

This paper is organized as follows. In section 2, using an adapted global Carleman

estimate for the operator H, we give a stability result for the coefficient q of problem

(1.1). In section 3, we consider the open wave guide and we establish a stability result

for the coefficient q of problem (1.2).

2. Stability result for a bounded waveguide

In this section we consider problem (1.1). We will establish a stability result and deduce

a uniqueness for the coefficient q. We give the result for the bounded waveguide with

mixed boundary conditions. The Carleman estimate will be the key ingredient in the

proof of such a stability estimate.

From now on we set

Ω = (−L,L)×D, Q = (0, T )× Ω, Σ1 = (0, T )× [−L,L]× ∂D,

Σ′2 = (0, T )× {−L} × D, Σ′′2 = (0, T )× {L} × D, Σ2 = Σ′2 ∪ Σ′′2

and

Σ = (0, T )× ∂Ω.
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2.1. Carleman estimate

Let us introduce the differential operator

P = ∂t −∆x + A(t, x) · ∇x ·+B(t, x)

with A ∈ L∞(Q,Rd) and B ∈ L∞(Q). Let Γ+
1 be a closed subset of ∂D, let α ∈ (−L,L)

and let Γ+ be defined by

Γ+ = (−L,L)× Γ+
1 .

Let ψ2 be a C4(Rd−1) function satisfying the following conditions:

(i) ψ2(x2) > 0 in D,

(ii) There exists C0 > 0 such that |∇ψ2| ≥ C0 > 0 in D,

(iii) ∂νψ2 ≤ 0 on (∂D \ Γ+
1 ).

For the proof of existence of a function satisfying these conditions, we refer to [FI] and

[CIK]. Now let ψ1 ∈ C4(R) be a function satisfying the following conditions

(i) ψ1(x1) > 0 for x ∈ (−L,L),

(ii) ψ′1(x1) < 0 for x ∈ (−L, α),

(iii) ψ′1(x1) > 0 for x ∈ (α,L),

(iv) ψ′1(−L) = ψ′1(L) = 0.

One can easily prove existence of a function satisfying these conditions. Choose

ψ(x1, x2) = ψ1(x1)ψ2(x2). Then, ψ is a C4(Rd) function satisfying the conditions

Assumption 2.1 We have:

• ψ(x) > 0 in Ω,

• There exists C0 > 0 such that |∇ψ| ≥ C0 > 0 in Ω,

• ∂νψ ≤ 0 on (∂Ω \ Γ+),

• ∂x1ψ(x) < 0 for x ∈ (−L, α)×D,

• ∂x1ψ(x) > 0 for x ∈ (α,L)×D.

Now, let us introduce the function

η(t, x) = g(t)
(
e2λ|ψ|∞ − eλψ(x)

)
, ρ > 0 (2.3)

with

g(t) =
1

t(T − t)
.

We consider the following Carleman estimate.

Theorem 2.2 ( Theorem 3.4, [Ch09]) Let Assumption 2.1 be fulfilled. Then, there exist

three constants s0, C and λ depending of Ω, T , Γ+, |A|L∞(Q,Rd) and |B|L∞(Q) such that∫
Q

e−2sη
[
(sg)−1(∆u)2 + (sg)−1(∂tu)2 + sg|∇u|2 + (sg)3u2

]
dx dt (2.4)

≤ C

(∫
Q

e−2sη(Pu)2 dx dt+

∫
(0,T )×Γ+

e−2sηsg(∂νu)2dσ dt

)
for s ≥ s0 and u ∈ C2,1(Q), u = 0 on Σ.



Stability result for a time dependent potential in a waveguide 5

2.2. Inverse Problem

Let u be solution of
∂tu−∆u+ q(t, x2)f(x1)u = 0 in Q,

u(t, x) = b(t, x) on Σ1,

∂νu(t,−L, x2) = k−(t, x), ∂νu(t, L, x2) = k+(t, x) on (0, T )×D,
u(0, x) = u0(x) in Ω,

and ũ be solution of
∂tũ−∆ũ+ q̃(t, x2)f(x1)ũ = 0 in Q,

ũ(t, x) = b(t, x) on Σ1,

∂ν ũ(t,−L, x2) = k−(t, x2), ∂ν ũ(t, L, x2) = k+(t, x2) on (0, T )×D,
ũ(0, x) = u0(x) in Ω,

(2.5)

Let us consider the following conditions.

Assumption 2.3 Here we assume that

• q(t, x2)f(x1), q̃(t, x2)f(x1) ∈ C1+α,α
2 (Q),

• b ∈ C3+α,1+α
2 ([0, T ]× [−L,L]× ∂D),

• u0 ∈ C3,α(Ω),

• k± ∈ C2+α,1+α
2 ([0, T ]×D),

• ∂tb(0, x)−∆xu0(x) + q(0, x2)f(x1)u0(x) = 0, x = (x1, x2) ∈ [−L,L]× ∂D,
• ∂tb(0, x)−∆xu0(x) + q̃(0, x2)f(x1)u0(x) = 0, x = (x1, x2) ∈ [−L,L]× ∂D,
• f > 0, b > 0, u0 > 0,

• ũ(t,−L, x2) > 0, ũ(t, L, x2) > 0, (t, x2) ∈ [0, T ]×D.

Notice that Assumption 2.3 and the maximum principle implies that ũ(t, x) > 0 for

(t, x) ∈ Q. Moreover, according to [LSU, Chapter 4 Section 5], we have u, ũ, ∂x1u,

∂x1ũ ∈ C2,1(Q).

Remark 2.4 Assume that b(t, x) can be extended to a function b1 ∈ C3+α,1+α
2 (Σ) such

that b1 > 0 and the compatibility condition

∂tb1(0, x)−∆xu0(x) + q̃(0, x2)f(x1)u0(x) = 0, x ∈ Γ

is fulfilled. Let w be the solution of
∂tw −∆w + q̃(t, x2)f(x1)w = 0 in Q,

w(t, x) = b1(t, x) on Σ,

w(0, x) = u0(x) in Ω,

Choose k± such that

∂νw(t,±L, x2) = k±(t, x2), (t, x2) ∈ [0, T ]×D.
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Then w will be a solution of (2.5) and by uniqueness we obtain

w(t, x) = ũ(t, x), (t, x) ∈ Q.

It follows that ũ|Σ = b1 > 0 and the last item of Assumption 2.3 can be removed.

Now, if we set v = u− ũ, then v satisfies
∂tv −∆v + q(t, x2)f(x1)v = (q̃(t, x2)− q(t, x2))f(x1)ũ in Q,

v(t, x) = 0 on Σ1,

∂νv(t,−L, x2) = 0, ∂νv(t, L, x2) = 0 on (0, T )×D,
v(0, x) = 0 in Ω,

Thus with the change of function w =
v

fũ
, w is solution of the following system


∂tw −∆w + A · ∇w + aw = q̃(t, x2)− q(t, x2) in Q,

w(t, x) = 0 on Σ1,

∂νw(t,−L, x2) = 0, ∂νw(t, L, x2) = 0 on (0, T )×D,
w(0, x) = 0 in Ω,

where

A =
−2

fũ
∇(fũ) and a =

∂t(fũ)−∆(fũ) + V

fũ
.

We consider the x1-derivative of the previous system and we set z := ∂x1w. Let us

observe that for all function g ∈ C1(Q) we have

∂νg(t, L, x2) = ∂x1g(t, L, x2), x2 ∈ D (2.6)

and

∂νg(t,−L, x2) = −∂x1g(t,−L, x2), x2 ∈ D. (2.7)

Moreover, if g(t, x) = 0 for (t, x) ∈ (−L,L) × ∂D, since ∂x1 is a tangent derivative on

(−L,L)× ∂D, we have

∂x1g(t, x1, x2) = 0, (t, x1, x2) ∈ (0, T )× (−L,L)× ∂D. (2.8)

From (2.6), (2.7), (2.8) and the fact that z ∈ C2,1(Q), we deduce that z is the solution

of 
∂tz −∆z + A · ∇z + az +B1z = B2∂x2w + bw in Q,

z(t, x) = 0 on Σ,

z(0, x) = d(x) in Ω

(2.9)

with

B1 := −2∂x1

(
∂x1(fũ)

fũ

)
, B2 := 2∂x1

(
∂x2(fũ)

fũ

)
and b = −∂x1a.

Note that Assumption 2.3 implies that A, B1, B2 and a, b are bounded.

Set

I1(z) =

∫
Q

e−2sη
[
(sg)−1(∆z)2 + (sz)−1(∂tz)2 + sg|∇z|2 + (sg)3u2

]
dx dt.(2.10)
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Applying the Carleman estimate (2.4) to u = z, we obtain

I1(z) ≤ C

[∫
(0,T )×Γ+

e−2sηsg(∂νz)2dσdt

+

∫
Q

e−2sη (|∇z|2 + |z|2) dx dt+

∫
Q

e−2sη (|∇w|2 + |w|2) dx dt

]
.

The second integral of the right hand side of the previous estimate is ”absorbed” by the

left hand side, for s sufficiently large. For the last integral, we need the following lemma

proved in [Ch09]:

Lemma 2.5 Let F be a function in C(Q)). Then we have the following estimate:∫
Q

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sηdx1 dx2 dt ≤ C

∫
Q

|F (t, x)|2 e−2sηdx dt.

Proof

We recall here the proof of this lemma. An application of the Cauchy-Schwarz inequality

yields∫
Q

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sηdx1 dx2 dt ≤ C

∫
Q

∫ x1

α

|F (t, ξ, x2)|2dξe−2sηdx1 dx2 dt.(2.11)

Let r(x1, ξ) be defined by r(x1, ξ) = e−2s[φ(t,x1,x2)−φ(t,ξ,x2)]. Note that

∂ξr(x1, ξ) = −2sλ
∂ψ

∂x1

(ξ, x2)g(t)eλψ(ξ,x2)r(x1, ξ).

Thus, Assumption 2.1 implies that ∂ξr(x1, ξ) < 0 for α < ξ < x1 < L and ∂ξr(x1, ξ) > 0

for −L < x1 < ξ < α. Then, in the region

{(x1, ξ) : α ≤ ξ ≤ x1 ≤ L} ∪ {(x1, ξ) : −L ≤ x1 ≤ ξ ≤ α}

we have

r(x1, ξ) ≤ r(x1, x1) = 1. (2.12)

Applying estimate (2.11) , we get∫
Q

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sηdx dt

≤ C

[∫ T

0

∫
D

∫ α

−L

∫ α

x1

|F (t, ξ, x2)|2e−2sη(t,ξ,x2)r(x1, ξ)dξ dx1 dx2 dt

+

∫ T

0

∫
D

∫ L

α

∫ x1

α

|F (t, ξ, x2)|2e−2sη(t,ξ,x2)r(x1, ξ)dξ dx1 dx2 dt

]
. (2.13)

For the first term on the right hand side of (2.13), formula (2.12) implies∫ T

0

∫
D

∫ α

−L

∫ α

x1

|F (t, ξ, x2)|2e−2sη(t,ξ,x2)r(x1, ξ)dξ dx1 dx2 dt

≤
∫ T

0

∫
D

∫ α

−L

∫ α

x1

|F (t, ξ, x2)|2e−2sη(t,ξ,x2)dξ dx1 dx2 dt
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and for the second term on the right hand side of (2.13) we obtain∫ T

0

∫
D

∫ L

α

∫ x1

α

|F (t, ξ, x2)|2e−2sη(t,ξ,x2)r(x1, ξ)dξ dx1 dx2 dt

≤
∫ T

0

∫
D

∫ L

α

∫ x1

α

|F (t, ξ, x2)|2e−2sη(t,ξ,x2)dξ dx1 dx2 dt.

We deduce easily Lemma 2.5 from these estimates.

Now let use return to the stability result.

2.3. Stability result

In this subsection we consider u ũ, v, w and z introduced in the previous subsection.

Our goal is to use the Carleman estimate (2.4). For this purpose, we will exploit the

fact that in the bounded wave guide Ω a derivation with respect to x1 does not alter the

Dirichlet condition on Σ1 and that the Neumann condition on Σ2 becomes a Dirichlet

condition. The main result of this subsection is the following stability estimate.

Theorem 2.6 Let Assumptions 2.3 be fulfilled. Let r > 0 be such that

r ≥ max
(
|q |L2((0,T )×D), |q̃ |L2((0,T )×D)

)
.

Then, for any 0 < ε < T
2

, there exists a constant Cε > 0 depending of ε, b, u0, k± and

r such that

‖q − q̃‖2
L2((ε,T−ε)×D) ≤ Cε

[
‖∂ν∂x1ũ− ∂ν∂x1u‖2

L2((0,T )×Γ+)

+‖ũ(·, α, ·)− u(·, α, ·)‖2
H1
t (0,T, H2

x2
(D))

]
Proof

According to [LSU] and the maximum principle, Assumptions 2.3 implies that

u, ũ, ∂x2u, ∂x2ũ ∈ C1(Q) and fũ ≥ c1 > 0. Thus, w, ∂x2w ∈ C1(Q) and one can

write

w(t, x) =

∫ x1

α

z(t, x′, x2) dx′ + w(t, α, x2), (t, x1, x2) ∈ Q, (2.14)

∂x2w(t, x) =

∫ x1

α

∂x2z(t, x′, x2) dx′+∂x2w(t, α, x2), (t, x1, x2) ∈ Q.(2.15)

Let us consider the source term B2∂x2w+ bw of (2.9). Using representations (2.14) and

(2.15), we get∫
Q

e−2sη(B2∂x2w + bw)2 dx dt ≤ 4

∫
Q

e−2sη

(
B2

∫ x1

α

∂x2z(t, x′, x2) dx′
)2

dx dt

+4

∫
Q

e−2sη (B2∂x2w(t, α, x2))2 dx dt+ 4

∫
Q

e−2sη

(
b

∫ x1

α

z(t, x′, x2) dx′
)2

dx dt

+4

∫
Q

e−2sη (bw(t, α, x2))2 dx dt.
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Then, applying Lemma 2.5, we obtain∫
Q

e−2sη(B2∂x2w + bw)2 dx dt ≤ C

(∫
Q

e−2sη
(
|∂x2(z)|2 + |z|2

)
dx dt

)

+C

(∫
Q

e−2sη
(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx dt

)
. (2.16)

Note that Assumption 2.1 implies(∫
Q

e−2sη
(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx dt

)

≤ C

∫ T

0

∫
D

(|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2) dx2 dt.

Combining this estimate with (2.16), we obtain∫
Q

e−2sη(B2∂x2w + bw)2 dx dt ≤ C

(∫
Q

e−2sη
(
|∂x2(z)|2 + |z|2

)
dx dt

+

∫ T

0

∫
D

(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx2 dt

)
. (2.17)

An application of the Carleman estimate (2.4) to z yields∫
Q

e−2sη
[
(sg)−1(∆z)2 + (sg)−1(∂tz)2 + sg |∇z|2 + (sg)3z2

]
dx dt

≤ C

(∫
Q

e−2sη(B2∂x2w + bw)2 dx dt+

∫
(0,T )×Γ+

e−2sηsg(∂νz)2 dσ dt

)
.

Combining this estimate with (2.17), we obtain∫
Q

e−2sη
[
(sg)−1(∆z)2 + (sg)−1(∂tz)2 + sg|∇z|2 + (sg)3z2

]
dx dt

≤ C

(∫
Q

e−2sη
(
|∂x2(z)|2 + |z|2

)
dx dt+

∫ T

0

∫
D

(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx2 dt

+

∫
(0,T )×Γ+

e−2sηsg(∂νz)2 dσ dt

)
.

Then, for s sufficiently large, we get∫
Qε

(
|∂tz|2 + |∆z|2 + |∇z|2 + |z|2

)
dx dt (2.18)

≤ Cε

(∫ T

0

∫
Γ+

|∂νz|2 dσ dt+

∫ T

0

∫
D

(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx2 dt

)
.

with Qε = (ε, T − ε)× (−L,L)×D. Now, note that

q̃(t, x2)− q(t, x2) = ∂tw −∆w + A · ∇w + aw = Pw.
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Thus, applying (2.14), one get

q̃(t, x2)− q(t, x2) = P

∫ x1

α

z(t, x′, x2) dx′ + Pw(t, α, x2).

Then, this representation and estimate (2.18) imply∫ T−ε

ε

∫
D

(q̃(t, x2)− q(t, x2))2 dx2 dt

≤ C

(∫
Qε

(
|∂tz|2 + |∆z|2 + |∇z|2 + |z|2

)
dx dt+ ‖w(·, α, ·) |2

H1
t (0,T,H2

x2
(D))

)
≤ Cε

(∫ T

0

∫
Γ+

|∂νz|2 dσ dt+ |w(·, α, ·) |2
H1
t (0,T,H2

x2
(D))

)
.

This completes the proof.

3. Stability for an unbounded waveguide

In this section we consider problem (1.2). We will establish a stability result and deduce

a uniqueness for the coefficient q. We give the result for the open waveguide with

Dirichlet boundary conditions. The Carleman estimate for unbounded domain will be

the key ingredient in the proof of such a stability estimate.

From now on, we set

Ω = R×D, Q = (0, T )× Ω, Σ = (0, T )× ∂Ω.

3.1. Global Carleman Estimate

Let f(x1) be a bounded positive function in C2(R) such that f(x1) ≥ cmin > 0, f and

all its derivatives up to order two are bounded by a positive constant C̃0.

Let u = u(t, x) be a function equals to zero on (0, T ) × ∂Ω and solution of the Heat

equation

∂tu−∆u = F.

We prove here a global Carleman-type estimate for u with a single observation acting

on a part Γ+
1 of the boundary Γ of D in the right-hand side of the estimate. Let ψ2 be

the function defined in subsection 2.1 and let ψ be a C4(Rd) function defined by

ψ(x1, x2) = ex1ψ2(x2).

Then, the function ψ satisfies the conditions:

Assumption 3.1 • ψ(x) > 0 in Ω,

• There exists C0 > 0 such that |∇ψ| ≥ C0 > 0 in Ω,

• ∂νψ ≤ 0 on (0, T )× R× Γ−1 ,

• infx∈Ω ∂x1ψ(x) > 0,
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• lim
x1→±∞

inf
x2∈D

∣∣∣∣ψ(x1, x2)

x1

∣∣∣∣ = +∞.

Now let us introduce the function

ϕ(t, x) = g(t)eλψ(x), λ > 0 with g(t) =
1

t(t− T )
.

Let H be the operator defined by

Hu := ∂tu−∆u in Q = Ω× (0, T ). (3.1)

We set w = e−sϕu, Mw = e−sϕH(esϕw) for s > 0 and we introduce the following

operators

M1w := −∆w − s2|∇ϕ|2w − s∂tϕw, (3.2)

M2w := ∂tw + 2s∇ϕ · ∇w + s∆ϕw. (3.3)

Then the following result holds.

Theorem 3.2 Let H, M1, M2 be the operators defined respectively by (3.1), (3.2),

(3.3). We assume that Assumptions 3.1 are satisfied. Then there exist λ0 > 0, s0 > 0

and a positive constant C = C(Ω,Γ, T ) such that, for any λ ≥ λ0 and any s ≥ s0, the

next inequality holds:

s3λ4

∫
Q

e−2sϕϕ3|u|2 dx dt+ sλ

∫
Q

e−2sϕϕ|∇u|2 dx dt+ ‖M1(e−sϕu)‖2
L2(Q)

+‖M2(e−sϕu)‖2
L2(Q) ≤ C

[
sλ

∫ T

0

∫
Rx1

∫
Γ+
1

e−2sϕϕ|∂νu|2 ∂νψ dσ dt (3.4)

+

∫
Q

e−2sϕ |Hu|2 dx dt
]
,

for all u satisfying Hu ∈ L2(Ω× (0, T )), u ∈ L2(0, T ;H1
0 (Ω)), ∂νu ∈ L2(0, T ;L2(Γ)).

Note that this theorem has already been proved in [FI], [I] and [T]. In the inequality

(3.4) , we can also have an estimate of ∂tu and ∆u (see [FI]).

3.2. Inverse Problem

In this subsection, we establish a stability result and deduce a uniqueness result for the

coefficient q.

The Carleman estimate (3.4) will be the key ingredient in the proof of such a stability

estimate.

Let u be solution of 
∂tu−∆u+ q(t, x2)f(x1)u = 0 in Q,

u(t, x) = b(t, x) on Σ,

u(0, x) = u0(x) in Ω,
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and ũ be solution of 
∂tũ−∆ũ+ q̃(t, x2)f(x1)ũ = 0 in Q,

ũ(t, x) = b(t, x) on Σ,

ũ(0, x) = u0(x) in Ω,

Assumption 3.3 Here we assume that:

• q(t, x2)f(x1), q̃(t, x2)f(x1) ∈ C1+α,1+α
2 (Q) ∩ L∞(Q),

• b ∈ C3+α,1+α
2 (Σ) ∩ L2((0, T );H

5
2 (∂Ω)) ∩H 3

4 ((0, T );H1(∂Ω)),

• u0 ∈ C3,α(Ω) ∩H3(Ω),

• ∂tb(0, x)−∆xu0(x) + q(0, x2)f(x1)u0(x) = 0, x = (x1, x2) ∈ ∂Ω,

• ∂tb(0, x)−∆xu0(x) + q̃(0, x2)f(x1)u0(x) = 0, x = (x1, x2) ∈ ∂Ω,

• There exists r > 0 such that b ≥ r and u0 ≥ r.

If we set v = u− ũ, then v satisfies
∂tv −∆v + q(t, x2)f(x1)v = (q̃(t, x2)− q(t, x2))f(x1)ũ in Q,

v(t, x) = 0 on Σ,

v(0, x) = 0 in Ω.

Then with the change of function w =
v

fũ
, w is solution of the following system

∂tw −∆w + A · ∇w + aw = q̃(t, x2)− q(t, x2) in Q,

w(t, x) = 0 on Σ,

w(0, x) = 0 in Ω.

where

A =
−2

fũ
∇(fũ) and a =

∂t(fũ)−∆(fũ) + V

fũ
.

We consider the x1-derivative of the previous system and we set z := ∂x1w, then z is

solution of 
∂tz −∆z + A · ∇z + az +B1z +B2∂x2w + bw = 0 in Q,

z(t, x) = 0 on Σ,

z(0, x) = d(x) in Ω

(3.5)

with

B1 := −2∂x1

(
∂x1(fũ)

fũ

)
, B2 := −2∂x1

(
∂x2(fũ)

fũ

)
and b = ∂x1a.

Assumption 3.4 A, B1, B2 and a, b are bounded.

We can apply the Carleman estimate (3.4) for z and we obtain:

I(z) ≤ C

[
sλ

∫ T

0

∫
Rx1

∫
Γ+
1

e−2sϕϕ|∂νz|2 ∂νψ dσ dt (3.6)∫
Q

e−2sϕ (|∇z|2 + |z|2) dx dt+

∫
Q

e−2sϕ (|∇w|2 + |w|2) dx dt

]
.
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The second integral of the right hand side of the previous estimate is ”absorbed” by the

left hand side, for s sufficiently large. For the last integral, we need the following lemma

which is an adaptation of a lemma proved in [K] and [KT]:

Lemma 3.5 Let F be a function in L2(Q)∩C(Q). Then we have the following estimate:∫
Q

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sϕdx1 dx2 dt ≤
C

s2

∫
Q

|F (t, x)|2 e−2sϕdx dt.

Proof

We recall here the proof of this lemma.

I :=

∫
Q

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sϕdx1 dx2 dt

=

∫ T

0

∫
D

∫ α

−∞

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sϕdx1 dx2 dt

+

∫ T

0

∫
D

∫ +∞

α

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sϕdx1 dx2 dt

:= I1 + I2.

Note that

e−2sϕ =
2s∂x1ϕ

2s∂x1ϕ
e−2sϕ =

1

2s∂x1ϕ
∂x1(−e2sϕ)

and according to Assumption 3.1 there exists a positive constant κ such that

∂x1ϕ ≥ κ > 0.

So, we have

e−2sϕ =
1

2s∂x1ϕ
∂x1(−e−2sϕ) ≤ 1

2sκ
∂x1(−e−2sϕ).

We first give an estimate for I1:

I1 =

∫ T

0

∫
D

∫ α

−∞

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sϕdx1 dx2 dt

≤ 1

2sκ

∫ T

0

∫
D

∫ α

−∞

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 ∂x1(−e−2sϕ)dx1 dx2 dt.

Using integration by parts and the Cauchy-Schwarz inequality, we obtain

I1 =
1

sκ

∫
Q

e−sϕF (t, x)

(∫ x1

α

F (t, ξ, x2)dξ

)
e−sϕdx1 dx2 dt

≤ C

2sκ

(∫
Q

∣∣∣∣∫ x1

α

F (t, ξ, x2)dξ

∣∣∣∣2 e−2sϕdx1 dx2 dt

)1/2(∫
Q

|F (t, x)|2 e−2sϕdx dt

)1/2

.

That is

I1 ≤
C

sκ
I1/2

(∫
Q

|F (t, x)|2 e−2sϕdx dt

)1/2

.
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In the same way, we obtain

I2 ≤
C

sκ
I1/2

(∫
Q

|F (t, x)|2 e−2sϕdx dt

)1/2

and therefore

I ≤ 2C

sκ
I1/2

(∫
Q

|F (t, x)|2 e−2sϕdx dt

)1/2

.

This complete the proof.

Now we come back to the inequality (3.6) in order to estimate the last integral of the

right hand side.

A direct application of Lemma 3.5 leads to:∫
Q

e−2sϕ (|∇w|2 + |w|2) dx dt ≤ C

s2

∫
Q

e−2sϕ (|∇z|2 + |z|2) dx dt.

So (3.6) becomes

I(z) ≤ Csλ

∫ T

0

∫
Rx1

∫
Γ+
1

e−2sϕϕ|∂νz|2 ∂νψ dσ dt+
C

s2

∫
Q

e−2sϕ (|∇z|2 + |z|2) dx dt.

The last integral of the right hand side is ”absorbed” by the left hand side, for s

sufficiently large. We thus obtain a Carleman estimate for z solution of (3.5):

I(z) ≤ Csλ

∫ T

0

∫
Rx1

∫
Γ+
1

e−2sϕϕ|∂νz|2 ∂νψ dσ dt

3.3. Stability Estimate

In this subsection we consider u ũ, v, w and z introduced in the previous subsection.

We will exploit the fact that in the wave guide Ω derivations with respect to x1 do not

alter the Dirichlet condition. The main result of this subsection is the following stability

estimate.

Theorem 3.6 Let Assumptions 3.3 and 3.4 be fulfilled. Let α ∈ R and r > 0 be such

that r ≥ max
(
‖q‖L2((0,T )×D), ‖q̃‖L2((0,T )×D)

)
. Then, for any 0 < ε < T

2
, there exists a

constant Cε > 0 depending of ε, b, u0, k± and r such that

‖q − q̃‖2
L2((ε,T−ε)×D) ≤ Cε

[
‖∂ν∂x1ũ− ∂ν∂x1u‖2

L2((0,T )×Rx1×Γ+
1 )

(3.7)

+‖ũ(·, α, ·)− u(·, α, ·)‖2
H1
t (0,T, H2

x2
(D))

]
Proof

According to [LSU] and the maximum principle, Assumptions 3.3 implies that

u, ũ, ∂x2u, ∂x2ũ ∈ C1(Q) and fũ ≥ c1 > 0. Thus, w, ∂x2w ∈ C1(Q) and one can

write

w(t, x) =

∫ x1

α

z(t, x′, x2) dx′ + w(t, α, x2), (t, x1, x2) ∈ Q,
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∂x2w(t, x) =

∫ x1

α

∂x2z(t, x′, x2) dx′ + ∂x2w(t, α, x2), (t, x1, x2) ∈ Q.

Let us consider the source term B2∂x2w+ bw of (3.5). Combining Lemma 3.5 with some

arguments used in Theorem 2.6, we obtain∫
Q

e−2sϕ(B2∂x2w + bw)2 dx dt ≤ C

s2

(∫
Q

e−2sϕ
(
|∂x2(z)|2 + |z|2

)
dx dt (3.8)

+

∫
Q

e−2sϕ
(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx dt

)
.

Since

sup
(t,x2)∈(0,T )×D

∫
R
e−sϕ(t,x1,x2)dx1 < +∞

we deduce that(∫
Q

e−sϕ
(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx dt

)
≤ C

(∫ T

0

∫
D

(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx2 dt

)
.

Combining this estimate with (3.8), we obtain∫
Q

e−2sϕ(B2∂x2w + bw)2 dx dt ≤ C

s2

(∫
Q

e−2sϕ
(
|∂x2(z)|2 + |z|2

)
dx dt (3.9)

+

∫ T

0

∫
D

(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx2 dt

)
.

An application of the Carleman estimate (3.4) to z yields

s3λ4

∫
Q

e−2sϕϕ3|z|2 dx dt+sλ
∫
Q

e−2sϕϕ|∇z|2 dx dt+‖M1(e−sϕz)‖2
L2(Q)+‖M2(e−sϕz)‖2

L2(Q)

≤ C

[
sλ

∫ T

0

∫
Rx1

∫
Γ+
1

e−2sϕϕ|∂νz|2 ∂νψ dσ dt+

∫
Q

e−2sϕ |B2∂x2w + bw|2 dx dt

]
.

Combining this estimate with (3.9), we find

s3λ4

∫
Q

e−2sϕϕ3|z|2 dx dt+sλ
∫
Q

e−2sϕϕ|∇z|2 dx dt+s−1

∫
Q

e−2sϕϕ−1
(
|∂tz|2 + |∆z|2

)
dx dt

≤ Csλ

∫ T

0

∫
Rx1

∫
Γ+
1

e−2sϕϕ|∂νz|2 ∂νψ dσ dt+
C

s2

(∫
Q

e−2sϕ
(
|∂x2(z)|2 + |z|2

)
dx dt

)

+C

(∫ T

0

∫
D

(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx2 dt

)
.

Then, using Assumption 3.1, for s and λ sufficiently large we get∫
Qε

(
|∂tz|2 + |∆z|2 + |∇z|2 + |z|2

)
dx dt ≤ C

(∫ T

0

∫
Γ+
1

ϕ|∂νz|2 ∂νψ dσ dt

)
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+Cε

(∫ T

0

∫
D

(
|w(t, α, x2)|2 + |∂x2w(t, α, x2)|2

)
dx2 dt

)
. (3.10)

with Qε = (ε, T − ε) × (−R,R) × D. Combining this estimate with some arguments

used in Theorem 2.6 , we deduce easily (3.7) and the proof of Theorem 3.6 is complete.
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