
HAL Id: hal-00677832
https://hal.science/hal-00677832

Submitted on 11 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IWIR: A Language Enabling Portability Across Grid
Workflow Systems

Kassian Plankensteiner, Johan Montagnat, Radu Prodan

To cite this version:
Kassian Plankensteiner, Johan Montagnat, Radu Prodan. IWIR: A Language Enabling Porta-
bility Across Grid Workflow Systems. Workshop on Workflows in Support of Large-Scale Sci-
ence (WORKS’11), Nov 2011, Seattle, United States. pp.97-106, �10.1145/2110497.2110509�. �hal-
00677832�

https://hal.science/hal-00677832
https://hal.archives-ouvertes.fr

IWIR: A Language Enabling Portability Across Grid
Workflow Systems

Kassian Plankensteiner
Institute for Computer Science

University of Innsbruck
Innsbruck, Austria

kassian@dps.uibk.ac.at

Johan Montagnat
I3S laboratory

CNRS
Sophia Antipolis, France
johan@i3s.unice.fr

Radu Prodan
Institute for Computer Science

University of Innsbruck
Innsbruck, Austria

radu@dps.uibk.ac.at

ABSTRACT
Today there are many different scientific Grid workflow man-
agement systems using a wide array of custom workflow
languages. Some of them are geared towards a data-based
view, some are geared towards a control-flow based view
and others try to be as generic, and therefore often com-
plex, as possible. All of these languages and custom work-
flow management system front-ends fulfill special needs and
workflow creation paradigms for their respective user com-
munities. The problem is that once a workflow application
has been created in one of these systems, it becomes very
hard to share the workflow with users working with differ-
ent systems. Portability and interoperability between cur-
rent systems barely exists. In this work, we present a com-
mon workflow language for use as an intermediate exchange
representation by multiple workflow systems. It comprises
atomic tasks, compound tasks including conditionals, se-
quential and parallel loops as well as an expressive set of
data types and data flow constructs.

Keywords
Workflow Languages, Portability, Interoperability, Grid Com-
puting

1. INTRODUCTION AND RELATED WORK
Currently, each workflow system comes with its own input

language designed to satisfy the needs of its specific target
community. Workflows are specified in different systems at
various levels of detail, sometimes hiding the underlying in-
frastructure, and sometimes exposing at least part of the
system. In most cases, however, workflows are hard-coded
to the workflow system within which they have been devel-
oped. Existing language specifications range from simple
and pragmatic scripting languages (e.g. shell, Python), to
custom DAG-based representations (e.g. DagMan), or more
modern XML-based descriptions (e.g. AGWL [5], GWEN-
DIA [8], P-GRADE [6], SCUFL [7], Triana [10]). The con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORKS11 2011 Seattle, Washington USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

trol flow-based abstractions range from pure DAG specifi-
cations to more comprehensive imperative constructs such
as conditional or loop statements (sequential and parallel).
Other approaches based on data flow specifications include
advanced collection or array-based data distributions and
computations, or even data streaming constructs.

It is widely believed that imposing a single standard for
the specification of scientific workflows is a difficult task that
is likely not to succeed in being adopted by all communities
given the heterogeneous nature of their fields and problems
to solve. However, an agreement on an Interoperable Work-
flow Intermediate Representation (IWIR) sufficient for de-
scribing a large majority of existing workflow constructs at
a lower level of abstraction that is only processed by work-
flow systems could be more successful as it is not directly
exposed to a human developer. Since IWIR is being de-
veloped as part of the EU FP7 SHIWA project [1], it will
gain the advantage of being implemented as intermediate
language for many of the most successful scientific workflow
systems that are part of the project: ASKALON, Moteur,
P-GRADE, Triana and Pegasus.

Important design properties of IWIR are simplicity, being
oriented towards the Distributed Computing Infrastructure
(DCI) execution platform (analogous to a machine language)
and not towards the user source code, and containing only
a small set of constructs required for execution and opti-
mization for the target platform. The idea of a single in-
termediate language is not unique and has been explored in
other domains, for example by the UNiversal Computer Ori-
ented Language (UNCOL) [4] proposed in 1958 by Melvin
E. Conway as a solution for making compiler development
economically viable.

A simple and portable intermediate workflow representa-
tion has a number of advantages for the application develop-
ers relative to the current practice of proprietary workflow
languages:

1. It enables application developers to program applica-
tions using their favorite high-level workflow language
and execute it on every DCI with an IWIR-enabled
enactment engine;

2. It enables the application scientists to flexibly select
the best enactment engine deployed on the best DCI
infrastructure for running their workflows. This is usu-
ally a subjective decision that can only be answered by
the scientists themselves, depending in part on the na-
ture of the experiments and the scientists objectives
(e.g. performance, reliability, cost);

3. It enables runtime interoperability between different
workflow systems. Sub-workflows, specified either by
the end-user or selected dynamically by the workflow
scheduler, can be dynamically scheduled and trans-
ferred across different workflow systems in the form of
a common intermediate representation, which creates
numerous optimization opportunities;

4. It is a generic solution, open to integration of new
languages and workflow systems. Integrating a new
workflow language able to execute on n DCI infrastruc-
tures requires the development of one IWIR front-end
(O(1) complexity), while language-to-language trans-
lators require n front-ends (O(n)). Similarly, porting
m interoperable workflows to a new DCI platform re-
quires the development of one single IWIR-compliant
back-end (O(1)), while language-to-language transla-
tions would require m back-ends, one for each workflow
system. Therefore the IWIR solution reduces the ef-
fort of porting m workflow systems onto n distributed
platforms from m ∗ n to m + n. This is an important
step to make the development of new workflow systems
for multiple existing DCI infrastructures economically
viable.

To qualify for interoperability using IWIR, each work-
flow system will need to adjust its front-end to translate its
source input language into the IWIR workflow representa-
tion. Once translated into this intermediate representation,
the interoperability with the other systems is implicitly en-
abled. For this reason, we also call this interoperability sce-
nario front-end workflow interoperability.

The paper is organized as follows. Section 2 gives an
overview of the design decisions taken when specifying the
IWIR language, while Section 3 defines the IWIR language
and its constructs. We provide examples of how common
data distribution strategies are expressed in IWIR and show
an example of language translation on a real workflow appli-
cation in Section 4. We introduce IWIRtool, a Java-based
library for creation and manipulation of IWIR workflows in
Section 5 and conclude in Section 6.

2. DESIGN AND TERMINOLOGY
When talking about workflow applications, we distinguish

two parts, corresponding to two levels of abstraction: the
concrete part and the abstract part of the workflow.

The concrete part of a workflow applicaton contains in-
formation about its computational tasks. This can mean a
wide range of things – it can be information on how to exe-
cute a certain application on a certain machine, information
on where and how to call a certain web service, an explicit
program given in a scripting language or even an executable
binary file representing the computational task itself. The
type and form of information contained in the concrete part
of the workflow is often specific to a certain workflow system
and distributed computing infrastructure (DCI).

The abstract part of a workflow application deals with the
orchestration of the computational tasks. It defines prece-
dence relations between the computational entities described
in the concrete part as well as the data flow between them.
The abstract part of a workflow therefore deals with issues
on a level of abstraction above the concrete part, which
makes it independent of the underlying DCI infrastructure.

A

B

C

D

concrete layer

abstract layer

Figure 1: Two levels of a workflow: abstract vs.
concrete

Both parts combined, abstract and concrete, make the
workflow a fully specified, executable application. Figure 1
shows a graphical representation of the two layers. The map-
ping of tasks from the abstract part of the workflow to the
concrete computational entities on the target DCI (concrete
part of the workflow) can either be done at the time of work-
flow creation, or be handled by a scheduler component at
workflow runtime. The IWIR language deals with the ab-
stract part of the workflow and provides a mechanism to
enable a one-to-many mapping from the abstract tasks to
the concrete computational tasks.

In the course of developing the specification for the IWIR
language, we extensively studied many scientific workflow
systems and their workflow description languages, most no-
tably AGWL [5], GWENDIA [8], P-GRADE [6], SCUFL [7]
and Triana [10], to be able to specify a common ground that
would cover all of the commonly used constructs.

IWIR as a language is designed to enable portability of
workflows across different specification languages, different
workflow systems and different Distributed Computing In-
frastructures (DCIs). The IWIR language itself is a language
enabling the portability of the abstract part of a workflow
and it therefore decouples itself from the concrete level by
abstracting from specific implementations or installations of
computational entities through a concept called Task Type.
IWIR avoids the use of constructs for data manipulation,
therefore it does not define ways to change data directly
(such as integer operations, concatenation of strings, etc.)
but rather provides means to powerfully distribute data to
computational entities, so-called tasks, that do data manip-
ulation. IWIR focuses on the description of the workflow
logic independently from the data sets to be processed. Our
study of current workflow description languages led to the
decision of creating a graph-based structure, mixing data-
flows and an expressive set of sequential and parallel control
structures, specified as an XML representation. These deci-
sions allow for a straightforward transformation from most

of todays scientific workflow languages into a common IWIR-
based representation.

Task Type.
A Task Type is a signature of a computational task. It

is composed of a type name and a set of input and output
ports with corresponding data types (see Section 3.1.1). A
Task Type is used as an abstract placeholder to represent a
set of Task Deployments implementing the given Task Type.
Task Types are a concept belonging to the abstract level of
the workflow.

Task Deployment.
A Task Deployment is a specific implementation of a Task

Type. It can refer either to another IWIR (sub-)workflow
(see Section 3.2) or to a single computational entity which
can be an executable, a web service operation, a scripting
language fragment etc. Information about a Task Deploy-
ment is usually stored in a Deployment Registry, which con-
tains all the necessary information for execution (Task De-
ployment Descriptors). Task Deployments are not visible in
IWIR, they are dynamically chosen from a set of Task De-
ployments implementing a Task Type at the time of work-
flow enactment. Task Deployments are a concept belonging
to the concrete level of the workflow.

3. IWIR SPECIFICATION
An IWIR workflow description document defines a work-

flow in the IWIR language. A workflow consists of one top-
level task (compound or atomic), which (if compound) may
contain an arbitrary number of other tasks as well as data-
and control-flow links. This top-level task forms the data
entry and exit point of a workflow application and therefore
also defines the signature of the application. Figure 2 shows
the IWIR document structure.�

�
�
�

<IWIR version =" version" wfname ="name"
xmlns="http ://shiwa -workflow.eu/IWIR">
<task...>

</IWIR >

Figure 2: IWIR Document Structure

IWIR version.
The version attribute of the IWIR tag defines the version

of the IWIR language specification that the workflow is de-
fined in. This attribute is provided to make sure that future
extensions of the IWIR specification do not interfere with
existing workflow definitions. The current version of IWIR
is version 1.1.

IWIR xmlns.
All XML tags and concepts defined for IWIR are defined

in the xml namespace http://shiwa-workflow.eu/IWIR. To
be able to concentrate on the concepts rather than the no-
tation, we use a global namespace declaration here.

IWIR wfname.
The workflow name; serves as an identifier for the work-

flow.

task.
A workflow in IWIR has exactly one top-level task ele-

ment. This element can be a compound task or an atomic
task and its signature defines the required input ports as well
as the output ports of the workflow and their data types.
See Section 3.2 and 3.3 for a list of possible compound and
atomic task constructs.

3.1 Data Constructs

3.1.1 Data Types
IWIR defines a set of data types that can be used in an

IWIR document. An IWIR data type identifier is formed
according to the following BNF grammar:

<type>::= <simple-type> |
<collection-type>

<collection-type>::= "collection/"<type>
<simple-type>::= "string" | "integer" |

"double" | "file" |
"boolean"

A collection is an ordered, indexed list of data elements of
the same data type. The number of elements in a collection
can be dynamic. One data item in a collection is always
associated with a type and a, possibly multi-dimensional,
integer index (indexing starts from 0, one dimension per
nesting-level). The nesting level n of a collection can be
determined by its data type, by counting the number of
occurrences of the string collection in the type definition.

3.1.2 Data Flow
Data ports are connected to each other using the link

construct (see Figure 3). Every composite task, and there-
fore every scope, has a links block containing all of the
data flow links in its scope, making every composite task
self contained with respect to its data flow. It is not allowed
to cross scopes (see Section 3.1.4) using data flow links.�

�
�
�

<links >
<link from="from" to="to" />*

</links >

Figure 3: Defining data flow using the link construct

link from.
The from attribute of a link defines the source of the data

flow connection. In IWIR, this attribute is specified in the
form of task/port, where task is the name of the task and
port is the name of the data port providing the data. We call
the data port referred to by the from attribute the source
port of the link.

link to.
The to attribute defines the destination of the data flow

connection. In IWIR, this attribute is specified in the form
of task/port, where task is the name of the task and port
is the name of the data port consuming the data. We call
the data port referred to by the to attribute the target port
of the link.

The general rule is that the data type of the data port
specified in the from attribute has to match the data type
of the port referred to in the to attribute. There are a
few exceptions to this rule to account for the semantics of

compound tasks such as (parallel)ForEach splitting data col-
lections into single elements. For a full specification of the
particulars of these exceptions, please refer to [9]. Addition-
ally, IWIR allows the following implicit type-cast operations
when connecting data ports using the link construct:

• boolean → string, integer → string, double →
string and integer → double

• any type A → collection/A yields a collection con-
taining only one entry

• file → string yields a URI to the file

Furthermore, IWIR mandates that a data port may only be
the target port of a single link construct (in other words:
one target port may only be linked to a single source port),
except in cases where the specification explicitly says oth-
erwise. Generally, building a cyclic data dependency using
link constructs is not allowed in an IWIR workflow.

3.1.3 Control Flow
Sometimes it is required to define a pure control flow de-

pendency between two tasks that does not involve any data
dependency. Such a dependency can be expressed in IWIR
using only the task names (as opposed to task/port) in
the from and to attributes of the link construct (see Sec-
tion 3.1.2, Figure 3).

A pure control flow link fires after the given source of the
link successfully finished execution. In the case of the source
being a sequential loop task, the control flow link therefore
fires after successful execution of the final iteration. For par-
allel loop tasks, the control flow link fires only after every
parallel iteration has successfully completed. If a task de-
pends on more than one incoming control link, it is executed
only after all incoming control links have fired.

As in the case of data flow links, building a cyclic control
dependency using link constructs is not allowed in an IWIR
workflow.

3.1.4 Scopes
In IWIR, data ports and tasks can only be referred to in

certain regions of the workflow document. This area is called
the scope of them. IWIR only allows a data link to refer to
data ports and tasks within the current scope. Every scope
has a single links block. The scope that a links block (see
Figure 3) can see and access is called the current scope of
the links block. It consists of the following elements:

Current Task The name and all data ports (input Ports,
output Ports, loop Ports, loop counter ports, loop ele-
ment ports, output ports, etc.) of the task containing
the links block itself is an element of the current scope

Enclosed Tasks The names and all data ports of all first-
level subtasks are elements of the current scope. The
current scope does not extend to tasks embedded into
the direct subtasks themselves.

These strict scoping rules establish an important principle in
IWIR, the principle of self-contained tasks. In IWIR, every
task is self-contained - providing a single point of entry (the
input ports) and exit (the output ports). This establishes
strong reusability and makes sure that every single task,
atomic and compound, is a fully specified abstract work-
flow in itself. This allows systems to utilize the concept of

�

�

�

�

<task name="name" tasktype =" tasktype">
<inputPorts >

<inputPort name="name" type="type"/>*
...

</inputPorts >
<outputPorts >

<outputPort name="name" type="type"/>*
...

</outputPorts >
</task >

Figure 4: The task construct

sub-workflows and opens up the possibility to easily replace
workflow parts.

3.2 Atomic Tasks
An Atomic Task is a task which is implemented by a sin-

gle computational entity (an executable, a web service, a
script, etc.). An atomic task can be described using the
task construct, shown in Figure 4.

Task name.
The task name serves as an identifier for the task. Tasks

must be organized in an IWIR workflow or a Compound
Task which define a scope (see Section 3.1.4) for them. In
the scope, the name of each task must be unique.

Task type.
In IWIR, the functional behavior and the interfaces of

tasks are described by Task Types. A Task Type is an ab-
stract description which can be implemented by different
Task Deployments (concrete implementations of computa-
tional entities) deployed in a DCI or given as an executable
entity like a binary executable or a script fragment, depend-
ing on the DCI and workflow system executing the workflow
application. A Task Type can also refer to a sub-workflow.
The Task Type must be defined in a Type Registry before
enactment. Task Types shield the implementation details of
Task Deployments from the IWIR programmer and help to
enable workflow interoperability across different DCIs. Lo-
cating and invoking of Task Deployments are done by an
underlying runtime environment.

inputPorts/outputPorts.
All data ports of the task are enclosed in the inputPort-

s/outputPorts sections. The number and types of the input
and output ports are determined by the chosen task type.
The link construct (see Figure 3) is used to define the data
flow between input and output ports of different tasks.

3.3 Compound Tasks
A Compound Task is a task which encloses some Atomic

Tasks and/or other Compound Tasks as well as their data-
and control-flow links. The compound task and its links
are self contained in the sense that data- and control flow
links may not cross the boundaries of a Compound Task.
Because of this, Compound Tasks are able to form sepa-
rate self-contained scopes. We classify the compound tasks
into two groups, Basic Compound Tasks and Parallel Com-
pound Tasks. Basic Compound Tasks are sequential con-
structs similar to well known constructs in high-level lan-
guages such as blockScope, if, while, blockscope, for and

�

�

�

<if name="name">
<inputPorts >

<inputPort name="name" type="type"/>*
</inputPorts >
<condition > condition </condition >
<then >

<task .../>+
</then >
<else >?

<task .../>+
</else >
<outputPorts >

<outputPort name="name" type="type"/>*
</outputPorts >
<links >

<link from="from" to="to" />*
</links >

</if>

Figure 5: The if Task

embedded
task

then else

output ports
input ports

1 2

3 4

A B

Figure 6: Data Flow in the if task

forEach. Parallel Compound Tasks are constructs that ex-
press parallel loops (parallelFor and parallelForEach).

3.3.1 The blockScope task
The blockScope compound task (not shown due to space

limitations) enables the grouping of the contained tasks in
one scope. This helps to avoid naming conflicts and enables
to build DAG-like structures even at the top-level of the
workflow.

3.3.2 The if task
The if compound task enables the conditional execution

of the inner tasks. The definition of the if task can be seen
in Figure 5.

Condition.
Section 3.4 explains how to formulate the condition ex-

pression that controls whether the then or the else branch
is executed at runtime.

Output Ports.
It is generally unknown at compile time which branch of

the if task is executed. Therefore, for each output port
declared in the if task, it is necessary that both the output
of one task from the then branch and the output of one
task from the else branch are connected to this port using
link constructs (if the else branch is omitted, a link from
an input port of the if task to the output port needs to

�

�

�

�

<while name="name">
<inputPorts >

<inputPort name="name" type="type"/>*
<loopPorts >

<loopPort name="name" type="type">*
</loopPorts >

</inputPorts >
<condition >

condition
</condition >
<body >

<task .../>+
</body >
<outputPorts >

<outputPort name="name" type="type"/>*
<unionPorts >

<unionPort name="name"
type=" collection "/>*

</unionPorts >?
</outputPorts >
<links >

<link from="from" to="to" />*
</links >

</while >

Figure 7: The while Task

be created). Since for a given instance of the if task only
one branch, either the then or the else, is executed, links
connecting ports of tasks belonging to different branches are
not allowed.

Figure 6 illustrates the usual data flow through the if

construct. Data arrives at the input port. Depending on the
condition evaluation, either the then or the else branch is
executed, therefore either link 1 or link 2 are used to transfer
data to the contained tasks A or B. After completion of the
embedded task, the generated data is written to the output
port using either link 3 or link 4.

3.3.3 The while and for tasks
The while and for tasks are provided to execute the loop

body zero or more times sequentially. The definition of
while can be found in Figure 7.

Loop Ports.
In sequential loop activities optional loop ports can be

used to express cyclic data flow between consecutive iter-
ations of the loop. See Figure 8 for an example. At the
beginning of every iteration, data is flowing from the input
port (through link 1) to the embedded task A. Additionally,
data from the loop ports flows to task A over link 2. After
all of the embedded tasks finished, one iteration is complete
and link 3 is used to overwrite the contents of the loop port
with data produced in task A. This data will be used in the
next iteration (via link 2). If there are links to union ports
(link 5 in this example), the data produced in A is appended
to the collection at the linked union port. This data flow is
repeated for every iteration. After the final iteration fin-
ished, link 4 is used to transfer data produced by A in the
final iteration to the output port.

Number of iterations.
While the while task has a condition that controls how

often the body is executed (see Section 3.4), the for task
(not shown due to space limitations) has a special input port

output ports

input ports

embedded
task

loop ports
union ports

1 2
3

4 5

A

Figure 8: Data Flow in sequential loop tasks
(while,for,forEach)

called a loopCounter. The loopCounter attributes (from,
to, step) can either be set to fixed integer values or receive
values produced by previously executed tasks. The value of
the loop counter is initially assigned to the value specified
at the from attribute and is increased by the value of step
until it reaches the value of to or larger. The values of to,
from and step are only evaluated once at the beginning of
an invocation of the for task.

Output Ports.
An output port of a while or for task is assigned data

(via a link) from a contained task. After completion of the
while or for compound task, the output ports will be as-
signed the values specified by a link coming from task ex-
ecutions in the final iteration. Therefore, subsequent tasks
can access only data produced in the last iteration through
these output ports. If subsequent tasks need to access data
produced by intermediate iterations, union ports have to be
used. A union port can aggregate any data produced during
iterations of the loop in a data collection, all that is needed
is a data link (see Section 3.1.2) from an output port of a
contained task to the union port.

3.3.4 The forEach task
The forEach compound task is similar to the for task

except that in the forEach task there is an additional type
of data input port, called loopElement port which receives a
data collection over which the loop iterates sequentially. The
forEach task is not shown here due to space limitations, but
it operates very similar to the parallelForEach task shown
later in this paper.

3.3.5 The parallelFor task
The parallelFor compound task (not shown due to lack

of space) is similar to the sequential for task except that the
parallelFor task can execute all of its iterations in parallel.
This implies that there may not exist any data dependen-
cies between different iterations of the body, therefore the
parallelFor task does not provide any loop ports. Addi-
tionally, every output port of the parallelFor task has to
be of a collection type (see Section 3.1.1) to accommodate
the parallel production of data in the tasks iterations.

3.3.6 The parallelForEach task
The parallelForEach task (Figure 9) is similar to the

forEach task with the difference that in parallelForEach

�

�

�

<parallelForEach name="name">
<inputPorts >

<inputPort name="name" type="type"/>*
<loopElements >

<loopElement name="name"
type=" collection ">+

</loopElements >
</inputPorts >
<body >

<task .../>+
</body >
<outputPorts >

<outputPort name="name" type="type"/>*
</outputPorts >
<links >

<link from="from" to="to" />*
</links >

</parallelForEach >

Figure 9: The parallelForEach Task

embedded
task1 2

3

output ports

input ports

loopElement portsA1 A2 A3

Figure 10: Data Flow in the parallelForEach tasks

all loop iterations can be executed simultaneously.
It is assumed that the data input of any iteration is in-

dependent of data produced by other iterations of the same
task. As in the parallelFor compound task, the parallel-

ForEach compound task construct does not require the un-
derlying workflow execution system to wait for the comple-
tion of every iteration before continuing the execution flow
in every case; synchronization is only required if the correct
execution of the data flow requires it, i.e. if a subsequent
task requires all of the produced data to be available.

Loop Element Ports.
The loopElements-block in the parallelForEach task con-

trols how often the loop body is executed. It encloses one or
more loop element ports. In the case it contains one loop ele-
ment port the behavior is the following: The parallelForEach
loop concurrently iterates over each element of the collection
linked to the loop element port. Linking the port to a task
inside of the loop body results in a value based on the data
type of the loop element port (without the first collection/
identifier,see Section 3.1.2) and the iteration number at run
time. In the case of more than one loop element port, the
body is concurrently executed once per common element in-
dex of the collections referenced by the links connected to
the ports. If the sizes of the collections do not match, the
extra elements in the larger collections are ignored. This
allows for dot product iteration strategies.

Output Ports.
The type of the output ports of a parallelForEach task

must be a collection type (see Section 3.1.1). Each iter-
ation writes some of its values determined by the data link
connected to the port. The resulting collection is ordered,
its j-th element is the data coming from the j-th iteration
of the loop.
Figure 10 shows the usual data flow in a parallelForEach

task. A1, A2 and A3 illustrate a single embedded task A in
three parallel iteration instances, defined by a collection of
size 3 given to the loopElement port of the parallelForEach
task. Every iteration instance gets (via link 1) the same
data coming from the input port. On the other hand, the
collection in the loopElement port is split up, and every
iteration i gets only the i-th element of the collection (via
link 2). Link 3 then sets the j-th element of the collection
produced in the output port to be the data produced by task
A in iteration j.

3.4 Condition Expression in Compound Tasks

Operator IWIR
= =
! = ! =
> >

>= >=

< <

<= <=

and and

or or

not !

Table 1: Conditional Operators in IWIR

To be able to evaluate the condition, as used in if and
while tasks, a Boolean expression is used. Table 1 lists the
Boolean operators that are allowed in IWIR workflows. For
simplification reasons, IWIR limits the operands of a condi-
tion expression to values of type boolean, double, integer
and string. The evaluation of the condition expression in
IWIR is based on the XPath 1.0 specification [3], restricted
to the parts applicable to conditional expressions in the
IWIR language. To enable more straightforward and log-
ical use of string values in IWIR conditions, we also added
two exceptions to the string→boolean conversion, which
we took from XPath 2.0 [2]. For the full specification of the
condition expression evaluation in IWIR, refer to [9].

3.5 Properties and Constraints

Properties provide hints about the behavior of tasks, e.g.
the expected size of the input data, the estimated com-
putational complexity, the problem size, etc. Proper-
ties are referring to concepts that the underlying en-
actment system is not forced to take into account when
executing a workflow.

Constraints must be complied with by the underlying work-
flow runtime environment, e.g. to use only a certain
subset of a data collection, to flatten a nested collec-
tion, to minimize execution time, to provide a certain
minimum amount of memory, to run on a certain spe-
cific host, architecture or DCI.

�

�

�

�

<properties >
<property name="name" value="value" />*

</properties >
<constraints >

<constraint name="name" value="value" />*
</constraints >

Figure 11: Properties and Constraints

In IWIR, properties and constraints are simple name-value
pairs that can be defined by the user to provide additional
information for the workflow runtime environment to opti-
mize and steer the execution of workflow applications. Fig-
ure 11 shows how the property and constraint elements
are specified. IWIR allows Properties and Constraints to
be added to data ports, atomic tasks and composite tasks.
Additionally, IWIR provides several built-in properties and
constraints such as the element-index constraint that cuts
down a data collection to a subset, the flatten-collection

constraint that is able to flatten nested data collections and
others. For a full explanation of these refer to [9].

4. EXAMPLES
In this section, we show examples of how to use IWIR

to express common data distribution strategies featured in
many different workflow languages as well as an example
of workflow portability across two Grid Workflow Systems
using language translators and IWIR as an intermediate lan-
guage.

4.1 Dot Product
A dot product (one-to-one) data iteration strategy of data

from two collections flowing into task A can be implemented
in IWIR in the way seen in Figure 12. In this example, we
have two data collections collA and collB as input to a
parallelForEach task called forEach1. It contains an atomic
task A which will be invoked min(l(collA), l(collB)) times,
where l(X) is the number of elements in the collection X.
The i-th invocation of task A will be executed with the i-th�

�

�

�

<parallelForEach name=" forEach1">

<inputPorts >

<loopElements >

<loopElement name="collA" type=" collection/file" />

<loopElement name="collB" type=" collection/file" />

</loopElements >

</inputPorts >

<body >

<task name="A" tasktype =" consumer">

<inputPorts >

<inputPort name=" elementA" type="file" />

<inputPort name=" elementB" type="file" />

</inputPorts >

<outputPorts >

<outputPort name="res" type="file" />

</outputPorts >

</task >

</body >

<outputPorts >

<outputPort name="res" type=" collection/file" />

</outputPorts >

<links >

<link from=" forEach1/collA" to="A/elementA" />

<link from=" forEach1/collB" to="A/elementB" />

<link from="A/res" to=" forEach1/res" />

</links >

</parallelForEach >

Figure 12: An example for a dot product iteration
strategy

�

�

�

�

<parallelForEach name=" forEach1">

<inputPorts >

<inputPort name="collB" type=" collection/file"/>

<loopElements >

<loopElement name="collA" type=" collection/file"/>

</loopElements >

</inputPorts >

<body >

<parallelForEach name=" forEach2">

<inputPorts >

<inputPort name=" elementA" type="file"/>

<loopElements >

<loopElement name="collB" type=" collection/file"/>

<loopElements >

</inputPorts >

<body >

<task name="A" tasktype =" consumer">

<inputPorts >

<inputPort name=" elementA" type="file"/>

<inputPort name=" elementB" type="file"/>

</inputPorts >

<outputPorts >

<outputPort name="res" type="file"/>

</outputPorts >

</task >

</body >

<outputPorts >

<outputPort name="res" type=" collection/file"/>

</outputPorts >

<links >

<link from=" forEach2/elementA" to="A/elementA"/>

<link from=" forEach2/collB" to="A/elementB"/>

<link from="A/res" to=" forEach2/res"/>

</links >

</parallelForEach >

</body >

<outputPorts >

<outputPort name="res"

type=" collection/collection/file"/>

</outputPorts >

<links >

<link from=" forEach1/collA" to=" forEach2/elementA"/>

<link from=" forEach1/collB" to=" forEach2/collB"/>

<link from=" forEach2/res" to=" forEach1/res"/>

</links >

</parallelForEach >

Figure 13: An example for a cross product iteration
strategy

data element of both collA and collB as input.

4.2 Cross Product
A cross product (all-to-all) data iteration strategy of two

collections flowing into task A can be implemented in IWIR
in the way seen in Figure 13. In this example, we have
two data collections collA and collB as input to a paral-
lelForEach task called forEach1. It contains another par-
allelForEach task which in turn contains an atomic task A
which will be invoked l(collA)× l(collB) times, where l(X)
is the number of elements in the collection X. The task
forEach1 is responsible for breaking up collA into its ele-
ments one by one, while forEach2 breaks up collB into each
of its elements and combines it with each element coming
from forEach1. Subsequently, the atomic task A is invoked
once for every combination of elements of collA and collB.
The resulting data collection flowing out of forEach1 is a
collection of nesting level 2.

4.3 Case Study
To show the current state of the workflow transformation

process using IWIR, we present a workflow known as Im-
age Registration, its graphical representation in MOTEUR
can be seen in Figure 14. Image Registration is a common
medical image spatial alignment procedure.

The input contains images (scans) {I0, I1, I2, . . .} of a pa-
tient acquired at different times. Because it is impossible

to orient the patient precisely in the same position for each
scan, the images are mis-aligned in space. The workflow au-
tomatically re-aligns the images by executing two alignment
steps:

1. Register to first: aligns all images ({I0, I1, I2, . . .})
to the first one (I0).

2. Register to average: aligns all resulting images to
an average model to avoid any bias related to using
the first image (I0) as reference.

The First and Average activities are utility activities;
First extracts the first image from the list, Average com-
putes the mean of the list.

Figure 14: The Image Registration workflow in the
graphical notation of MOTEUR

Figure 15 shows an excerpt from the Image Registration
workflow in GWENDIA [8], the native workflow description
language used by the MOTEUR system. The excerpt shows
the activities, called processors in GWENDIA terminology,
First (lines 1-6) and Register to first (lines 17-19). We can
see that First has one input port of type string called in

(line 2) and an output port of type string called out (line
3). In this case, the strings represent URLs of data files.

Activities in GWENDIA may receive inputs with differ-
ent nesting levels; this is expressed using the concept of port
depth. The depth of a port determines the number of nesting
levels the input port will collect or the output port will pro-
duce before/after firing the activity. An input port depth of
0 denotes that the activity will fire for each received scalar
value individually. An input port depth of n means that the
activity will fire once for every nested structure of depth n
received on the port.

We can see in Figure 15 (line 2) that the input port of the
activity First has a port depth of ”1” and will therefore con-
sume a complete 1-dimensional array of strings (references
to image files) and fire the activity once for each array of

�

�

�

...

1:<processor name="First" >

2: <in name="in" type=" string" depth ="1"/>

3: <out name="out" type=" string" depth ="0"/>

4: <beanshell >

5: </beanshell >

6:</processor >

7:<processor name=" Register to first">

8: <in name="ref" type=" string" depth ="0"/>

9: <in name="float" type=" string" depth ="0"/>

10: <out name="out" type=" string" depth ="0"/>

11: <iterationstrategy >

12: <cross >

13: <port name="ref"/>

14: <port name="float"/>

15: </cross >

16: </iterationstrategy >

17: <beanshell >

18: </beanshell >

19:</ processor >

...

Figure 15: Excerpt from the Image Registration
workflow in GWENDIA

strings flowing into the port. The output port of First (line
3) has a depth of 0, resulting in one string (file reference)
per execution of First.

The second activity shown in Figure 15 shows that the in-
put and output ports of Register to first all have a depth
of 0 (line 8-10). Furthermore, we can see in the itera-
tionstrategy block (lines 11-16) that the input ports ref and
float are specified as being in a cross relationship. This
means that the activity fires for every possible combination
of items received on the input ports ref and float. In this
concrete example workflow, Register to first receives all the
images {I0, I1, I2, . . .} on port float and the first image I0
on port ref. This results in an execution of Register to
first for the cross product combination of the two inputs:
{(I0, I0), (I1, I0), (I2, I0), . . .}, leading to the creation of a
set of images (given as references to their locations). The
rest of the workflow follows the same structure to execute
the second alignment step.

Figure 16 shows the same portion of the workflow trans-
lated to IWIR. We can see that the input port of the task
First was translated to the type collection/file (line 3).
Since the GWENDIA workflow defined the port depth was
as 1, we had to explicitly specify that this input port ex-
pects a collection of files to start the execution of the task
in IWIR.

We can see that the GWENDIA task Register to first re-
sulted in two tasks (Register-to-first:cross and Register-to-
first) after the conversion to IWIR. As mentioned in Sec-
tion 4.2, the cross product iteration strategy which is used
in the Register to first activity can be expressed in IWIR
using ParallelForEach tasks to split the incoming data col-
lections (lines 10-41). From the port depths, the iteration
strategy and the workflow structure in the GWENDIA work-
flow we can derive that one of the input ports will receive
a collection of files. The other input port will receive just
a single file. A cross product relation between these two
ports can then be translated to IWIR by using a single Par-
allelForEach to split the incoming collection into its single
entries. Each of these entries is then used (together with the
one single file on the second port) for every execution of the
Register-to-first task.

Finally, we can load the resulting IWIR workflow into the
graphical user interface of the ASKALON workflow environ-
ment. This automatically triggers a conversion to its native

�

�

�

�

...

1:<task name="First" tasktype ="First">

2: <inputPorts >

3: <inputPort name="in" type=" collection/file"/>

4: </inputPorts >

5: <outputPorts >

6: <outputPort name="out" type="file"/>

7: </outputPorts >

8:</task >

9:

10:< parallelForEach name=" Register_to_first:cross">

11: <inputPorts >

12: <inputPort name="ref" type="file"/>

13: <loopElements >

14: <loopElement name="float"

15: type=" collection/file"/>

16: </loopElements >

17: </inputPorts >

18: <body >

19: <task name=" Register_to_first"

20: tasktype =" Register_to_first">

21: <inputPorts >

22: <inputPort name="ref" type="file"/>

23: <inputPort name="float" type="file"/>

24: </inputPorts >

25: <outputPorts >

26: <outputPort name="out" type="file"/>

27: </outputPorts >

28: </task >

29: </body >

30: <outputPorts >

31: <outputPort name="out" type=" collection/file"/>

32: </outputPorts >

33: <links >

34: <link from=" Register_to_first:cross/ref"

35: to=" Register_to_first/ref"/>

36: <link from=" Register_to_first:cross/float"

37: to=" Register_to_first/float"/>

38: <link from=" Register_to_first/out"

39: to=" Register_to_first:cross/out"/>

40: </links >

41:</ parallelForEach >

...

Figure 16: Excerpt from the Image Registration
workflow in IWIR

<<Act iv i ty>>
First

<<ParallelForEach>> Register_to_first:cross

<<Act iv i ty>>
Register_to_first

<<Act iv i ty>>
Average

<<ParallelForEach>> Register_to_average:cross

<<Act iv i ty>>
Register_to_average

Figure 17: The workflow in the graphical UML-
based notation of ASKALON

AGWL language and renders a graphical view in its UML-
based interface, as can be seen in Figure 17.

5. IWIR IMPLEMENTATION
We have created an XML Schema specification for IWIR

and developed IWIRtool, a Java-based implementation of
an IWIR toolset for workflow system developers. IWIRtool
is able to parse IWIR XML files and provides a Java Ob-
ject representation enabling traversal and manipulation of
the workflow. Additionally, it provides a simple Java API
to enable the construction of IWIR workflows and the seri-
alisation of IWIR Workflows as XML documents compliant

to the IWIR XML Schema. The IWIRtool is able to parse
and evaluate the IWIR condition expressions and will vali-
date IWIR documents for correctness in their control flow,
data flow, data types and syntax. The IWIR XML Schema
as well as the current version of IWIRtool, version 1.1.4, can
be downloaded at http://www.dps.uibk.ac.at/~kassian/

shiwa/iwir/.
IWIRtool is the basis for the development of language

translators currently being implemented by the developers
of five different well-known Grid workflow systems part of
the SHIWA project: ASKALON, Moteur, P-GRADE, Tri-
ana and Pegasus. These language translators will eventually
enable workflow portability across all of these workflow sys-
tems using IWIR.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented IWIR, an Interoperable Work-

flow Intermediate Representation designed to enable porta-
bility of workflows across numerous Grid workflow systems
and originally written in different languages. The common
IWIR representation enables the translation of workflows
among n systems with O(n) complexity and facilitates the
integration of a new language into an IWIR-based interop-
erable environment with constant O(1) complexity.

We have specified the IWIR language comprising atomic
tasks, compound tasks including if, while, sequential for and
parallel for statements, as well as different data types and
data flow constructs to cover the abstract part of workflow
applications. We provide an IWIR library, called IWIRtool,
comprising a scanner, parser, and manipulation API. The
IWIRtool is currently used to implement corresponding front-
end and back-end translation solutions for many different
well-known scientific workflow systems in the context of the
EU FP7 SHIWA project [1]. Finally, we presented an ex-
ample of how the current state of the translator solutions
convert an existing workflow from one system to another
using IWIR as intermediate representation. Future work
will look into portability solutions for the concrete parts of
workflow applications.

Acknowledgments
This work is partially funded by the European Union under
grant agreement number 261585/SHIWA Project.

The authors would like to thank Andrew Harrison, Tristan
Glatard, Miklos Kozlovsky, Gabor Hermann and Thomas
Fahringer for their valuable input.

7. REFERENCES
[1] SHIWA: SHaring Interoperable Workflows for

large-scale scientific simulation on Available DCIs.
http://www.shiwa-workflow.eu, 2011.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernández, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) 2.0 (W3C Recommendation).
Technical report, World Wide Web Consortium,
January 2007.

[3] J. Clark and S. DeRose. XML Path Language (XPath)
1.0 (W3C Recommendation). Technical report, World
Wide Web Consortium, 1999.

[4] W. B. Dobrusky and T. B. Steel. Universal
computer-oriented language. Commun. ACM, 4:138–,
March 1961.

[5] T. Fahringer, J. Qin, and S. Hainzer. Specification of
Grid workflow applications with AGWL: An abstract
Grid workflow language. In International Symposium
on Cluster Computing and the Grid. IEEE Computer
Society Press, 2005.

[6] P. Kacsuk and G. Sipos. Multi-grid, multi-user
workflows in the p-grade grid portal. Journal of Grid
Computing, 3:221–238, 2005.
10.1007/s10723-005-9012-6.

[7] P. Missier, D. Turi, C. Goble, and et al. Taverna
workflows: Syntax and semantics. In IEEE
International Conference on e-Science and Grid
Computing, Dec 2007.

[8] J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari,
and M. B. Fornarino. A data-driven workflow
language for grids based on array programming
principles. In Proceedings of the 4th Workshop on
Workflows in Support of Large-Scale Science, WORKS
’09, pages 7:1–7:10, New York, NY, USA, 2009. ACM.

[9] K. Plankensteiner, R. Prodan, T. Fahringer,
J. Montagnat, and et al. Interoperable workflow
intermediate representation. SHIWA Deliverable D6.1,
December 2010.

[10] I. Taylor, M. Shields, I. Wang, and R. Rana. Triana
applications within Grid computing and peer to peer
environments. Journal of Grid Computing, 1(2), 2003.

