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Abstract—Production grids exhibit high failure rates ham-
pering the development of many large scale scientific ap-
plications. End users require robust experiment production
environments ensuring efficient resubmission of failed tasks.
Proper parameterization of resubmission strategies is a com-
plex problem that depends on the non-stationary workload
conditions experienced by the infrastructure. In order to de-
termine optimal resubmission parameters, probabilistic models
of the overhead experienced by grid jobs are defined, taking
into account the distribution of faults as measured on the
infrastructure. Two strategies that can be implemented on the
client side are proposed. Their models are evaluated under
variable workload conditions to assess their validity along time.
Their results are compared and a trade-off between usability
and model accuracy is discussed.

Keywords-Grid computing; Fault tolerance; Probabilistic
modeling.

I. INTRODUCTION

Although increasingly adopted by diverse scientific com-

munities, production grid infrastructures are still considered

complex by end-users. The counterpart of the scalability

and collaborative capabilities of grids is the significant

investment needed to build reliable distributed applications.

Despite best efforts in middleware development, one of

the major difficulties encountered by end-users is the high

failure rate observed on grids. It is inherent to any large scale

distributed system, due to the interdependencies between

many software components, the unprecedented amount of

computing resources involved, the heterogeneity of mid-

dleware stacks, the concurrent exploitation by many users,

and the criticality of communications between distributed

components. Robust experiment production environments,

centered on the client side to be resilient against connectivity

problems, are therefore mandatory for most usages.

The most basic functionality needed by all end-users is

the capability to resubmit failed tasks to ensure experiments

completion. Failure solving and resubmission should not be

let under the responsibility of the user. It is an extremely te-

dious and error-prone process when dealing with large scale

experiments. Furthermore, end-users are lacking expertise

and information to make proper decisions. Indeed, the be-

havior of production grids is difficult to comprehend, consid-

ering their non stationary workload and the interconnection

of many distributed entities. Since it is hardly feasible to

obtain a fine-grained model of a running production grid

infrastructure, global probabilistic models of grid workloads

are increasingly used [1], [2], [3] to tackle the complexity of

grid systems. Large collections of real production grid usage

traces are collected for further analysis nowadays [4], [5],

[6]. These traces exhibit large number of failed jobs (jobs

that cannot complete execution due to a specific problem

reported by the middleware) and outliers (jobs for which no

trace information is reported by the system after some error

happened). For instance, analyzing more than 33 millions

of job traces collected on the EGEE European production

grid infrastructure1 over 22 months (September 2005 to June

2007) shows as much as 19% of failed jobs and 16% of

outliers. With about 35% of jobs not completing normal

execution. Furthermore, even successful jobs experience

variable latency (time between job submission and jobs

starting execution), typically characterized by heavy-tailed

probability laws [1], [3]. As a consequence, a non-negligible

number of jobs face highly penalizing overheads in any

large scale experiment. Resubmission of delayed jobs [8]

or more aggressive multi-submission strategies [7], [8] can

significantly improve grid usage experience.

This work aims at developing models of job resubmission

strategies that can be implemented on the client side in

production grid systems to assist end-users in achieving

high performance when implementing grid applications. The

models are analyzed using real infrastructure usage data.

Different periods are investigated to assess the validity of the

models under different workload conditions. Simplifications

of the models are considered to lower their complexity. The

findings of this paper are that tractable probabilistic models,

taking into account faults and outliers but approximating

the impact of the resubmission process, exhibit good perfor-

mance and usability.

II. RELATED WORK

With the generalization of grid infrastructures exploitation

for scientific production, large collections of grid usage

traces become available. These traces are gaining a growing

attention for the potential insight on grid systems they

provide, and structured trace archive initiatives are emerg-

ing. They are used for statistical analysis of grid systems

behavior. Probabilistic models have also been derived and

1EGEE European multi-disciplinary grid: http://www.eu-egee.org



exploited for addressing various optimization problems, es-

pecially related to fault-tolerance.

The problem of structured traces collection by itself is

non-trivial. Grid traces are extracted out of the logs from

many different and distributed middleware services. The logs

information may be incomplete, and sometimes incoherent

due to distributed resources synchronization problems. It

may contain only partial information, or conversely pro-

duce very verbose low-level information that needs to be

filtered out prior to analysis. Consequently, several groups

are investing efforts in collecting usable grid usage trace

sets. The Grid Workloads Archive [4] aims at collecting

and organizing traces from different grid infrastructures. It

also proposes data processing tools. The Real-Time Monitor

(RTM) [5] and the Grid Observatory2 (GO) are focusing on

the EGEE production grid. The RTM gathers traces in near

real-time for providing live usage information. It generates

compact structured data out of the logs collected. The GO

aims at collecting, structuring and archiving long-term traces

for further analysis. The GO data is thus exploited in many

computer science-related works [6], [9], [3], [8]. Both RTM

and GO traces are exploited in this paper.

Beyond simple traces collection, many recent works have

focused on post-analysis of the data archived [10], [11],

[12]. In the AMon monitoring system [10], most relevant

information on jobs submitted to EGEE is filtered out of

the traces in order to help users to monitor experiments

yielding large amounts of jobs. Due to the high failure

rate characterizing grid infrastructures, many works are

focusing on error detection and error cause identification.

The GSTRAP system [9] aims at clustering traces from

EGEE in order to detect and identify anomalies. Cieslak et

al [11] are classifying errors using data mining techniques in

order to help users to understand the reason for faults. Their

study is based on CONDOR and experiments have been

made both on a local grid and on the Open Science Grid3.

Maier et al [12] pointed out the fact that error codes returned

by systems do not always properly identify the real cause

of failure. They are using data mining techniques on EGEE

traces in order to determine the root cause for faults. Their

methodology is decomposed into two steps: first building

association rules and then pruning for deducing the restricted

set of most relevant rules. In this paper, we are proposing

two strategies for including faults and delays to failure in a

probabilistic resubmission model but we did not investigated

the causes of failure.

Statistics collected are further exploited for studying and

modeling grid systems. Focusing on jobs management, Ger-

main et al [6] have compared two user-level scheduling algo-

rithms using recorded traces. Fault-tolerant scheduling meth-

ods have also been considered, such as rescheduling [13],

2Grid Observatory:http://www.grid-observatory.org
3OSG: http://www.opensciencegrid.org

[14], [15] or short runs-based tests that apply to quite

long, restartable jobs [16]. Ilijašić et al [3] have examined

the relations between users, grid computing gateways and

jobs. They have proposed probabilistic models in order to

predict job abortion. Glatard et al also adopted probabilistic

modeling approaches to estimate regular grid jobs latency [1]

and more recently for studying pilot-jobs [17] on the EGEE

production grid.

In a previous work we have modeled three different

resubmission strategy [18]: the single resubmission, the mul-

tiple resubmission and the delayed resubmission strategies.

However, faults where not considered in this work. In [8],

we have demonstrated the necessity to take into account the

latency in fault detection on a production grid, such a the

EGEE. We have thus introduced the management of failures

in the resubmission strategy proposed by [1] where each

job is canceled and restarted if it has not started before a

time-out value that is to be optimized. However, the model

was based on a simplifying assumption that caused the time-

out delay to be constant, ignoring potential faults recorded

on the system. The purpose of this paper is to compare

two implementations of the resubmission strategy: with or

without adapting time-out dynamically. A proper model of

strategy aim at optimizing the parameters of re-submission

strategies that are needed to handle errors.

III. GRID JOBS RESUBMISSION

A. Probabilistic modeling

The variable workload conditions and high failure rates

encountered on grid infrastructures cause grid jobs to face

non-negligible overheads. In the remainder, a job latency

refers to the period of time between job submission and the

start time of job execution on a grid computing resource. A

fraction of outliers, never completing due to system faults

resulting in complete loss of these jobs, is also observed. It is

therefore compulsory for grid client applications to monitor

the population of jobs submitted to the system and re-

submit jobs which latency time is abnormally high to ensure

completion of the computations. Determining the time-out

threshold beyond which jobs need to be re-submitted is

a non-trivial process as latencies are depending on the

underlying grid infrastructure capability and workload.

To address this problem, a probabilistic model of the

grid jobs latency is introduced below. Statistics on the grid

infrastructure properties are collected through the analysis

of grid usage traces to instantiate this model. An objective

function of the jobs execution time expectation is then

derived and optimized regarding to the time-out threshold.

In the remainder, a capital letter X traditionally denotes

a random variable with the probability density function

(pdf) fX and the cumulative density function (cdf) FX .

Jobs submitted can be either successful, faulty (due to a

system error reported to the client) or outliers (lost without
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Figure 1. Two examples of job submission with resubmissions in case of
failures.

any notification). We denote as φ the fraction of jobs

encountering a system fault and ρ the fraction of outliers.

B. Model of the grid jobs latency

Let R denote the proper latency of a successful job and

F denote the failure time of a faulty job. Assuming that

faulty jobs are resubmitted without delay, let L denote the

job latency taking into account the necessary resubmissions

(see figure 1). L depends on the distribution of the jobs

failure time. The probability, for a job to succeed is (1 −
ρ− φ). In practice, the values of ρ, φ, and the distributions

of R and F are numerically estimated from grid monitoring

traces while L is computed as shown below.

A job encounters a latency L < t, t being fixed, if it is

not an outlier and either:

• the job does not fail (probability (1 − ρ − φ)) and its

latency R < t (probability P (R < t) = FR(t)); or

• the job fails at t0 < t (probability φfF (t0)) and the job

resubmitted encounters a latency L < (t− t0)

The cumulative distribution of L is thus defined recursively

by:

FL(t) = (1− ρ− φ)FR(t) + φ

∫

t

0

fF (t0).FL(t− t0)dt0

As shown in a previous work [8], the cdf FL can be

numerically estimated by discretizing this equation (intro-

ducing the second as the discretization step for the variable

t) and observing that no successful job has a null latency

(FR(0) = 0)4. This results in the following recursive

expression of FL:

FL(0) = 0

FL(1) =
1− ρ− φ

1− φfF (0)
FR(1)

FL(t > 1) =
1

1− φfF (0)

[

(1− ρ− φ)FR(t)

+φ

t−1
∑

u=1

fF (t− u)FL(u)

]

(1)

4For a discussion on the validity of these hypotheses, refer to [8]

Under the hypothesis that failed jobs reporting requires at

least one second (and therefore fF (0) = 0), this equation

simplifies:

FL(0) = 0
FL(1) = (1− ρ− φ)FR(1)
FL(t > 1) = (1− ρ− φ)FR(t)

+φ

t−1
∑

u=1

fF (t− u)FL(u)

(2)

This hypothesis is valid in the sense that it has negligible

impact on the jobs expected latency optimization procedure

as will be shown later.

The probabilistic law L approximated through the discrete

equation 2 can be exploited to numerically estimate the

expected latency of jobs submitted to the grid infrastructure.

This expectation depends on L and the resubmission strategy

adopted as described in the following sub-sections. To be of

practical interest, the derived expectation model needs to

remain mathematically and computationally tractable.

C. Resubmission strategy and time-out estimation

Various client-side re-submission and multi-submission

strategies have been considered in the literature to improve

grid performance [7], [18]. In this paper we focus on the

simplest and most common simple resubmission strategy,

where a job is canceled and resubmitted if its latency is

higher than a time-out value t∞. Poor estimations of the

time-out values can have strong performance impact: a

lower time-out value will cause potentially successful jobs

to be cancelled too early, while a higher time-out value will

cause penalizing delays for non-successful jobs. However,

the value of t∞ can be determined through an optimization

procedure [1]. Let J denote the total latency experienced by

a job, including as many resubmissions as needed after the

time-out threshold t∞ has been reached.

A simplified model of the expected latency taking into ac-

count resubmissions as a function of the time-out (EJ(t∞))
is proposed in [1]. However, this model excludes faults

(faulty jobs were excluded from the statistics collection).

To include faults in the resubmission process, we describe

below two alternatives to this model (see figure 2):

J0 Jobs whom proper latency R is greater than the time-out

value t∞ are canceled and resubmitted. The resulting

total latency is denoted J0.

J1 Jobs for which the latency L, including resubmissions

due to faults, is greater than the time-out value t∞ are

canceled and resubmitted. The resulting total latency is

denoted J1.

Strategy J1 is an approximation of strategy J0 when faults

occur: it does not take into account the time spent before

fault notification in the resubmission delay. The time-out

threshold will therefore be reduced by this period of time.

However, the model of J1 is simpler and computationally
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Figure 2. Two ways of taking faults into account in the resubmission
strategy J0 (with time-out adapted dynamically in case of failures) and J1
(with fixed time-out, independently of failures).

more efficient. In [8], only strategy J1 was introduced. In

this paper, we also describe J0 and show how it can be

approximated by J1.

D. Strategy J0

Strategy J0 cancels and restarts a job only when its proper

latency is greater than the time-out value t∞. Since no job

has a null latency R, we have:

fJ0
(0) = 0

Before the time-out value t∞, no job has been canceled.

There are two possibilities for a job to have a total latency

of t with 0 < t < t∞:

• no failure and latency equal to t: (1− ρ− φ)fR(t)
• at least one failure at t0: φfF (t0)fJ0

(t− t0)

leading to:

fJ0
(t) = (1− ρ− φ)fR(t) + φ

t−1
∑

t0=1

fF (t0)fJ0
(t− t0)

After the time-out value t∞, the job has already at least

failed once or time-outed once. A time-out occurs in case

of:

• outlier, with probability: ρ

• latency to failure greater than t∞, with probability:

φ(1− FF (t∞))
• latency R greater than t∞, with probability: (1 − ρ −

φ)(1− FR(t∞))

leading to:

fJ0
(t) = (ρ+ (1− ρ− φ)(1− FR(t∞))

+φ(1− FF (t∞)))fJ0
(t− t∞)

+φ

t∞
∑

t0=1

fF (t0)fJ0
(t− t0)
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Figure 3. Strategy J0. Cumulative density functions of global latency
including resubmission for different time-out values (t∞).

The complete expression of fJ0
is given by equation 3:

fJ0
(0) = 0

fJ0
(0 < t < t∞) = (1− ρ− φ)fR(t)

+φ

t−1
∑

t0=1

fF (t0)fJ0
(t− t0)

fJ0
(t ≥ t∞) = (ρ+ (1− ρ− φ)(1− FR(t∞))

+φ(1− FF (t∞)))fJ0
(t− t∞)

+φ

t∞
∑

t0=1

fF (t0)fJ0
(t− t0)

(3)

Figure 3 shows the profiles of the cdf total latency

including resubmissions with strategy J0 corresponding to

different time-out values. The curve corresponding to t∞ =
200 seconds is the closest to the optimal found among this

sample: it displays the fastest convergence towards 1.

From the expression of fJ0
in equation 3, the latency

expectation computation is straight forward using its math-

ematical definition:

EJ0
(t∞) =

∫

∞

0

tfJ0
(t)dt (4)

A typical profile of the expectation of the total latency, as

observed on a production grid, including all resubmissions

and computed from equation 4, is plotted in figure 4. In this

case, the curve reaches a minimum value EJ0
= 583s for an

optimal time-out value t∞ = 191s. An underestimation of

t∞ would cause early jobs cancellation, thus increasing the

number of resubmission and the total latency J0. Conversely,

an overestimation of t∞ would penalize the non-successful

jobs by late resubmission. This result is coherent with the

observation from figure 3 where the best curve profile is

obtained with t∞=200s.



E. Strategy J1

In strategy J1, in case of failure the job time-out is

not increased by the delay expired before failure reporting,

thus under-estimating the time-out of the resubmitted job.

Under this simplification hypothesis, the distribution of job

latency including resubmissions fL can be used to derive

the distribution fJ in case of failure as observed in [8].

The latency J1 is therefore defined as a function of L and

t∞: a job for which L is greater than t∞ is cancelled

and resubmitted, thus increasing J1 by the time-out delay.

Observing that FL(t) corresponds to the probability for a

job to succeed with a latency lower than t, the probability

for a job to time-out is q = P (L > t∞) = 1 − FL(t∞).
Denoting n the number of times the job timed-out (n is the

integer such that t ∈ [nt∞, (n+ 1)t∞]):

FJ1
(t) = P (L < nt∞)

+P (nt∞ < L < t | t ≤ (n+ 1)t∞)
= 1− qn + qnFL(t− nt∞)

(See [1] for details). Consequently, fJ1
(t) = qnfL(t−nt∞)

and the expectation of J1 is EJ1
(t∞) =

∫

∞

0
ufJ1

(u)du:

EJ1
(t∞) =

1

FL(t∞)

∫

t∞

0

(1− FL(u))du (5)

Minimizing this expression of EJ1
yields the optimal

time-out value t∞=195s for a minimal value EJ1
= 586s.

The profile of EJ1
is plotted on figure 4.

Note that the model of latency J1 was derived from

equation 2, assuming that fF (0) = 0. To validate this hy-

pothesis, the result obtained by this model can be compared

to the one obtained by a model derived from equation 1 [8].

The impact on the estimated execution time is lower than

0.005%, confirming the hypothesis.

It should be noted that besides its more complex mathe-

matical representation, model J0 is significantly more com-

pute intensive than model J1. If we denote by t∞MAX
the

upper bound of the interval of search for optimal timeout

and n the number of samples needed for the computation

of 4, the complexity of the computation of EJ in case of

J0 is in nt2
∞MAX

while it reduces to t2
∞MAX

in case of J1.

Numerically, we took t∞MAX
= 1000 and n = 100000.

IV. QUANTIFYING THE IMPACT OF FAULTS ON

RESUBMISSION STRATEGIES

The results obtained by exploiting strategies J0 and J1 are

compared to assess the performance of the simplified model

in place of the exact one. Different experimental settings

are considered to validate the results over infrastructures

exhibiting different properties and under variable workload

conditions along time. The first experiment targets realistic

conditions as observed on the EGEE production grid in-

frastructure. The second experiment targets different infras-

tructures by varying the model parameters (ratios of faults,
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outliers and distribution). The third and fourth experiments

target workload variability as observed along time on the

EGEE grid.

A. Impact on the EGEE production grid infrastructure

The data considered in this study are RTM/Grid Observa-

tory traces of the EGEE grid activity during the period from

September 2005 to June 2007. 33,419,946 job entries were

collected, each of them representing a complete job run.

Among these data, 64.8% corresponds to successful jobs,

19.1% to failures and the remaining 16.1% to outliers. The

distribution of latency of successful jobs (R) and failure time

of a faulty job (F ) are computed from these data.

Figure 4 displays several plots of the expectation of the

total latency including resubmission. We observe that the

results for strategies J0 and J1 are very close. In order

to compare the difference between J0 and J1 with other

hypotheses, EJ is also plotted for two other cases. The case

“without fault” where data corresponding to faulty jobs are

neglected leads to an underestimation of EJ while the case

“with fault as outliers” where faulty jobs are considered as

outliers leads to an overestimation of EJ .

This experiment shows that taking into account the latency

for faults detection has a higher impact on the parameters

estimation than the model used (J0 or J1). Moreover, for

J1, the best time-out value is t∞ = 195s for an optimal EJ1

= 586s while, for J0, the best time-out value is t∞ = 191s

for an optimal EJ0
= 583s. If we would have chosen the

time-out value from J1 to be applied with strategy J0, we

would have obtained EJ0
(195) = 583s (valued rounded to

integer value). The relative difference with the optimal value

is negligible, in the order of 0.06%.

Looking at the distribution of faults detection latency fF
(figure 5), we observe that a pick is centered at 7 seconds
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with 50% of failures detected in no more than 10 seconds.

On figure 6, we observe that variations of 10 seconds of

time-out value around the optimal value does not increase

the expectation of execution time by more than 2 seconds

(0.3%). Consequently, J0 and J1 results are very close.

B. Impact on different workloads

J0 and J1 results are hardly differentiable under the

conditions observed on the EGEE production infrastructure

during the period 2005-2007. Different workloads are sim-

ulated by artificially varying the model parameters (failure

distribution parameterization) in order to determine under

which conditions the two strategies produce different results.

1) Varying the fault ratio φ: An increasing ratio of faults

φ is considered, ranging from the value measured on EGEE

(19%) to 50% (see figure 7). They all conduct to an optimal
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φ t∞0
EJ0

(t∞0
) t∞1

EJ0
(t∞1

) ∆%

19% 191 583 195 583 0.06
21% 191 590 195 590 0.08
25% 191 606 196 607 0.08
30% 191 630 198 631 0.14
40% 191 694 202 696 0.32
50% 191 795 207 780 0.61

Table I
COMPARISON OF STRATEGIES J0 AND J1 WHEN VARYING THE RATIO

OF FAULTS φ.

time-out value t∞0
= 191s in the case of J0. For each φ

value, we have computed the optimal time-out in the case

of J1, t∞1
, and compared the optimal value EJ0

with the

one obtained at t∞1
. Results are reported in table I. Even

with the largest value of φ, the relative difference does not

exceed 0.6%.

2) Translating the pdf of failure detection latency: As

another step toward worse experimental conditions, the

latency of the faults detection delay was increased up to

1000 seconds (see figure 8).

For each delay of fault detection, the optimal time-outs

t∞0
and t∞1

were computed with strategies J0 and J1, and

the expectation EJ0
was estimated using both values. Results

are reported in table II. The relative difference grows up to

1.3% for an increased delay by approximately 90 seconds.

For higher delays, relative differences are decreasing until

200 seconds where they do not vary any more: all faulty

jobs encounter a time-out.

For delay increases smaller than 50 seconds, the relative

difference is less than 0.6%.

From these artificial varying conditions on faults, we can

conclude that, even with variations of faults ratio up to 50%

and increase of pdf of latency for faults detection up to 50

seconds, numerically, results given by strategies J0 and J1
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Figure 8. Translating pdf of failure detection latency: impact on EJ0
.

Both optimal time-out value and expectation of total latency are varying.
For translation higher than 200 seconds, results are similar since the optimal
time-out is lower than 200 seconds.

t t∞1
t∞0

EJ0
(t∞0

) EJ0
(t∞1

) ∆%

0s 195s 191s 583.3s 583s 0.06
10s 198s 191s 591s 590s 0.1%
20s 202s 192s 599s 597s 0.3%
30s 206s 193s 607s 605s 0.4%
40s 208s 194s 614s 612s 0.5%
50s 211s 194s 622s 619s 0.6%
60s 214s 196s 630s 626s 0.7%
70s 219s 196s 639s 633s 1.0%
80s 223s 196s 648s 640s 1.2%
90s 225s 198s 655s 647s 1.3%

100s 218s 198s 690s 687s 0.5%
150s 187s 200s 690s 687s 0.4%
200s 185s 185s 707s 707s 0%

>200s 185s 185s 707s 707s 0%

Table II
COMPARISON OF STRATEGIES J0 AND J1 WITH INCREASED FAILURE

DETECTION LATENCY.

are very close.

C. Test on 2010 data

Recent data on the EGEE production infrastructure avail-

able from the Grid Observatory (period from 2010-03-29 to

2010-04-04) was tested. After curation, 394315 data entries

are suitable for computations. A classification of all entries,

similar to [8] but adapted to new fault conditions reported

(due to evolution of the middleware), was performed.

Compared to the data used in this paper, a lot of failures

are reported very quickly, thus changing the profile of EJ

(see figure 9). However, EJ still exhibits a global minimum.

With a ratio of failure of φ = 25.8 % and a ratio of outliers

of ρ = 9.4 %, the optimal time-out value t∞ is of 349

seconds for both J0 and J1: there is no added benefit to

consider strategy J0 instead of J1.
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Figure 9. 2010 data. Expectation of execution time including resubmis-
sions for strategies J0 and J1: results are very similar even if the profile
differs from the one obtained with older data (see for example figure 4).

D. Test on 2009 data

Further tests were conducted using Grid Observatory /

RTM data available earlier in 2009/2010: weeks 28 to 37

in 2009, week 14 in 2010. The results are identical for

all weeks except the week 31 in 2009 where there is a

relative difference of 0.02% between the expectation of total

latency from the optimal values computed for strategies J0
and J1. The profiles of EJ are similar to the one presented

in figure 9.

V. CONCLUSION

Production grids usage is hampered by high failures

rate and highly variable latencies observed in large scale

complex systems. Efficient grid jobs resubmission therefore

becomes a key feature of any grid experiment production

environment. However, the scale of contemporary grids and

their non stationary workloads makes optimal resubmission

parameterization difficult.

In this paper, two probabilistic models of the simple

grid jobs resubmission strategy were introduced. In case

of failures, strategy J0 is properly taking into account the

time spent before failure notification in the estimation of

the time-out threshold beyond which jobs are canceled and

resubmitted. Strategy J1 is an approximation neglecting this

notification time.

Experiments with J0 and J1 using the same sets of data

show very close results in terms of expected latency time

under variable workload conditions. This result has been

validated both on real EGEE trace data at different times

and on infrastructures with different faults distributions. The

model can easily be adapted to other production environ-

ments by measuring few infrastructure-specific parameters

(i.e. ρ,φ,R,F ).



Strategy J0 is computationally more complex than J1,

that can be used as a valid approximation in practical im-

plementations. This result can be extended and under similar

conditions, we could benefit from this simplified model to

address more elaborated client-side resubmission strategies

such as multiple submission [7] and delayed resubmission

with overlap of multiple instances of submitted jobs [18].

that are exploited by production grid users today.
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