N

N

Junction between a plate and a rod of comparable
thickness in nonlinear elasticity. Part II

Dominique Blanchard, Georges Griso

» To cite this version:

Dominique Blanchard, Georges Griso. Junction between a plate and a rod of comparable thickness in
nonlinear elasticity. Part II. 2012. hal-00677838v1

HAL Id: hal-00677838
https://hal.science/hal-00677838v1

Preprint submitted on 9 Mar 2012 (v1), last revised 18 Oct 2012 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00677838v1
https://hal.archives-ouvertes.fr

Junction between a plate and a rod of comparable
thickness in nonlinear elasticity.

D. Blanchard!, G. Griso?

I Université de Rouen, UMR 6085, 76801 Saint Etienne du Rouvray Cedex, France,
E-mail: dominique.blanchard@univ-rouen.fr

2 Laboratoire J.-L. Lions-CNRS, Boite courrier 187, Université Pierre et Marie Curie,
4 place Jussieu, 75005 Paris, France, Email: griso@ann.jussieu.fr

Abstract

We analyze the asymptotic behavior of a junction problem between a plate
and a perpendicular rod made of a nonlinear elastic material. The two parts of
this multi-structure have small thicknesses of the same order §. We use the de-
composition techniques obtained for the large deformations and the displacements
in order to derive the limit energy as d tends to 0.
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1 Introduction

In a former paper [12] we derive the limit energy of the junction problem between
a plate and a rod under an assumption that couples their respective thicknesses J and
€ to the order of the Lamé’s coefficients of the materials in the plate and in the rod.
This assumption precludes the case where the thicknesses have the same order and the
structure is made of the same material (see equation 1.1 in the introduction of [12]).
The aim of the present paper is to analyze this specific case for a total energy of order
6. As in [12], the structure is clamped on a part of the lateral boundary of the plate
and it is free on the rest of its boundary.

The main difference here is the behavior in the rod in which, for this level of energy
(which is higher than the maximum allowed in [12]), the stretching-compression is of
order ¢ while the bending is of order 6*/2. The most important consequence is that in the
limit model for the rod the stretching-compression is actually given by the bending in the
rod (through a nonlinear relation) and by the bending in the plate at the junction point
(see (GI8) and (6.I6)). The bending and torsion models in the rod are the standard



linear ones. In the plate the limit model is the Von Karméan system in which the action
of the rod is modelized by a punctual force at the junction.

Let us emphasize that in order to obtain sharp estimates on the deformations in the
junction area, see Lemma [4.2] we use the decomposition techniques in thin domains
(see [12],[22], [8], [7]). In order to scale the applied forces which induce a total energy
energy of order §°, from Lemma .2 and [7], we derive a nonlinear Korn’s inequality for
the rod (as far as the plate is concerned this type of inequality is already established in
[12]). The nonlinear character of these Korn’s inequalities prompt us to adopt smallness
assumptions on some components of the forces. Then, we are in a position to study
the asymptotic behavior of the Green-St Venant’s strain tensors in the two parts of the
structure. At last this allows us to characterize the limit of the rescaled infimum of the 3d
energy as the minimum of a functional over a set of limit admissible displacements which
includes the nonlinear relation between the stretching-compression and the bending in
the rod.

In Section 2 we introduce a few general notations. Section 3 gives a few recalls on
the decomposition technique of the deformations in thin structures. In Section 4, we
derive first estimates on the terms of the decomposition of a deformation in the rod
and sharp estimates in the junction area. In the same section we also obtain Korn’s
inequality in the rod. In Section 5 we introduce the elastic energy and the assumptions
on the applied forces in order to obtain a total elastic energy of order §°. In Section
6 we analyze the asymptotic behavior of the Green-St-Venant’s strain tensors in the
plate and in the rod. In Section 7 we prove the main result of the paper namely the
characterization of the limit of the rescaled infimum of the 3d energy.

As general references on the theory of elasticity we refer to [2] and [14]. The reader
is referred to [1], [29], [20] for an introduction of rods models and to [17], [16], [13], [1§]
for plate models. As far as junction problems in multi-structures we refer to [15], [16],
[26], [27], [28], [31, [24], [25], [21], [19], [4], [5], [6], [23], [10], [11]. For the decomposition
method in thin structures we refer to [20], [21], [22], [23], [7], [8], [9], [11].

2 Notations.

Let us introduce a few notations and definitions concerning the geometry of the plate
and the rod. Let w be a bounded domain in R? with lipschitzian boundary included in
the plane (O;eq, e3) and such that O € w. The plate is the domain

Q(g = (.UX] —5,5[.

Let vy be an open subset of Ow which is made of a finite number of connected components
(whose closure are disjoint). The corresponding lateral part of the boundary of Qs is

F075 = ’}/(]X] — 5,(5[
The rod is defined by
B5ID5X] —(S,L[, D5:D<O,5), DID(O,l)



where 0 > 0 and where D, = D(O,r) is the disc of radius r and center the origin O.
We assume that D CC w. The whole structure is denoted

Ss = Qs U B
while the junction is
Cs=QsNBs = D5X] — 5,5[

We denote I,; the identity map of R®. The set of admissible deformations of the structure
is

Ds = {v € H'(S5:R?*) | v=1; on Fo,g}.

3 Some recalls.

To any vector F' € R3 we associate the antisymmetric matrix A defined by
vx eR? Apx=FAx (3.1)

From now on, in order to simplify the notations, for any open set @ C R? and any field
u € HY(O;R3), we set

Gs(ua O) = ||vu + (vu)T| |L2(O;R3X3)

and

d(u, 0) = ||dist(Vu, SO3))|| 2(0)-

3.1 Recalls on the decompositions of the plate-displacement.

We know (see [21] or [22]) that any displacement u € H'(Qs; R?) of the plate is decom-
posed as

u(z) = U(z1, 22) + 23R (21, 22) A es + u(x), x € Qs (3.2)
where U and R belong to H'(w;R3) and u belongs to H'(Qs; R?). The sum of the two
first terms U.(z) = U(x1,x2) + 23R (21, 22) A €3 is called the elementary displacement
associated to w.
The following Theorem is proved in [2I] for the displacements in H*({25; R?) and in [22]
for the displacements in W?(Qs;R3) (1 < p < 400).

Theorem 3.1. Let u € HY(Qs;R3), there exists an elementary displacement U,(x) =
U(z1,22) + 23R (21, 22) A es and a warping u satisfying [B.2) such that

|U||L2(95 :R3) < C5G (u Q(S) ||Vﬂ||L2(Qé;R3) S CGS(U, Q(;),

C
Q
H@xa L?(w;R3) 53/2G (1, 0s), (3.3)
H— “RA C G0, |
0z, N L2 (wir?) 61/2

||Vu — ARHLZ(w;Rg) S CG’S(U, Q(S),



where the constant C' does not depend on 9.

The warping u satisfies the following relations

s §
/ u(xy, o, x3)drs = 0, / T3TUs (T1, To, x3)drs = 0 for a.e. (r1,x2) € w.

_5 -4

(3.4)
If a deformation v belongs to s then the displacement u = v — I, is equal to 0 on Iy s.
In this case the the fields ¢, R and the warping w satisfy

U=R=0 on 7, u=20 on I'os. (3.5)

Then, from ([B.3]), for any deformation v € D4 the corresponding displacement u = v— I
verifies the following estimates (see also [21]):

C
IRl ar wimsy + [[Us] |11 ) 53/2G (u, Qs),
O (3.6)
| R3|[ 2wy + Ua |1 () 51/2(} S(u, Q).

The constants depend only on w. From the above estimates we deduce the following
Korn’s type inequalities for the displacement u

Co
[uallr2(05) < CoGis(u, s),  [lus||r2(a,) < TGs(u,Q(;),
. . (3.7)
llu —U|[L2(05m3) < gGs(U,Qa), [IVul|z2(0,me) < gGs(%Qé)

Due to Theorem 3.3 established in [§], the displacement u = v — I is also decomposed
as
u(x) =U(x1, 22) + 23(R(x1, 22) — I3)es + T(x), x € Qs (3.8)

where R € H'(w; R¥*?), v € H'(Qs; R?) and we have the following estimates

H@HLQ (Q5;R3) < C(Sd(’U, 95) ||VEHL2(Q(5;R9) S Cd(U, Q(;)

C
H&Ea L?(w;R?) 53/2d(v )
c (3.9)
Hﬁ—xa_ (R —Is)eq L2(w;R3) 51/2d(U’Q5)

[Vo - RHL2(95;R9) < Cd(v, ()

where the constant C' does not depend on §. The following boundary conditions are
satisfied
U=0, R=1I; on 7o, 71=0 on I, (3.10)



3.2 Recall on the decomposition of the rod-deformation.

Now, we consider a deformation v € H'(B;;R?) of the rod Bs. This deformation
can be decomposed as (see Theorem 2.2.2 of [7])

v(z) = V(z3) + Q(a3) (z1€1 + 20€2) + W(2), r € B, (3.11)

where V(z3) = il v(z)dridxs belongs to H'(—6, L;R3), where Q belongs to
Ds

HY(—4,L; SO(3)) and w belongs to H'(Bs;R?). Let us give a few comments on the
above decomposition. The term V gives the deformation of the center line of the rod.
The second term Q(x3) (xlel + x2e2) describes the rotation of the cross section (of the
rod) which contains the point (0,0, z3). The sum of the terms V(z3)+Q(z3) (:Elel —I—xgeg)
is called an elementary deformation of the rod.

The following theorem (see Theorem 2.2.2 of [7]) gives a decomposition ([BI1]) of a
deformation and estimates on the terms of this decomposition.

Theorem 3.2. Let v € H'(Bs;R?), there exists an elementary deformation V(x3) +
Q(z3) (xlel + 1’262) and a warping W satisfying BI1]) and such that

HEHLQ(B(S;RS) S Céd(U, Bg),
||VE||L2(36 R3><3 < Cd(l}, B(S))

deg} L2(C5, LRIxE) %d(“’B‘S)’ (3.12)
Hd—l’g —Qe ‘ (—6,L;R3) = %d(v,B(;),

HVU - QHLz(Bé;RSXS) < Cd(v, B5)7

where the constant C' does not depend on d and L.

4 Preliminaries results

Let v be a deformation in Ds. We set u = v — I;. We decompose u as ([3.2) and (3.8))
in the plate and we decompose the deformation v as (BI1]) in the rod.

4.1 A complement to the mid-surface bending.

Let us set
Hy(w)={pec H'(w); p=0 on}.



We define the function s as the solution of the following variational problem :
Us € H! (w),
~ a(p
VUgVQO = (R — Ig)ea . 83%, (41)
Vo € H, (w)

where R appears in the decomposition (BX) of u. Due to (), the function s belongs
to H) (w) N H?*(D) and satisfies the estimates:

~ C . C
|[Us]| 11 ) 53/201(@ Qs),  |[Us = Us|[ 1) < (51/2d(v Qs),
~ U C
Hu3||H2( (53/2 ’U Q5 H@Tz - R Ig)ea 83‘ H(Dy) 63/2(1(’(]7 95)7 (42)
C
U45(0,0)| < 53/2d(v Qs).

The constants do not depend on 4.

4.2 A complement to the rod center-line displacement.

Let V given by (B.I1]), we consider W(x3) = V(x3) — x3€3 = Dl / r)dz1dzs the

rod center-line displacement. From the above Theorem [B.2] the estlmate below holds
true
C

< ~Zd(v, By). (4.3)

Q-I)e
3) 3 L2(=6,L;R3) — 0

|z - @

As in [7] we split the center line displacement W into two parts. The first one W™
stands for the main displacement of the rod which describes the displacement coming
from the bending and the second one for the stretching of the rod.

Vos € [0,L], W™ (x3) = W(0) + /0 " (Q(t) — Is)esdt,

(4.4)
W(S) (1’3) = W([L’g) - W(m)(l'g)
In the lemma below we give estimates on W) and W™,
Lemma 4.1. We have o
||W(S)HH1(—5,L;R3) < Ed(vv Bs), (4.5)
and o
IWE = WOl < 5240, B) + CIIQMO) ~ T, (46)



W W) <

<
L2(=6,5) — 05/2

H‘”"‘“’m’

dl’g

IN

The constants do not depend on §.

[d(v, Bs)]* + C|(Q(0) — T5)es - e,

S[d(v, Bs)]* + C52(Q(0) — 1) ey - es.

(4.7)

Proof. Taking into account the fact that W) (0) = 0, the estimate in (&3] leads to

(AH). From the third estimate in (3.I2) we obtain

gd(’l}, Bg),

1Q — Q(O)HLQ(—&L;RSXS) < 52

(4.8)

Due to the definition (&4)) of W™ and ([&3)) we immediately get ([&8]). A straightforward

calculation gives

dW™
dx 3

= (@~ T)es e = —5(Q - T)esli:

Besides we have

Then, the third estimate in (3.12]) and the above equality give

Q

H(Q - 13)83 - (Q(O) - 13)83HL2(_57L;R3 5—d(U7 B5)7

C
1(Q — Is)es — (Q(0) — 13)63HL2(_575;R3 5

| AN

d(U, B(g)

These estimates and again the third one in (3.12) lead to

[d(v, Bs)]*,

IA
=l Q

1(Q —Is)es — (Q(0) — 13)63H2L4(_5,L;R3)

H(Q - 13)83 - (Q(O) - 13)83‘&4(_575%3) < 55

2

4l

Finally, from (A9) and the above inequality we obtain (4.7]).

4.3 First estimates in the junction area.

Lemma 4.2. We have the following estimate on Q(0) — I5:

(Q(0) — T,)es - o] < 552 (Gu(u, ) + d(v, By)),

C C
Q) = Talll < 577 Golw, 0s) + 5575w, By)

572 [d(v, Bg)] .

(4.9)

(4.10)

(4.11)

(4.12)



and those about W(0)

(., By) (4.13)

C
Gs(uu 95) §51/2

S S
and
C C

(d(v Bs) + Gg(u, Q(;)) + —d(v, Qs),

T an J (4.14)

5?/2 (d(v Bs) + Gy (u, (25))

W (0) ~ (0,0)| < 5 [d(w, B)]* +
+ S, 5,

The constants are independent of §.

C d(U Q5)

|W3(0)‘ 53/2

Proof. Step 1. We prove the estimate on Q(0) —I3. We consider the last inequalities in
Theorems [B.1] and They give

Q- 15 — ARHLZ(C&RQ) < C(Gy(u, Qs) +d(v, By)). (4.15)

Now, from the third estimate in (3.12), we get

C
< —d(v, Bs).
L2(—§,6R3%3) — 0 (v, By)

Q- Q(0 HL2( 5,5;R3%3) C(SHd:cg

Hence C
2 2 2
1Q(O) = Lo = A2, ms) < 5 ([Golw. 0]+ [d. B9)]").  (4.16)
We recall that the matrix Ag is antisymmetric, then (L10) leads to the first estimate

in (£12). Due to (B.6) we have

4
IRIlL2(pyms) < CONIRs sy < CFIR sy < 55 (Gl Q)] (417)

Then, using the above estimate and (£.16) we deduce the second estimate in (4.12).
Step 2. We prove the estimate [EI3) on W,(0).

The two decompositions of u = v — I; give, for a.e. x € Cs

3 Q

Z/{(l’l, 1'2) + l’gR(!L’l, 1’2) N es+ ﬂ(l’)

4.18
=W(x3) + (Q(z3) — I3)(z1€1 + 72€2) + W(7). (418)
Taking the averages on the cylinder Cj of the terms in this equality (£I8)) give

1
|Ds| Jp,

Besides, proceeding as for R in ([A.I7) and from (B.6) we have

1 6
MD6 (Z/{) = U(l’l,l'g)dl'ldl’g = MI& (W) = %/ W(l’g)dl’g (419)
—0

[[Ual|L2(Ds) < CoYAG,(u, Q).



From this estimate we get

C
|M]5 (Wa)| = |MD5( )| < 53/4G8(u, Q(;) (420)
We set yo(x3) = Wy(x3) — 23(Q(0) — I3)es - e,. The estimates (A3) and ([EI0) lead to
dye, C’
Hdajg L2(— 5d(U’B5)
which in turn implies
Hya - ya(O)HLz(_(M) S Cd(”? B(S)
Taking the average, it yields
C
M, (Wa) = Wa(0)] < 51/2d(v Bs). (4.21)

Finally, from (£20) and (£21]) we obtain ([£I3).

Step 3. We prove the estimate on Ws(0). Using (£.2)) we deduce that

tds — T2y < COY21Us — Ul e

N (4.22)
< C§'2|Us — Us| |1y < Cd(v, Q).

Then we replace Us with 2; and W with Wém) in (£19). Taking into account (L) we
obtain

C
(v, By) (4.23)

0,0). Let us set

(Mo, (Us) — My, (WS™)| < =d(v, Q) +

QwIC)

/‘\

We carry on by comparing Mp, (Ug) with Us

rqa = W D (R(l’l, .CL’Q) — Ig)ea - €3 dl’ldl’g

and consider the function WV (xy, zy) = ng(l'l, T9) — Mp, (ng) — x1re — xory. Due to (4.2)
we first obtain

C
< .
P A GALS (424)

Haxaaxg

Then, applying twice the Poincaré-Wirtinger inequality in the disc Dy and using (3.3)
and the fourth estimate in (4.2]) lead to

C 2 2
V][ 22ps 0 < 5 [0, 2)] 1W][Z2p,09) < CO[d(v, Q)] (4.25)
From the above inequalities (4.24]) and (4.25]) we deduce that

¢ d(’U Q(;)

C ~
1]z z2) < 5775d(v,25) = [¥(0,0)] = [t45(0,0) — Mo, (Us)] < 51



From this last estimate and (£23]) we obtain

~ e, C
1Us(0,0) — My, (WS™)| < =40, Q) + 55d(v, By). (4.26)

Then using the second estimate in (7)) and (£I12) we have

C 2 C
< — = ‘ .
12(—86) — 05/2 [d(v, Bs)]™ + 5 (Gs(u, Qs) + d(v, Bs)) (4.27)

H dWém)

dl’g

Finally, recalling that Ws(0) = W™ (0), the above inequality leads to

aw{™ C C

(m) 2

M, (W5™) =W (0)] < C6'2 ng . < ﬁ[d(v,Bgﬂ +W(Gs(u,95)+d(v,35))
which in turn with (4.26) and ([@.2]) lead to (£.14)). O

4.4 Global estimates of u: Korn’s type inequality.
Now, we give the last estimates of the displacement v = v — I; in the rod Bs.

Lemma 4.3. For any deformation v in Ds we have the following inequalities for the
displacement uw = v — 14 in the rod By:

||U - W||L2(35;R3) < C(d('U, B&) + 51/4G5(u, Q(S))a

m d(l}, B(S) Gs(ua Q&)
IWallia sy + IV 2y < €S )
2
m) [d(v> B5):| C
HW?’HLQ(—(S,L) + HW3 HLZ(—(S,L) <C 54 + 53/2 [Gs(u, 5) +d(v, Q25) + d(v, 35)}'
(4.28)
The constants do not depend on .
Proof. From [8) and ([EI2) we get
d(v,Bs)  Gs(u, )
HQ B I3HL2(—5,L;R3X3) < C( 52 57/4 ) (4‘29)
Then, from ([B12) and the above inequality we deduce that
||u - W| |L2(B(;;R3) S C(d(v, B(s) + 51/4G5(u, Q5)> (430)
From (4.6) again ({.12) and (£.13) we obtain
m C C
VI 1 sy < 53000 Bo) + 577G, Q). (4.31)

Then since W = W™ + W) ([LE) and [31]) give the second estimate in (£.28).
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From (4£7) and (£I2) we deduce that

|2

i, < ¢ [d(v, B(g)}2 + 53—6/12 (G (u, Q5) + d(v, Bs)].

L2(-s,L) — 0%

which in turn using (£I4) lead to
m C 2 C
[n2% )HL2(—5,L) <5 [d(v, Bs)]” + 55 [Gs(u, Q5) + d(v,Qs) + d(v, Bs)]
and then due to (4.5) we get the last estimate in (4.285). O
Corollary 4.4. For any deformation v in Ds we have the following Korn’s type inequal-
ity for the displacement w = v — I; in the rod By:

C G, ),

C
d(v, B5) + W

B S

C C
|[uallL2(ss) < gd(v, Bs) + WGS(U,%% (4.32)
[d(v, Bs)]*  C
53 + 5172

The constants do not depend on §.

Proof. From (8.12)) and (£29) we obtain
C C
) < gd(v, Bs) + 53/

The second and third inequalities are immediate consequences of Lemma .3l O

1Vl o

\|us|| 2, < C [Gs(u, Q5) + d(v,Qs) + d(v, Bs)].

HVUHB(B(S;RSXS G (u, Qs). (4.33)

5 Elastic structure

5.1 Elastic energy.

In this section we assume that the structure S;s is made of an elastic material. The
associated local energy W : X3 — R™ is the following St Venant-Kirchhoff’s law (see

[91)

W=\ 1w it det(F) < 0. (5.1)

where X3 is the space of 3 x 3 symmetric matrices and where the quadratic form @) is
given by

_ {Q(FTF—Ig) if  det(F) >0

Q(E) = %(tr(E))z + %tr(E2), (5.2)

and where (A, i) are the Lamé’s coefficients of the material. Let us recall (see e.g. [1§]
or [7]) that for any 3 x 3 matrix F' such that det(F’) > 0 we have

[tr(FTF —13))? = |||FTF — L3]||> > dist (F, SO(3))%. (5.3)

11



5.2 Assumptions on the forces and final estimates.

Now we assume that the structure Ss is submitted to applied body forces f;5 €
L*(S5;R3) and we define the total energy J;(v)ll over Dj by

Jiw)= | Wi(Vo)(z)dz — [ Jo(a) - (o) = L))z (5.4)

Assumptions on the forces. To introduce the scaling on fs, let us consider f,, g1,
g2 in L*(0, L; R?) and f, € L?(w;R3). We assume that the force f5 is given by

fs(x) = 5/ [fr,l(l"?,)el + fro(x3)es + 51—1/2fr,3($3)e3 + %91(953) + %92(933)]

r € Bs, x3>0, (5.5)
foa(@) = 0% fpa(T1, 22), fsa(x) =& fra(z1, 22), x € Q.
We denote ;
F, 3(x3) :/ fra(s)ds, for a. e. x3 €]0, L. (5.6)
xr3

Theorem 5.1. There exist two constants Cy and Cy, which depend only on w, L and
1, such that if

I follL2(m3) < Co (5.7)

and if either
Case 1: for a. e. x3 €]0, L[, F,3(z3) >0,

or (5.8)
Case 2: ||f7’,3||L2(07L) S Cl
then for § small enough and for any v € Dy satisfying Js(v) < 0 we have

d(v, Bs) + d(v, Q) < C6°/2 (5.9)
where the constant does not depend on §.

Proof. From (B3.17) and the assumptions (5.5) on the body forces, we obtain on the one
hand for any v € Ds and with u = v — I

‘ fs() ~u(m)dm‘ < O8] )] g2y G (s Q). (5.10)
Qs
As far as the term involving the forces in the rod are concerned we first have

L L
fo(0) - u(w)ds = 70" [ fraag)Walas)dos +70" [ fa(g)Wata)day
Bs 5 5

+ B f5(x) - (u(x) = W(x3))dx.

For later convenience, we have added the term / fs(x) - Ig(z)dx to the usual standard energy,
Ss

indeed this does not affect the minimizing problem for Js.

12



Then, using Lemma 3] and (5.5) we first get

2
/ Fra(z3)Wal(zs d:cg‘ <5 Z | frallz20.0) (d(v, Bs) + 641Gy (u, Qs)),
a=1

} fs(x) - (U(ZE) - W(ZES))CZZE‘ < C55/2(||91||L2(0,L;R3) + ||g2||L2(0,L;R3))
Bs

(d(v, Bs) + 6 Gis(u, 25))

L
Now we estimate / fraWs(z3)dxs. From (A5]) we first obtain
s

L
s C
‘/ fr,3(553)W§ )($3)d933‘ < g||fr,3||L2(0,L)d(UaBé)-
5

Then we have

) g ay"
[ hta W e = EsW0) + [ Festa) ™
1)

xg (x3)dzs.

Taking to account (4.27) and (4.14) we get

W™
(m) < 1/2 3
WO < ()] + 62| T L
C C C
53/2(1(1] Q5) 52 [d(v B(;)} 51/2 (Gs(u, Q(;) + d(U, B5))

dW

x3

Observe now that due to the expression (£9) of

for a.e. x3 €]0, L[ (see (A9)).
e If we are in Case 1 in (7.34)), we have

(5.11)

(5.12)

(5.13)

(5.14)

, this derivative is nonpositive

L
/5 fra(x3)Ws(xs)das < C||fr,3||L2(o,L)[ 537 52 5172

Hence, we obtain

2

d(v,Q5)  [d(v, By)]? L G 2) + d(v, 35)}

fo(@) - u(x)de <C6* N " (| frallzwo.0) + [19all 200,009 ) (A(v, Bs) + 8/ Gy (u, 2s))
Bs

a=1

+C | frsll 2oy [072d(0, ) + 6%1d(0, By)]* + 672 (G (u, 05) + d(v, By)|

We recall that (see [8])

¢ [d(v, 25)]?

G (U Q(;) < C’d(v Q(g) 55/2

13
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where the constant does not depend on ¢. Then due to (5I0) and the above inequalities
we obtain that

| Jo(a) - u(x)da <O frl] 2wy 872 (0, ) + C|| fol| 12y [A (v, 25)]
fs(x) - u(z)dz <C(fr, g1, 92)6°2(d(v, Bs) + d(v, Qs)) (5.16)
Bs

+ C(fm g1, 92)51/4 [d(v, 95)]2 + CHfr,3HL?(0,L)<52 [d(% Ba)f-

Now, for any v € Djs such that Js(v) < 0, the assumptions (5.1)), (5.2),(53) and the
above estimates lead to

B ([d(w, Bo)2 + [d(v, 2)]") < [ W(Vo)(2)dz < | fs(w) - ulw)ds

8 55
<C(fr, 91,92)0° (A(v, By) + d(v,2)) + C(fr, g1, 92)0" [d(v, )]
+C| frall 200,00 [A(v, B5)]” + CO™|| fyllms (v, Q) + C*[|fyl s [d v, 25)]

wich in turn gives
(5 = Cllfrallizon0®) [Aw B + (& = C* 1ol s = Cfr 91,9206 ) [d(v, )]’
<C(fr,g1,92)6°(d(v, Bs) + d(v,Q5)) + C52|| f,|lwrad (v, Qs).

Indeed the two quantities C||f,3]|12(0.0)0% and C(f,, g1,92)6"/* tend to 0 as & tends to
0, then, under the condition C*||f,||r2(wrs) < 1/32 and for § small enough we obtain

d(v, B) + d(v, Q5) < C6°2.
The constant does not depend on §.

e If we are in Case 2 in (.34)), from (4.28)) we immediately have

[d(v, By)]? . G (u, Q) + d(v, Qs) + d(v, Bg)}
54 §3/2 )

L
/ fra(@s)Ws(xs)drs < C||fr,3||L2(0,L)[
5

Then, proceeding as in Case 1 leads to
2

fo(@) - u(x)de <C6* N " (| frallizo.0) + [19all 200,009 ) (A(v, Bs) + /' Gy (u, 2s))
Bs

a=1
+ C| |fr73| |L2(0,L) |:[d(’U, B(g)} 2 + §5/2 (Gs(u, Q(;) + d(’l}, Q(;) + d(’U, Bg))} .

(5:17)
Then for ¢ small enough, we get

g([d(y, By)2 + [d(v,2)]%) < : W(Vo)(z)dz < [ fstw) - ulw)do
< C82C(f, 9)(d(v, By) + d(v, %)) + C|| frall 200y [[d(v, By)]* + [d(v, )] 2}

+ C|| f | wmsd (0, Q5) + CF[[ fyl s [ (0, 25)]

14



Hence, under the conditions C*||f,||r2@wrs)y < p/32 and C**||frsllr20.0) < 1/32 we
deduce that
d(v, Bs) + d(v, Q) < C62.

In the both cases, we finally obtain (5.9) O

As a consequence of Theorem 5.1l and estimates (5.10)-(5.17), we deduce that for ¢
small enough and for any v € Dy satisfying Js(v) < 0 we have (v = v — 1)

fs-u < CO°, Ws(Vo)(z)dz < C5°. (5.18)
Ss Ss

From (5.I8)) we also obtain for any v € Ds such that Js(v) <0
c6® < Js5(v) (5.19)
where ¢ is a nonpositive constant which does not depend on d. We set

mgs = inf Jg(v).

vEDg

As a consequence of (5.19) we have

c< % <. (5.20)

In general, a minimizer of Js does not exist on Ds.

6 Asymptotic behavior of a sequence of deforma-
tions of the whole structure S;.

In this subsection and the following one, we consider a sequence of deformations (vs)
belonging to Ds and satisfying

d(vs, Bs) + d(vs, Q5) < C65°/? (6.1)

where the constant does not depend on §. Setting us = vs — I4, then, due to (€] and
(5.I5) we obtain that
G (ug, Q) < CO°/2. (6.2)

For any open subset O C R? and for any field ) € H'(O;R?), we denote

1 0Y, | OYp
Yas(¥) = 5(8:175 + 8xa)’

(a, B) € {1,2}. (6.3)

15



6.1 The rescaling operators

Before rescaling the domains, we introduce the reference domain €2 for the plate and
the one B for the rod

O =wx]—-1,1, B=Dx]0,Ll= D(0,1)x]0, L[.

As usual when dealing with thin structures, we rescale 25 and Bs using -for the plate-
the operator

IIs(w)(x1, X2, X3) = w(x1, T9,0X3) for any (z1, 29, X3) € Q
defined for e.g. w € L?*(s) for which ITs(w) € L*(2) and using -for the rod- the operator
Ps(w)(X1, Xo,23) = w(0X1,0X5, x3) for any (X, Xo,23) € B
defined for e.g. w € L*(B;) for which Ps(w) € L*(B).

6.2 Asymptotic behavior in the plate.

Following Section 2 we decompose the restriction of us = vs — I; to the plate. The
Theorem [B.T] gives Us, Rs and Ts, then estimates (B.6]) lead to the following convergences
for a subsequence still indexed by ¢

1
“Usz — Us  strongly in  H'(w),

4]
1
ﬁu&a — U, weakly in H'(w),
1
SR(; —~ R weakly in H'(w;R?), (6.4)
1 .
ﬁn(;(ﬂ(;) — 7 weakly in L*(w; H'(—1,1;R?),
1 soU
52 <0—xi —Rs A ea) — Z, weakly in L*(w;R?).

Denoting by Ag the field of antisymmetric matrices associated to R as in Section 2, we
also have

1
ﬁﬂg(u(; —Us) — X3R Aes strongly in  L*(;R?),
6.5)
1 (
EH(;(VUC;) — Ag strongly in  L*(;RY).
The boundary conditions (3.5]) give here
U;=0, U,=0, R=0 on Y, (6.6)
while (6.4) show that Us € H?(w) with
oUs oUs
/=R —2 =TR,. 6.7
8:171 2 81’2 ! ( )

16



In [§] (see Theorem 7.3) the limit of the Green-St Venant’s strain tensor of the
sequence v; is also derived. Let us set

X X
=u-+ 73(21 : 83)61 + 73 (ZQ : eg)eg (68)
and 1 Oty ol
Zog = s S :

Then we have

1
—Hg((VUJ)TV’U(; -I;) ~ E, weakly in  L'(Q; R,

202
where the symmetric matrix E, is defined by

821/{3 022/{3 10u 1

—-X Z1 —X JADR—

Yo T T e, T 20X,

a Z/{3 18u 2
E,= -X Z — b= 6.10
P * 3952 22 + Za2 29X, ( )

8Up73

* *
0X3

6.3 Asymptotic behavior in the rod.

Now, we decompose the restriction of vs to the rod (see Section 2). The Theorem
B2 gives Wi, Qs, Ws and thanks to (4.4]) we define Wém) and W§S>. Then the estimates
in Lemma [4.] allow to claim that

[@sl|2(spim) < COT2, || V5| ayimny < CO2 (WA || oy < %2,
||W§’l.":> — Wsa(0)||m2(-s.0) < C8Y2 + C)||Qs(0) — Ty,

ALY (6.11)
| =2 ‘ < C6+ C|(Qs(0) — Ts)es - es],
dxs L)
1Qs — Qs(0 )||H1(—6,L;R9) < 'R
Moreover from Lemma [4.2] we get
11Qs(0) = Ts[|| < C6**, [(Qs(0) — Ts)es - es] < €,
Wi (0] < G874 [Wsa(0) = Usa(0,0)] < €5, (6.12)
We,3(0)] < Co.
Finally we obtain the following estimates of the terms Wéa , W ) and Qs — Is:
1Qs — Tl 1 s nmey < COV2, W |2y < C6'72, (6.13)

WS a1 5.1y < C6.

Now we are in a position to prove the following lemma:

17



Lemma 6.1. There exists a subsequence still indexed by & such that

51/2W5°‘ Wa weakly in  H?*(0, L),

——=Ws.as Wé — W, strongly in H'(0, L),

67

51/2

5W53>

51/2
gwé,s — Wy weakly in  H*(0, L),
53/2 Wa —~ WY weakly in  H(0, L; R®),
W(Q‘; —13) = Ag weakly in H'(0,L;R?),

1
57
We also have W,, € H*(0, L) and for a.e. z3 €]0, L[ we have

d d
) = Qalan), G a) = ~ Qi)

de dW1 dW2 2 .
s (ws) + 5[ dzs s x‘”’)} } =0

Ps(ws) =W weakly in L*(0,L; H'(D;R?)).

wf +|
The junction conditions
Wo(0)=0, Q(0)=0,  W(0)=0,  W;(0)=1Us0,0)

hold true. We have

1

243/2 Pé((vvé)Tvva -I;) —~E, weakly in  L'(B;R**?),

where the symmetric matriz B, is defined by

1. dQ; 10w,; 1dW®

_r _7’ —=X a a
Wll(w ) '712('&U ) 2 2 d{L’g * 2 8X1 2 dl’g

dQs , 10w , 1 AR

E, = T, —X - -
* '722('&U ) Ydzs dl’g 2 an 2 dl’g

W, Wy AWl
X, X
: i Y a2  da? * drs

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

Proof. First, taking into account (€.I1]), (€I3) and upon extracting a subsequence it
follows that the convergences (6.I4]) hold true. First, due to the definition of ng)

1
and the weak convergence in H'(0, L; R?) of the sequence W(Q(s — I3) towards the

antisymmetric matrix A g we deduce that — = QAes wich gives the two first equalities

X3

18



1
in (6.I5). Then, the strong convergence in L*>(0, L; R3) of the sequence 52 (Qs —Is)es
dWi |2 N
dflfg

DN 12
% strongly in L*°(0, L). Finally using equality (A9]) we obtain the last equality
Z3

in (6.15). The junction conditions on Q and W, are immediate consequences of (6.12)
and the convergences (6.14)).

In order to obtain the junction condition between the bending in the plate and the

1
towards Q A es, hence 5||(Q5 — I)es][5 convergences towards ||Q A es||3 = ‘

stretching in the rod, note first that the sequence 52/75,3 converges strongly in H!(w) to
Us because of ([4.2]) and the first convergence in ([6.4). Besides this sequence is uniformly
bounded in H?(D), hence it converges strongly to the same limit s in C°(D). Moreover

the weak convergence of the sequence —Wég) in H(0, L), implies the convergence of

J
%ng) (0) = %W&:&(O) to W5(0). Using the third estimate in (6.12) gives the last
condition in (6.16]).
Once the convergences (6.14) are established, the limit of the rescaled Green-St
Venant strain tensor of the sequence vy is analyzed in [7] (see Subsection 3.3) and it

gives (6.18). O

L] . m6
7 Asymptotic behavior of the sequence 5
The goal of this section is to establish Theorem [7.2l Let us first introduce a few
notations. We set

Dy = {(u,w, Q;) € H'(w: R?) x H'(0, L;R*) x H'(0,L) |

Us € H*(w), W, € H*(0,L), U=0, % =0 on 7,
“ 7.1)
dWs  171dWi 2 1dWy |2 . (
z = L
drs 2 H dxs ‘ dxs ‘ } 0 in ]O, L],

W,
n dl’g

Wy(0) = Us(0,0),  Wa(0) (0) = Q4(0) = o}

Let us notice that Dy is a closed subset of H!(w;R3) x H(0, L;R?) x H*(0, L).

We introduce below the ”limit” elastic energies for the plate and the rod whose
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expressions are well known for such structures

TU) = ﬁ /w (1-v) a%; | ajig;ﬁ +v(a24,)’]

E 2
e L0027l ez 2
B [FrdWip  d@Wep2  opr [P dQs )
WWI’W%Q?))—?/O [ | H+§/O o

where Z,3 is given by

1 0Us OUs

Zop = YapU) + 22222
8 = Yap( )+2&%&£6

(7.2)

The total energy of the plate-rod structure is given by the functional 7 defined over Dy

j(ua Wa Q3) - jp(u) + jr(Wla W27 Q3) - ﬁ(ua Wa Q3)

with

L L
E(L{,W,Qg):2/fp-u+7rf fr'WdZL'g—l—g/ ga-(Q/\ea)d:):g,
w 0 0

where
AW dWi
(S31 —+

Q = — €9 + Qgeg.

dl’g dl’g

Below we prove the existence of at least a minimizer of 7.

Lemma 7.1. There exist two constants C, C such that, if (fy1, fp2) satisfies

||fp,1||%2(w) + ||fp,2||%2(w) < C

and if f,3 satisfies
|| fr3llz200,0) < CF

then the minimization problem

min _ J(U, W, Qs)

(U,W,03)eDy
admits at least a solution.

Proof. Due to the boundary conditions on Us in Dy, we immediately have

s 312y < CT(U).
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Then we get

Z ||7a6 ||L2 < ij _I_CHVU3HL4(UJ;R2)

B (7.9)
< CU) + ClLI, W)
Thanks to the 2D Korn’s inequality we obtain
U]y + el ) < CTU) + Col T U] (7.10)
Again, due to the boundary conditions on W, and Qs in Dy, we immediately have
WLz 0,y + Wl F2 0.0y + 119311 E 0,0y < C T (W1, Wa, Q). (7.11)
Then, due to the definition of Dy and (ZI1) we get
dWs 12 AWy |4 AW, |4 2
= (Wh, W, . (112
H dxs llL2(0,L) — {H dxs 1lL4(0,L) H dxs L4(0,L)} < Ol (Wi, Wi, Q)] ( )

From the above inequality and (.§)) we obtain

dWs |2
dxs 1lL2(0,0) (7.13)
< CHU) + CLT W1, Wa, Q)P

[

2201y

sqwmw+%

Since J(0,0,0) = 0, let us consider a minimizing sequence (U™ W), éN)) c D,
satisfying J (UM, W), QéN)) <0

m = inf  JUW,Qs)= lim JUNM WM, :(),N))
(U,W,093)eby N—+o00

where m € [—o0, 0].
With the help of (T.8)-([7I3) we get

T, UMY + T, WIWN Q8 < || £/ T @)

HWM%+MM%WQM; )+ VT, U™N))

+C§juﬁam0L+mmme VIV, gl

(7.14)

+wwmmmuxc¢$om WiV, oY) + v C,. g WM wiN | o{My)

1 1
Choosing C = el and C = N
P T Ly

the following estimates hold true

if the applied forces satisfy (7.0) and (7.6 then

N N N N
NS 2y + UM ) + NS i) + IV 20,1

(7.15)
N N N
W 20 + 1195 o) + IS oy < C
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where the constant C' does not depend on N.
As a consequence, there exists (U™, W® Q) € H'(w; R3)x H'(0, L; R¥) x H'(0, L)
such that for a subsequence
L{éN) — Z/{g*) weakly in H?(w) and strongly in W'*(w),
UM ~ Y weakly in H' (w),
W W weakly in H*(0, L) and strongly in W*(0, L),
M 9l weakly in H'(0, L),
WM W weakly in H'(0, L).

Notice that we also get the following convergences:

10U ous

3 Ora O weakly in L?(w).

2,5 = Zag = YasU) +
The above convergences show that (U™, W®), g*)) € Dy. Finally, since J is weakly
sequentially continuous in

HY(w; R?) x H*(w) x L*(w;R?*) x H*(0, L; R?*) x H'(0, L; R?)

with respect to

(u17u27u37 leu 2127 2227 W17 W27 W37 Q3)

The above weak and strong converges imply that

TJUOWO, Q) =m = min_ TUW,Qs)

(U,W,Q3)eDy
which ends the proof of the lemma. O
Theorem 7.2. We have
ms .
520 05 (UW\O)eDo T, W, Qs), (7.16)

where the functional J is defined by (3.

Proof. Step 1. In this step we show that

. U2
< —. .
(MWI?QIS)EDO JUW, Q) < hgn_)lonf 5 (7.17)

Let (vs)s-o be a sequence of deformations belonging to Dy and such that

_ds(vs) L ms
(l$1_1>r(1] 5 —llgri)lé’lfg. (7.18)
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One can always assume that Js(vs) < 0 without loss of generality. From the analysis of
the previous section and, in particular from estimate (5.9]) the sequence vs satisfies

d(vs, Q) + d(vs, Bs) < C3°/2. (7.19)

From (5.1)-(5.2) and estimates (5.18]), we obtain

V05 Vs = L iy < OO [[V05 Vos = L] o 5. sy < C82 (7.20)

6?R3X3

Firstly, for any fixed ¢, the displacement us = vs— I, restricted to €25, is decomposed
as in Theorem Bl Due to estimate (7.19), we can apply the results of Subsection
to the sequence (vs). As a consequence there exist a subsequence (still indexed by d)
and UV, RO € H'(w;R?) and @) € L*(w; H'(—1,1;R?)), such that the convergences

(64) and (6.5]) hold true. Due to (6.0) and (6.7)) the field LI?EO) belongs to H?*(w), and
we have the boundary conditions

U9 =0, vui” =0, on . (7.21)

Subsection [6.2 and estimates in (Z.20) also show that

1
ﬁné(wng —I;) = EYY weakly in L*(Q;R?) (7.22)

where E;E,O) is defined

821/{(0) 0 821/{(0) 1 %(0)
X 3 Z( ) -X 3 Z(O) w2
gz T 38:810(33)2 T g 9X
27 4(0 I
EO = -X U~ =z 19,5 (7.23)
P * 3 01’% + 29 5 8{()3
0
* * Ot 5
0X3
with ©) 0 (0)
10U5 " OU.
Z) = 4as(UO) + S22 (7.24)

2 81’,1 85(75 ‘

Secondly, still for ¢ fixed, the displacement us = vs — Iy, restricted to Bs, is decom-
posed as in Theorem B2 and (4.4]). Again due to the estimate in (.I9)), we can apply the
results of Subsection [6.3to the sequence (vs). As a consequence there exist a subsequence
(still indexed by §) and WO, W0 9O ¢ H(0, L; R?) and w® € L(0, L; H'(D;R?))
such that the convergences ([6.14]) hold true. As a consequence of (6.15]) the components
W belong to H2(0, L) and we have

aw?
dx 3

(0) (0)
dd = 0¥ Ae; and DV
dxs T3

2
|+
dl’g

(a5) + 5| ) @) ] =0.

23



The junction conditions (6.16]) give
QV0) =0, W) =0, WeI0)=0,  W0)=u"(0,0).  (7.25)

As a first consequence, the triplet (U, W), éo)) belongs to Dy.
Subsection [6.3 and the second estimate ([7.20) also show that

1

WP&((V’U&)TVU(S — I3> o weakly in  L*(B;R3*?), (7.26)

where the symmetric matrices EY is defined by

doy) 10wy 1dwi

(0) 70y _1x 2 2

’}/11( Wr ) 712(’&07, ) 2 2 dl’g + 2 8X1 2 dl’g

(0) (s,0)
EO) — sy Ly dQY 10T 1w (7T
¥ '722('11]7, ) 2 ! dflfg + 2 8X2 2 dflfg ( )

2147(0) 2147(0) (5,0)
* * —de W21 — 2d sz + s
1)5)

In order to bound from below the quantity 11{511 inf 5 , using the assumptions on the

forces (5.5) and the convergences (6.4) and (6.14]) we first have
o1
i 5/3 fs - (vs — Io) = LU WO, Q) (7.28)
5

where L(U, W, Q3) is given by (T4) for any triplet in Dy.
As far as the elastic energy is concerned, we write

55 W5 (VU(;) = ﬁ/ W (VU5) —+ ﬁ/B W (VU(;)
Qs s\Cs
1

- [l -t])+ [ a{umnmn e 1)

From the weak convergences of the Green-St Venant’s tensors in (7.22)), (7.26) and
equality (7.28)), we obtain

lim inf Jég” > / QEY) + / Q(ED) — L™ WO, Q) (7.29)
Q B

6—0

where EYY) and E\” are given by ([C23) and (Z.50).
1

The next step in the derivation of the limit energy consists in minimizing / Q (E;E,O))dX 3
-1

(resp. / Q(E!")dX,dX,) with respect to T ( resp. w").
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First the expressions of () and of ES)) under a few calculations show that

i + V(AU:JEO)) 2]

1 E 2 821/{(0)
(0) = B 3
/_1 Q(Ep )dX3 Z3(1 —v?) [(1 V) QZ 0x,0xp
& (7.30)
E
+(1_V2)[1_V Z}Z(O} +( 11)+Zz((2)))]
a,B=1

the expression in the right hand side of (7.30)) is obtained through replacing ﬂl(,o) by

—0) v (X3 ©0) |, =(0)
(0 Xs) = 2 [(5 - _) U’ — Xy(2) + 2 es. (7.31)

Following [7] (see equation (4.56) and (4.57)), choosing Wés’o) = 0 and W such that

2 2 1274(0) 2
:(0) _ |:X2 - X1 d Wl B X X d W
1 v 2 dxz3 12 de3 1
T = — - X, X .
wnz 1% |: 9 dz?,) 122 dl’g 9
—o) _ v
3 ! dl’g dl’g ’
permit to obtain
d2W d2w(0) 2 T dQ(O) 2
(E©)dX,dX. H ! ‘ 2 ] ! 7.33
/ Q( 102 2 =g da? da? 8 | du, (7.33)

In view of ([.29), (Z30) and (7.33]), the proof of (T.I7) is achieved.

Step 2. In this step we show that

lim sup "< min J (U, W, Q3).
5—0 0° (UW,Q23)€Dy

Let (UM, WO, Q") € Dy such that

min  J(UW, Q3) = JUD, W, o),

U,W,Q3)€Dg

We consider a sequence (LI ) W), g"))@ of elements belonging to Dy such that

o UM € W2(w)N H. (w) and

VU™ =0 in Dy, (a,8) €{1,2}?

7.34
U — U strongly in H'(w), o
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o U € W3 (w) N H2 (w) and

;" =0 in D (o, B) € {1,2}?
O1a0r5 mo o A o (7.35)
U — U strongly in H?(w),
o W € W3eo(—1/n, L) with W" = 0 in [~1/n,1/n] and
W — W strongly in H?(0, L), (7.36)
e Q" e Who(—1/n, L) with QY =0 in [~1/n,1/n] and
Q:(,)") — Qél) strongly in H*(0, L), (7.37)
We define W € W2>(—1/n, L) by
(n) n) 2 dw(") 2
() _ 5 /(n) 4 W l‘dwl 2 =0 i |-1/n1L
W, U;7(0,0) an . 2[ s e ] 0 in |—1/n,L][
Obviously we have
Wé") — Wél) strongly in H*(0, L). (7.38)

In order to define an admissible deformation of the whole structure, we introduce
the two fields il(,l) € L?*(w; H'(—1,1;R%)) obtained through replacing 4 by Y1) in
(T24)-(7.31)) and ﬁ(}i € L*(0, L; H'(D)) obtained through replacing W© and Q) by
UD and QY in (Z32) and taking ﬁg =0.

Then, we consider two sequences of warpings @™, w™ such that

o 7™ ¢ WhHe(Q:R3) with 7™ = 0 on Owx| — 1,1], @™ = 0 in the cylinder
D(O,1/n)x] —1,1] and

TGN ﬁ;l) strongly in Lz(w; Hl(—la 1§R3>>7

e W™ € WH°(] —1/n, L[xD; R?) with @™ = 0 in the cylinder Dx]—1/n,1/n[ and

o™ s W strongly in L*(0, L; H*(D; R?)).

T

For n fixed, let us consider the sequence of deformations of the plate 5. We set

$ " L 81/{ " —(n e

@) = o1+ 8 [UL (1, 2) = 5 T o)+ 60 a2, ) |

U(gQ)(I) =19 + 62 [Z,{z( )(gjl,x ) — 23 7 (1,72) +5ug )(xl,x2, _3)]’ (7.39)
7 ) 8252 )
" n —_(n xT

) = a3+ S [US o) + 07T 01,2, 2]
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If § is small enough (in order to have § < 1/n) the expression of v((;") in the cylinder Cj
is

n n xs3 au ™)
o (@) = 0 07 [17(0,0) = LT (0,0)]
n)
My _ 2[00 oy _ T3 9Us 7.40
o @) = s + 82 [U7(0,0) - o, (0,0)]. (7.40)
. n ou" o™
o) (@) = w5 + 8 [U(0,0) + o o ' (0,0)+2 o (0,0)]
We denote
QM = —dW?We + dWl(n)e +ole RM = ou;” (0,0)e; — ;" (0,0)e
n drs ! drs 2 5 B 81’2 ’ ' 81’1 ’ 2

The field Q™ belongs to W*°(—1/n, L;R®). Let R{" be the matrix field defined by

. dR\" n
R(M(0) =1, dxi :AFéng) in [~1/n,L] (7.41)

— 51/2dQ

X3

where F)" + 6R™ (see (BI)) and let W™ be defined in [~1/n, L] b

W (25) = /0 (RY (1) —I3) esdt+6°U™ (0, 0)er +6°Us™ (0, 0)es+0US™ (0, 0)es. (7.42)

We have R{" € Wi (—1/n, L; SO(3)), W™ € W2(—1/n, L;R?) and the follow-
ing strong convergences (as d tends towards 0)

Rg") — I3 strongly in Wh*(—1/n, L; SO(3)),

1 dRc(in) : [e'e] 9
57 du, — Adsz(.:) strongly in L>(—1/n, L; R”),

(RYY —13) — A strongly in Wh(—1/n, L; R%),

1

512 (7.43)

(R§” — I3)eg ce3 — ——||Ag<n>e3||§ strongly in L*=(=1/n, L),

| =

Wga — W strongly in Wh(—1/n, L),

51/2

5W§g’ — Wén) strongly in W (—1/n, L).

By definition, Q™ is equal to 0 in [~1/n, 1/n], hence we have

Vrs € [~1/n,1/n],  R{”(w3) = exp (0Agcm s).
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Now, we consider the fields I_{f;n) € Whee(—4, L; SO(3)) and W((;n) € W2>(—6, L; R?)
defined by

R, (2s) = exp (JApews) in [-6, L],

) ) W (7.44)
W; ' (x3) = (Ry "(t) — I3)esdt + Wy (0) in [—4, L]
0
We introduce a last displacement 7" belonging to W (By; R3) (for § < 1/n)
au(")
52 (Y™ _ X303
5 (@) = 32 (U (0,0) — 23 s (0,0))
w0
ous" ous"
§(US™ (0,0 (0,0 5 (0,0
— W((gn)(l'g) — (E((gn)(l'g) — Ig)(l’lel + 1’262).
We have
V55| oo gm0y < C™62.
Now, we are in a position to define the deformation vé") in the rod Bs. We set
n n n —(n) (1 T ~(n
vé J(2) =z + W )(23) + (Rg )(z3) — Is) (10, + 120€5) + 67/ )(?1, ?2,:53) + vé )(2).
(7.45)

In the cylinder Cj, the above expression of vén) matches the one given by (Z40) if ¢ is
small enough ( 6 < 1/n).

By construction the deformation v(g") belongs to Ds. Then we have
ms < Js(v{™). (7.46)

The expression ([Z39) of the displacement v(g") — I, in the plate is similar to the
decomposition (B.2]) given in Section 2. Hence the results of Subsection and the
regularity of the terms U™ and @™ lead to

1

EHJ((W;))TWW—I?,) — E™  strongly in L®(%;R?), (7.47)

where the symmetric matrix Eé") is defined by

U™ U™ 1 o™

- X 3 Z(") -X 3 Z(n) - 1

3 or? ten 392,02, ten 2 0X;
2 /(n) o™

E(" = X, I g 100
P * s 83:% + 22 2 an
. . oy

0X3
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Remark that here u(” = u™ (see (6.8) and where the Zgg)’s are obtained through
replacing U by U™ in (6.9).

Now, in the rod Bs we have the following strong convergence in L>(B;R?Y) (as § tends
towards 0):

(@™ 1o (@™) % %@)éj
#Pa(vv(g") R — dcl;(:) (X1e1 + Xpe;) + e (@) 15"
2 20X,
* * 0
Then we obtain (7.48)
ﬁpa((wg")fwé") ~T;) — E™  strongly in  L¥(0;R?), (7.49)

where the symmetric matrix E" is defined by

Y11 (W(n)) Y12 (w(n)) —=X5

E™ = « Y (@™) =X, 4= : (7.50)

Before passing to the limit, notice that

1 i n n n n n
5 [ W@ - [ Qa7 Vel - 1)) - [ Q(R((To Vel - 1)
Ss Q B
C n n
<5 [ V) v ~ L)1,
Cs

then from the expression (7.40) of v((;") in Cs and the strong convergences (T.47)-(7.49)

we get
6—0

m 2 [ T (T _ (n) (n)
| /stwg Kot = [ Q) + [ QED),

From the expressions of v((;") in the plate and in the rod, from the convergences (Z.43])
and taking to account the expressions of the applied forces (B.5]) we get

1
lim _/ f5 ) (Uén) . Id) _ L(u(n)’w(n)’ Qi(’)n))
Ss

5§—0 00
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Then, from the above limits and (T.406]) we finally get

ms

limsup 7= < lim =5 Z/QQ(Eﬁ, ))+/BQ(E5» ) = L@™ W, Q). (7.51)

Now, n goes to infinity, due to the definitions of the warpings 7 and ﬁ(ﬂl) and the

p
strong convergences (7.34))-(7.35))- (7.36))- (Z.37)- (7.38) that give
limsup% < / Q(Eg)) +/ Q(Eﬁl)) _ £(u<1>,w<1>, Qél)) _ j(u(l)’W(l)’ Qi()’l)).
6—0 Q B

This conclude the proof of the theorem. O

Remark 7.3. Let us point out that Theorem|[7.9 shows that for any minimizing sequence
(vs)s=o as in Step 1, the convergence of the rescaled Green-St Venant’s strain tensor in
(T22) is a strong convergence in L*(Q;R3*3) and the convergence (T28) is a strong
convergence in L*(B;R3*3).
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