
HAL Id: hal-00677831
https://hal.science/hal-00677831v1

Submitted on 11 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scientific Workflow Reuse through Conceptual
Workflows

Nadia Cerezo, Johan Montagnat

To cite this version:
Nadia Cerezo, Johan Montagnat. Scientific Workflow Reuse through Conceptual Workflows. Work-
shop on Workflows in Support of Large-Scale Science (WORKS’11), Nov 2011, Seattle, United States.
pp.1-10. �hal-00677831�

https://hal.science/hal-00677831v1
https://hal.archives-ouvertes.fr

Scientific Workflows Reuse through Conceptual Workflows

Nadia Cerezo
CNRS, Univ. of Nice

I3S laboratory
cerezo@i3s.unice.fr

Johan Montagnat
CNRS, Univ. of Nice

I3S laboratory
johan@i3s.unice.fr

ABSTRACT

An increasing number of scientific experiments are“in-silico”:
carried out at least partially using computers. Scientific
Workflows have become a key tool to model and implement
such experiments, but they tangle domain knowledge, tech-
nical know-how and non-functional concerns and are, as a
result, difficult to understand, reuse or repurpose.

In order to ease Scientific Workflow Reuse, this paper de-
fines a Conceptual Workflow model that is closer to the end-
user’s domain and intentions. By placing our model higher
on the abstraction scale, we can separate concerns and em-
phasize the in-silico experiment inside the workflow, thus
improving readability and re-usability.

The conceptual representation can then be transformed
into a regular Abstract Scientific Workflow, exploiting both
domain and non-functional knowledge that are captured and
harnessed through the use of Semantic Web technologies.

Categories and Subject Descriptors

D.2.13 [Software]: Reusable software

General Terms

Scientific Workflows, Reuse, Domain Engineering

1. INTRODUCTION
According to the Workflow Management Coalition1, Ter-

minology and Glossary 3.0, a workflow is the “automation
of a business process, in whole or part, during which doc-
uments, information or tasks are passed from one partici-
pant to another for action, according to a set of procedural
rules”. Originally geared towards the description of busi-
ness processes, workflows have been increasingly used to
describe scientific experiments, especially those performed
on distributed computing infrastructures. Scientific Work-
flows are meant to perform in-silico (i.e. carried out en-

1http://www.wfmc.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORKS ’11, November 14, 2011, Seattle, USA.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tirely or partially on computers) experiments, which usu-
ally imply large amounts of data. Workflow formalisms are
appealing to scientists in that they provide means to for-
mally describe complex experiments using an abstract (i.e.
not too tightly coupled with an execution infrastructure)
and versatile (i.e. accessible and adaptable) representation.
Workflows ease the design and implementation of scientific
experimental protocols.
“Software Reuse is the use of existing software or software

knowledge to construct new software.” [6] Defined so broadly,
Software Reuse has been an integral part of Software En-
gineering from the very beginning. The general tendency
of programming languages and environments to provide de-
velopers with ever-coarser grained building blocks, at ever-
higher levels of abstraction, is in itself Software Reuse. As a
research area, Software Reuse lies at the crossroads of Soft-
ware Architecture (to identify and handle reusable parts),
Domain Engineering (to elevate the abstraction level) and
Separation of Concerns (to integrate even cross-cutting con-
cerns into reusable components).
Scientific Workflows Reuse, defined as a workflow system

desideratum in [12] by “Workflow systems should make it
easy to design new workflows from existing workflows”, is
critical for two main reasons.
On the one hand, Scientific Workflows raise the need for

flexibility a few notches above that of their Business coun-
terparts [2]. Indeed, the scientific experiments they model
result from neither precise specifications nor rigid protocols
- no matter how rapidly evolving those may be - and are in-
stead defined incrementally, through the exploration that
is typical of scientific research. The very goal of Scien-
tific Workflows, to represent in-silico experiments, entails
frequent reuse and repurposing throughout their life-cycle.
On the other hand, scientific research thrives on collabo-

ration between communities (e.g. teams, laboratories, coun-
tries). A lot of sharing is involved in those collaborations;
of knowledge as well as of know-how. Since an increasing
number of communities use Scientific Workflows not only to
operate their (most often data-intensive) experiments, but
also to record the associated protocols and techniques, the
need to share Scientific Workflows is ever-growing and from
it stems a greater need for reuse and repurposing, since they
enable sharing when combined with discovery (i.e. finding
suitable components).
Our goal is to provide tools for workflow designers to ease

reuse, repurposing and ultimately sharing of Scientific Work-
flows. We believe that the main obstacle in most currently
available frameworks is that their underlying models indis-

http://www.wfmc.org/

criminately mix core concerns (the high-level concepts
pertaining to the end-user’s scientific domain), technical
concerns (functional in that they are needed to actually
enact the workflow, but not directly relevant to the mod-
eled in-silico experiment) and non-functional concerns
(for instance Quality of Service considerations).

Rather than building yet another framework, our proposal
is to define workflows at a higher level of abstraction, up-
stream from already plentiful Scientific Workflow models,
then transform them into lower level workflows, readily exe-
cutable by existing systems. In that, we fit the gap described
in [7] as the need for distinct “dimensions of abstraction
[that] are experiment-critical versus non-experiment-critical
representations, where the former refers to scientific issues
and the latter is more concerned with operational matters.”
Our approach is one of Generative Reuse: new workflows
are specified in a domain-specific language, then translated
into executable code in a target language.

At the higher level we aim to formalize, we can overcome
the aforementioned obstacle by:

• emphasizing domain concepts over technicalities,

• defining separately the cross-cutting concerns and the
base process into which they are woven,

• providing a more flexible way to reuse components
than the traditional encapsulation that is provided in
most frameworks and

• leveraging semantic annotations to aid the design of
new workflows from existing parts.

All the examples we give in the present paper, to illustrate
the model we defined, come from the Virtual Imaging
Platform2 (VIP) project. The project’s goal is the integra-
tion of multiple modalities and organ models into a cohe-
sive medical image simulation platform. The project aims
to achieve (i) interoperability between various simulators
that were never meant to interact, by using scientific work-
flows and semantic annotations, (ii) data model federa-
tion to handle all organ models in a standardized fashion,
through the definition of the IntermediAte Model Format
(IAMF) and (iii) reliability and performance on large-
scale grid infrastructures needed to cope with the amount
of data processed.

The platform is meant to be flexible and easy to extend
with new simulators and organ models. To ensure maxi-
mum compatibility, the integration started with four medi-
cal imaging simulators, one for each of the four main medi-
cal imaging modalities: SIMRI [3] for Magnetic Resonance
Imaging (MRI); FIELD-II [10] for UltraSonography (US);
Sindbad [16] for X-ray Computed Tomography (CT); and
Sorteo [15] for Positron Emission Tomography (PET).
The need for Scientific Workflow Reuse in the VIP project

stems from its very objectives. Indeed, the goals of interop-
erability and data model federation themselves call for the
design of new - and the identification of existing - common
components. Furthermore, the need for flexibility (to ease
the future introduction of new simulators) has already led to
the identification of common ground between the simulators
at the structural level.

The model we defined has three parts and the present ar-
ticle adopts the same structure: Section 2 further describes

2http://www.creatis.insa-lyon.fr/vip/

the abstraction level at which we work and defines the high-
level elements of our model. Section 3 details the process of
generating a workflow at a lower level of abstraction and de-
fines the elements needed in our model to perform that trans-
formation. Section 4 introduces the notion of Patterns and
illustrates how it could enhance Scientific Workflow Reuse.
Section 5 details how and to what extent we intend to au-
tomate the transformation process. We then present a few
related projects in Section 6 and conclude with Section 7.

2. CONCEPTUAL LEVEL
A Scientific Workflow framework is essentially an inter-

face between end-users (i.e. scientists) and computing in-
frastructures (most often distributed). In the field of Scien-
tific Workflows, the distinction has long been made between
Concrete Workflows that “bind workflow tasks to specific
resources” and Abstract Workflows that do not [17]. The
lack of stability on Grid infrastructures, where nodes and
network failures are simply bound to happen every now and
then, makes the manual definition of Concrete Workflows
extremely impractical. As a result, most frameworks use
Abstract Workflows for design as well as storage and gener-
ate the Concrete Workflows automatically at runtime.
Abstract Workflows pertain to the abstraction level of the

framework, thus called the abstract level, whereas Con-
crete Workflows belong lower on the abstraction scale, on
the infrastructure layer, thus called the concrete level.
Yet, even though, as their name suggests, Abstract Work-
flows are more abstract than Concrete Workflows, they are
meant to be readily executable and, as such, cannot avoid
the clutter of technical concerns and workarounds that are
necessary for the execution.

Figure 1: Scientific Workflow Abstraction Levels

To ease reuse and repurposing, we work at an higher level
than that of Abstract Workflows on the abstraction scale:
the so-called conceptual level, as shown on Figure 1. This
level enables the modeling of in-silico experiments closer to
the end-users’ domains.
The Scientific Workflow model we defined at that level is

what we call Conceptual Workflow. Conceptual Work-
flows aim at capturing the user intentions when he or she
designs a scientific experiment, independently from concerns
such as reliability, performance, security and so on. They fo-
cus on the scientific process itself, distinguishing it from non-
functional and technical aspects. Hence Conceptual Work-
flows are easier to manipulate, understand and reuse.

http://www.creatis.insa-lyon.fr/vip/

2.1 Model
A Conceptual Workflow represents all or part of an

in-silico experiment. At that high-level, they consist in do-
main functions performed over input objects to obtain de-
sired products.

Most of the existing scientific workflow models are di-
rected graphs whose vertices represent data or processing
nodes and whose edges represent data or control flow. We
believe that representation to be straightforward enough for
users who are not accustomed to process modeling and thus
adopt it as a basis for our own model.

A Conceptual Workflow is a Directed Graph:

• whose vertices are Conceptual Inputs (representing
input objects), Conceptual Outputs (representing
desired products) or Conceptual Workflows them-
selves (representing domain functions)

• and whose edges are Conceptual Links (representing
the data and control flow).

Figure 2: Graphical Convention -
High-level elements

Figure 3: Meta-model - High-level elements

All those elements are shown on Figure 2 and their rela-
tionships are described in UML3 on Figure 3 (default cardi-
nality is * (many)).

3Unified Modeling Language, current specification available
at http://www.omg.org/spec/UML/Current

Conceptual Workflows are nested so as to provide en-
capsulation: parts of the workflow that are deemed too de-
tailed or that are reused can be kept inside a sub-workflow
and thus hidden in a black box from the viewpoint of the
parent workflow. That mechanism is provided by most Sci-
entific Workflow frameworks.
Each Conceptual Workflow can be associated to any

number of:

• Functions: domain concepts such as Align Image or
Generate Photons

• and Concerns: functions outside the scope of the
domain, pertaining to a lower, more technical, level
of abstraction such as Append Prefix or Convert to

String or to cross-cutting non-functional areas of ex-
pertise (e.g. Quality of Service) such as Compress

data or Retry 3 times.

Conceptual Inputs represent the starting materials of
the in-silico experiment, whereas Conceptual Outputs
represent its results. Both can be associated to any num-
ber of Datasets: domain concepts such as Brain Model or
Synthetic Sonogram.
Conceptual Links represent interactions between 3 pos-

sible pairs of source/target elements:

• Conceptual Input → Conceptual Workflow,

• Conceptual Workflow → Conceptual Workflow or

• Conceptual Workflow → Conceptual Output.

Because a Conceptual Workflow can represent any num-
ber of activities (it is often an entire sub-workflow), a given
Conceptual Link can represent any number of data flows
(i.e. data is transferred from the source to the target) and
or any number of ordering constraints (i.e. the target starts
after the source is done). Figure 8 in Section 3.1 will illus-
trate that, after the definition of data flows and ordering
constraints in our model.
Because in-silico experiments are inherently very data-

driven, Conceptual Links will most often translate to a set
of data flows. Even then, a Conceptual Link should not be
confused with a Data Link, since it restrains neither number
nor types of data transferred.
Let H be the set of Conceptual Workflows and R be the

binary relation of Conceptual Link, the relation R is transi-
tive: ∀x, y, z ∈ H, xRy ∧ yRz ⇒ xRz.

2.2 Application to VIP use case

Figure 4: High-level Conceptual Workflow -
Generic VIP simulator

http://www.omg.org/spec/UML/Current

To provide end-users with an interface that eases the ex-
tension of the platform to new simulators, it is necessary
to identify common ground between the VIP simulators al-
ready in place, at the level of elements as well as at the
structural level. While the four simulators considered ini-
tially were developed independently and do not show much
resemblance at first glance, they share a common high-level
structure modeled as a Conceptual Workflow in Figure 4:

• the Object Model (OM): what is scanned by the med-
ical imaging procedure (e.g. a brain, a lung),

• the Simulation Parameters (SP): procedure’s details
(e.g. probe orientation, scanner dimensions),

• from those inputs, the system produces a Synthetic

Medical Image (SMI) by performing the action Sim-

ulate a Medical Imaging Procedure (SMIP)

• and the simulation is optimized by splitting the data
over many processing resources then merging the re-
sults, hence the cross-cutting non-functional concern
Split/Merge, captured in a Pattern (see Section 4.1).

This workflow seems generic enough to serve as a basis not
only for the four simulators initially included in the platform,
but also for those that will be added later on.

3. TRANSFORMATION PROCESS
Conceptual Workflows can be used on their own, as a

way to formally describe in-silico experiments at the level
of the end-user’s domain, but the execution is the ultimate
goal of any Scientific Workflow and thus their true use is
through conversion to Abstract Workflows that can be del-
egated to existing Scientific Workflow frameworks. To that
end, Conceptual Workflows must embed enough information
to enable their transformation into Abstract Workflows.

While the conversion Abstract → Concrete takes place be-
tween a framework and an infrastructure and thus has to be
entirely automated, the conversion Conceptual → Abstract
has to rely on much user knowledge and decision-making
and therefore is semi-automated at best. We will discuss
how in Section 5.

Figure 5: From Conceptual to Abstract Workflow

The conversion is done in 3 major steps, shown in Figure 5:

1. Mapping is the step where the scientific functions
(e.g. Align Gene Sequence) are mapped to processing
units (e.g. grid services) that fulfill them.

2. Composition is the step where the units found at the
previous step are inter-connected.

3. Conversion is a step of translation from our model
to an existing Abstract Workflow language such as
GWENDIA [14] or Taverna’s SCUFL [9].

In order to progressively transform Conceptual Workflows
into Abstract Workflows, we have to enrich the model with
low-level elements that pertain to abstract workflows, if not
in a fully detailed and readily executable way, at least in
a precise enough manner that the link between conceptual
and abstract levels remains clear.
Those needed low-level elements are detailed in the next

section. As for the application of patterns, mentioned on
Figure 5, it will be described in Section 4.1.

3.1 Model
As of now, we have found necessary to describe the follow-

ing elements that are commonly found in Abstract Work-
flows (though under various names):

• Activities are processing units such as Web services,
grid jobs, tasks or sub-processes.

• Input (resp. Output)Ports are the arguments (resp.
products) of Activities.

• Inputs (resp. Outputs) are the arguments (resp.
products) of the workflow itself.

• Data Links are data transfers between 3 possible
pairs of elements:

– Input → Input Port,

– Output Port → Input Port or

– Output Port → Output.

• Order Links are ordering constraints between activi-
ties, ensuring the target does not start until the source
activity is finished. We have not included other types
of control flows in our model yet, but we plan to at
least include conditionals.

Figure 6: Graphical Convention -
Low-level elements

All those elements are shown on Figure 6 and their rela-
tionships are described in UML3 on Figure 7 (default cardi-
nality is * (many)).

Figure 7: Meta-model - Low-level elements

Figure 8: Conceptual Links Expressiveness

As mentioned in Section 2.1 and as shown on Figure 8,
Conceptual Links can represent any number of Data Links
and/or Order Links.

Like Conceptual Workflows, Activities are nested so as
to provide encapsulation. Like their equivalents in Abstract
Workflows, Activities are black boxes: they might be atomic
processing units like Web services or grid jobs, but they
might as well be entire sub-workflows.

Occasionally, data transfers between activities are done
implicitly: if an activity A produces data at a specific lo-
cation where the activity B retrieves it, or if the Scientific
Workflow Framework handles the transfer transparently (so
that each activity processes local data), then it is an im-
plicit data transfer in the sense that it does not appear on
the Abstract Workflow.

For such a transfer to take place successfully, knowledge of
it must be present at some level. For instance, the user might
know that all activities must be fed the same path as input
for the entire process to work, or the service descriptors
might contain information about the implicit data that is
interpreted by the Enactor (the software that deploys and
controls the workflow’s execution) transparently for the user.

In both cases, the knowledge is required but not explicit
on the workflow itself and thus it hinders both reading and
sharing. To alleviate this problem, we introduce the con-
cept of Implicit Port that denotes the implicit production or
consumption of data by an Activity.

3.2 Application to VIP use case
All four simulators share the high-level Conceptual Work-

flow shown on Figure 4, but the transformation process
yields different results depending on the target application.
The step-by-step transformation process of each simulator
is outside the scope of the present article. To illustrate the
transformation process, we shall focus on the PET simu-
lator (Sorteo), for it showcases most of the optional steps.
Sorteo simulates a PET procedure through a Monte Carlo

algorithm [15]. It is done in three steps:

1. generateJobs effectively splits data, so that different
chunks are processed in parallel,

2. singles (short for single photons) are generated with
one call per job to sorteo_singles and then merged
through one call to sorteo_single_end

3. and then one call per job to sorteo_emission compute
emissions from the singles and, finally, the emissions
are merged by one call to sorteo_emission_end.

The Object Model is mapped to a file called fantome_v, the
Simulation Parameters to text_protocol and the Syn-

thetic Medical Image to sinogram.

Figure 9: Sorteo - Mapping

The result of the Mapping phase is shown on Figure 9.

Figure 10: Sorteo - Composition

When trying to compose the activities mapped at the pre-
vious step, we encounter many type mismatches:

• as its name suggests, text_protocol is not in binary
format, as expected by sorteo_singles, and the ac-
tivity CompileProtocol will remedy that,

• sorteo_single_end and generateJobs expect the to-
tal number of jobs, an information that is contained
in text_protocol but must be extracted through the
script parse_text_protocol,

• and the final output is supposed to be of type raw
SINO, but sorteo_emission_end produces an LMF
file, the conversion of which is done by the converter
activity LMF2RAWSINO (which in turn also requires the
binary protocol produced by CompileProtocol).

Having resolved those mismatches, we are left with 6 yet
unattached input ports and all of those expect the name of
the output directory, produced by the activity appendDate.
The plugging of appendDate in so many places in the same
workflow makes the final result, shown on Figure 10, slightly
difficult to read. Fortunately, we can use Patterns, that we
will introduce in Section 4, to alleviate this issue.

Figure 11: Sorteo in GWENDIA/MOTEUR2

The last conversion step, to an actual Abstract Workflow,
is a matter of conversion from our system’s internal model to
the target language of the platform (i.e. GWENDIA [14]).
Figure 11 is a screenshot of the GWENDIA Sorteo work-
flow edited in MOTEUR2. Among other things, we need
to make sure that all activities are fed the same directory
name and that merge activities (i.e. sorteo_single_end

and sorteo_emission_end) are appropriately synchronized.
The former issue is solved through the use of Patterns, as
described in the following section. The latter issue is one
commonly found when translating implicit data links (i.e.
links between implicit ports): in GWENDIA, inserting con-
trol links ensures proper synchronization.

4. REUSABLE COMPONENTS
Encapsulation on its own (through nesting of Conceptual

Workflows and Activities) does not provide enough flexibil-
ity to untangle concerns and ease sharing and reuse for two
main reasons.

Figure 12: Cross-cutting concerns

On the one hand, components are often used multiple
times inside the same parent workflow. Sub-workflows are
impractical in that case, because they cannot be cleanly
reused inside a given workflow: they are either duplicated
and instantiated as many times as they are used (lowering
performance and legibility) or they make the graph harder to
draw and read with many unnecessary edges. On the other
hand, cross-cutting concerns that impact the structure of
the base process (e.g. logging) simply defy encapsulation as
soon as they are tangled, like on Figure 12.
Taking inspiration fromAspect-Oriented Programming, we

propose the notion of Patterns, reusable fragments that are
woven into the base process dynamically during either the
Mapping phase if they are high-level Patterns (i.e. Patterns
that contain only high-level elements) or the Composition
phase if they are low-level Patterns, (i.e. Patterns that con-
tain low-level elements such as Activities).
The Patterns of our Conceptual Workflow Model are not

to be confused with the famous Workflow Patterns [?] iden-
tified systematically in business workflows to evaluate the
expressivity of workflow languages.

4.1 Model
Patterns are themselves Conceptual Workflows, spe-

cial in that they feature Join Points.
Join Points are placeholders in a Pattern that are re-

placed with elements of the base process during application.
A high-level Pattern is one that features only high-level

elements, namely: Conceptual Inputs, Conceptual Work-
flows, Conceptual Outputs and Conceptual Links. If a Pat-
tern features low-level elements such as Activities and Data
Links, then it is a low-level Pattern.

Figure 13: Graphical Convention - Patterns

Figure 14: Meta-model - Patterns

Both levels of Patterns are shown on Figure 13 and the
part of the meta-model concerning Patterns is described in
UML3 on Figure 14 (default cardinality is * (many)).

To apply a Pattern to a Conceptual Workflow means to
merge the two by mapping each Join Point in the Pattern
to a compatible element in the Conceptual Workflow. Each
Join Point is connected to the rest of the Pattern it belongs
to by at least one link and those links restrain compatibility:
a Join Point must be replaced with an element that is com-
patible with its links. For instance, if a given In Join Point is
connected to the rest of the Pattern by a Data Link, then it
is replaced by a Data Source; Conceptual Sources and Order
Sources will not do. Table 1 details all cases.

4.2 Application to VIP use case
The Split/Merge concern, i.e. the optimization by split-

ting data, can be implemented in very different ways, de-
pending on the process it applies to as well as the activi-
ties the process maps to. For instance, the main activity of
the MRI simulator (SIMRI) (i.e. a legacy program called
simri_calcul wrapped as a Web service), uses MPI to pro-
cess data chunks in parallel and thus already fulfills the
Split/Merge concern. None of the other three simulators
handle that concern internally.

Because it affects the very structure of a process, the
pattern we defined to capture the Split/Merge concern is
a high-level one. As shown on Figure 15, applying the
Split/Merge pattern to a Conceptual Workflow boils down
to weaving two additional steps into the process: a pre-
processing step to split input and a post-processing step to
merge output. Both steps must then be mapped like any
other Conceptual Workflow.

When a conceptual workflow has been mapped to two
or more activities, weaving becomes less straightforward.
There are two main cases (shown on Figure 16):

Figure 15: Pattern - Split/Merge

Figure 16: Split/Merge cases

• Case 1: data independence is valid throughout the
processing chain and thus data is split only once at
the very beginning and merged only once at the very
end of the chain.

• Case 2: data independence is only valid at the scale
of each activity and thus data must be merged after
each processing step in the chain.

Any other case is a composite of those two and suggests that
the conceptual workflow should itself be split or detailed
through encapsulated sub-workflows.

Figure 17: Sorteo - Mapping (with Patterns)

Sorteo is an example of the Case 2, as shown on Figure 17,
which is the result of Mapping Sorteo after applying the
Split/Merge Pattern. The generateJobs activity appears
twice, but it is fairly easy to determine that it is the same
instance during the Composition phase.

Table 1: Compatibility between Links and Sources/Targets
Abstraction Level Link type Source type Target type

High-level Conceptual Link Conceptual Source Conceptual Target

Low-level
Data Link Data Source Data Target
Order Link Order Source Order Target

Figure 18: Pattern - Directory Name

All simulators expect the name of the output directory.
There is a naming convention sub-workflow that is respected
throughout the platform and it is captured in a Pattern
called Directory Name, shown on Figure 18.

Figure 19: Sorteo - Composition (with Patterns)

Figure 19 shows the result of using the Directory Name

pattern (abbreviated GDN on the figure) when composing
Sorteo: the reuse itself becomes obvious and the overall read-
ability is much improved.

5. PROCESS SEMI-AUTOMATION
Conceptual Workflows allow scientists to model their in-

silico experiments directly at the domain level, but the trans-
formation process into executable Abstract Workflows im-
plies lowering the abstraction level and using technical and
non-functional knowledge and know-how.

The transformation process from Conceptual to Abstract
workflow defined in Section 3 was performed manually in
the case presented in Section 3.2, but our goal is to pro-
vide tools for workflow designers to ease reuse, repurposing
and ultimately sharing of Scientific Workflows. It is there-
fore critical to assist end-users through the transformation
process as much as possible.

5.1 Resources
To achieve our goal implies handling multi-domain knowl-

edge in a computer-legible way. As elaborated in [8], Se-
mantic Web technologies were created and are developed

precisely to tackle that challenge.
An ontology is the formal definition of concepts and re-

lationships between them. The standard language, recom-
mended by the World Wide Web Consortium4 (W3C), is
the Web Ontology Language5 (OWL). Ontologies have two
main uses: (1) to describe a domain in a formal and stan-
dardized way (2) and to reason about entities (instances of
the classes defined in the ontology) in order to infer new in-
formation based on what has been asserted. For instance, if
it is stated that :Man rdfs:subclassOf :Mortal (men are
mortal) and it is asserted that :Socrates a :Man (Socrates
is a man), then an inference engine can infer that :Socrates
a :Mortal (Socrates is mortal).
The concepts the system will deal with can be divided into

three classes: (i) domain concepts from the end-user scien-
tific research area, (ii) technical concepts related to the ex-
ecution of the experiment and (iii) non-functional concepts
such as Quality of Service concepts. However, ontologies
are not necessarily divided along those lines. For instance,
in the context of the VIP project, the domain and technical
concepts will come from the VIP ontology and we will build
our own ontology dedicated to non-functional concerns.
The set of asserted information is generally called the

Knowledge Base. In our system’s case, it will be an actual
database (called a Triple Store because it stores assertions
as Subject-Property-Object triples).
Specific elements of our Conceptual Workflow model act

as a bridge to the ontologies:

• Functions are domain or technical concepts describ-
ing processes and actions (e.g. GenerateSingles, Con-
vertLMFtoRawSINO),

• Datasets are domain or technical concepts describing
data types or contents (e.g. LungCancer, ZrawFormat)

• andConcerns are non-functional concepts (e.g. Spli-
tAndMerge, Logging).

As detailed in Sections 2.1, 3.1 and 4.1, Conceptual Work-
flows and Patterns are annotated with Functions and Con-
cerns, Activities with Functions and Inputs/Outputs (of a
Conceptual Workflow or of an Activity) with Datasets.
Ontologies and annotations form a graph whose vertices

are entities and whose edges are properties; a triple is es-
sentially an edge from a source vertex Subject to a target
vertex Object, labeled by a Property. That graph is en-
riched through inference. Browsing those often huge graphs
is somewhat akin to browsing relational databases and the
standard SPARQL Query Language for RDF 6 is itself an
SQL look-alike. If we wanted to look for Conceptual Work-
flows that fulfill the SplitAndMerge concern, we would use
a query that looks like Listing 1.

4http://www.w3.org/
5http://www.w3.org/TR/owl-overview/
6http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/rdf-sparql-query/

Listing 1: SPARQL query example

SELECT ?cw
WHERE {

?cw a : ConceptualWorkflow .
?cw : f u l f i l l s ? concern .
? concern a : SplitAndMerge .

}

5.2 Towards automating transformation
At the start of the transformation process detailed in Sec-

tion 3 and represented on Figure 5, we have the following in-
formation and tools at hand: a high-level annotated Concep-
tual Workflow that we want to transform, a Knowledge Base
containing annotated Activities, Conceptual Workflows and
Patterns as well as the ontologies the annotations refer to
(i.e. theoretically, a domain ontology, a technical ontology
and a non-functional ontology, though, as noted in the pre-
vious section, the distribution of concepts over ontologies
might differ in practice).

During the Mapping phase of the transformation pro-
cess, our system should suggest Activities, Inputs and Out-
puts matching the Functions, Datasets and Concerns that
annotate the high-level Conceptual Workflow. Because per-
fect matches are unlikely, the system will have to look for
partial matches (called candidates) - that is easily done
through a SPARQL query - and rank them according to
similarity metrics that take semantic distance (distance be-
tween concepts inside an ontology) into account. For in-
stance, a :MonteCarloPETSimulator with outputs :LmfFor-
mat like Sorteo is an imperfect but good match for a :PET-

Simulator that outputs :RawSINOFormat.
During the Composition phase, our system should not

only suggest composing elements found at the previous step,
but also check every data link for consistency (and warn the
user when a mismatch is found, like sending a String to a
service expecting a File). When direct composition is not
possible because of a mismatch, the system should try to
look for converter activities or suitable chains of converter
activities, up to a depth that does not impact performance
too severely.

The Conversion phase, the final translation to a target
Abstract Workflow language, ought to be fully automated.
Each target language will warrant a dedicated translator.
Our top priority is translation to the workflow language
(GWENDIA) of the framework used on the VIP platform
(MOTEUR), but we plan to work on other translators as
well, especially one to IWIR (Interoperable Workflow Inter-
mediate Representation), the multi-platform language of the
SHIWA7 interoperability project.

GWENDIA is a hybrid workflow language (mostly data-
driven but featuring control constructs such as loops, condi-
tionals and order constraints) that handles data arrays ex-
plicitly [14]. Since GWENDIA is so expressive and our final
workflow representation (i.e. the result of the Composition
phase) is fairly close to it, the conversion will be straightfor-
ward but for a few advanced constructs that require further
investigation.

7http://www.shiwa-workflow.eu/

5.3 Limitations
Between the Concrete level of execution, where the Enac-

tor handles strings, files and Web services, and the Concep-
tual level of the user’s domain, where semantics are formally
defined by ontologies, there is always a gap of description
where knowledge is present only implicitly. Try as we might,
we will never completely fill that gap, neither by extend-
ing ontologies to ever finer-grained concepts (e.g. extending
:ImageFile with :PNGFile), nor by extending the basic for-
mats with higher-level information (e.g. tagging additional
information inside the files).
From that gap will come false positives, where the com-

position of two activities will seem possible to the system,
because they match at both the low level of types and the
high level of concepts, but will not work for some unforeseen
and/or out-of-scope reason.
Besides, annotations will likely be imperfect themselves

and that entails false negatives: good candidates that will
rank low or not be found at all, because either they them-
selves or the Conceptual Workflow they could be suggested
for were not annotated properly.
For all those reasons, the transformation process can never

be fully automated. Still, the more computer-aided it be-
comes, the better.

6. RELATED WORKS
Our approach is very similar to that of the Wings [?]

project, but their aim is to build a self-contained solution on
top of the Pegasus8 framework. While we see the benefits
of a single unified system from high-level in-silico experi-
ments all the way down to computing infrastructures, we
hope that by defining our model upstream from all exist-
ing frameworks, it will be of use for users of existing sys-
tems and potentially become a basis of comparison between
frameworks.
The well-known myExperiment project [5] is a Scientific

Workflow sharing social website, leveraging the Web 2.0 to
ease workflow discovery. Workflows can be discovered by
keywords, tags, authors and so on, but all those methods,
save for pure social sharing, rely on additional metadata
provided by the workflow authors. As for the reuse as-
pect of sharing, the myGrid team, behind Taverna as well
as myExperiment, advocates for “semantically rich aggre-
gations of resources, that possess some scientific intent or
support some research objective” [?]: a definition we believe
our Conceptual Workflows fit.
The WOODSS project [13], like our proposal, enhances

reuse and sharing through the creation of knowledge base of
annotated Scientific Workflows, but they provide no formal
high-level description like Conceptual Workflows.
The Kepler Project [11] has always considered Separa-

tion of Concerns a top priority, going as far as isolating the
Model of Computation (i.e. the exact same workflow can
be executed in entirely different ways depending on which
Director is selected, for instance in sequence or in paral-
lel). Among works to improve reuse of Kepler workflows
are [4], which introduces a separated control-driven layer in
the data-driven Kepler, and [1], which captures technical
and non-functional concerns as coarse-grained composable
blocks. In both cases, the user is further shielded from the
concrete technical decisions taken at runtime and, in the

8http://pegasus.isi.edu/

http://www.shiwa-workflow.eu/
http://pegasus.isi.edu/

latter, Semantic Web technologies are also considered a vi-
able tool to semi-automate instantiation (i.e. mapping) and
wiring (i.e. composition). In neither case is the in-silico
experiment formally represented at all.

7. CONCLUSION AND FUTURE WORKS
We have defined Conceptual Workflows and shown how

they can be used to untangle concerns and improve read-
ability, by emphasizing the scientific process itself, and thus
ease reuse and repurposing. That formal model (including
low-level elements akin to those found in Abstract Work-
flows), semantic annotations and a SPARQL query engine
make it possible to semi-automate the transformation from
an in-silico experiment (described as a high-level Conceptual
Workflow) to an executable artifact (in an Abstract Work-
flow language).

In the future, we plan to investigate how much our Con-
ceptual Workflow model and the system we are building on
top of it can become useful not only for reuse and repurpos-
ing, but also for portability - using Conceptual Workflow
as a go-between two different target Abstract Workflow lan-
guages - and to improve accessibility for end-users - through
the improved readability and support of know-how transfer
via computer-aided design.

8. ACKNOWLEDGMENTS
This work is funded by the French National Agency for

Research under grant ANR-09-COSI-03 “VIP” and the Eu-
ropean I3 SHIWA project under contract number 261585.
The UML diagrams of Figures 3, 7 and 14 were generated
with the great free online engine provided by Tobin Harris
at http://yuml.me.

9. REFERENCES
[1] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt,

M. Miller, C. Amoreira, Y. Potier, and B. Ludäscher.
A Framework for the Design and Reuse of Grid
Workflows. In Scientific Applications of Grid
Computing, volume 3458 of LNCS, pages 295–299.
Springer, 2005.

[2] R. Barga and D. Gannon. Scientific versus Business
Workflows. In Workflows for e-Science, chapter 2,
pages 9–16. Springer-Verlag, 2007.

[3] H. Benoit-Cattin, G. Collewet, B. Belaroussi,
H. Saint-Jalmes, and C. Odet. The SIMRI project : a
versatile and interactive MRI simulator. Journal of
Magnetic Resonance Imaging (JMRI), 173(1):97–115,
Mar. 2005.

[4] S. Bowers, B. Ludäscher, A. Ngu, and T. Critchlow.
Enabling Scientific Workflow Reuse through
Structured Composition of Dataflow and
Control-Flow. In IEEE Workshop on Workflow and
Data Flow for Scientific Applications (SciFlow),
Atlanta, USA, Apr. 2006.

[5] D. De Roure, C. Goble, and R. Stevens. The Design
and Realisation of the myExperiment Virtual
Research Environment for Social Sharing of
Workflows. Future Generation Computer Systems
(FGCS), 25(5):489–598, 2009.

[6] W. Frakes and K. Kyo. Software reuse research: status
and future. IEEE Transactions on Software
Engineering (TSE), 31(7):529–536, July 2005.

[7] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer,
G. Fox, D. Gannon, C. Goble, M. Livny, L. Moreau,
and J. Myers. Examining the Challenges of Scientific
Workflows. Computer, 40(12):24–32, 2007.

[8] A. Goderis, U. Sattler, P. Lord, and C. Goble. Seven
Bottlenecks to Workflow Reuse and Repurposing. In
The Semantic Web – ISWC 2005, volume 3729 of
LNCS, pages 323–337. Springer, Heidelberg, Germany,
2005.

[9] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R.
Pocock, P. Li, and T. Oinn. Taverna: a tool for
building and running workflows of services. Nuclear
Instruments and Methods in Physics Research A,
34(7):729–732, July 2006.

[10] J. Jensen. Simulation of advanced ultrasound systems
using Field II. In IEEE International Symposium on
Biomedial Imaging: Nano to Macro, pages 636–639,
Arlington, VA, USA, Apr. 2004.

[11] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific Workflow Management and the Kepler
System. Concurrency and Computation: Practice &
Experience (CCPE), 18(10):1039 – 1065, Aug. 2006.

[12] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher.
Scientific workflow design for mere mortals. Future
Generation Computer Systems (FGCS),
25(5):541–551, 2009.

[13] C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri,
G. Z. J. Pastorello, A. Santanche, R. S. Torres,
E. Madeira, and E. Bacarin. WOODSS and the Web:
annotating and reusing scientific workflows. SIGMOD
Record, 34(3):18–23, Sept. 2005.

[14] J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari,
and M. Blay-Fornarino. A data-driven workflow
language for grids based on array programming
principles. In Workshop on Workflows in Support of
Large-Scale Science (WORKS’09), pages 1–10,
Portland, USA, Nov. 2009. ACM.

[15] A. Reilhac, C. Lartizien, N. Costes, S. Sans,
C. Comtat, R. N. Gunn, and A. C. Evans.
PET-SORTEO: a Monte Carlo-based Simulator with
high count rate capabilities. IEEE Transactions on
Nuclear Science (TNS), 51(1):46–52, Feb. 2004.

[16] J. Tabary, S. Marache, S. Valette, W. Segars, and
C. Lartizien. Realistic X-Ray CT Simulation of the
XCAT Phantom with SINDBAD. In IEEE NSS and
MIC Conference, pages 3980–3983, Orlando, USA,
Oct. 2009.

[17] J. Yu and R. Buyya. A taxonomy of scientific
workflow systems for grid computing. ACM SIGMOD
records (SIGMOD), 34(3):44–49, Sept. 2005.

http://yuml.me

	Introduction
	Conceptual Level
	Model
	Application to VIP use case

	Transformation process
	Model
	Application to VIP use case

	Reusable components
	Model
	Application to VIP use case

	Process semi-automation
	Resources
	Towards automating transformation
	Limitations

	Related Works
	Conclusion and Future Works
	Acknowledgments
	References

