
HAL Id: hal-00677823
https://hal.science/hal-00677823

Submitted on 11 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliablility Support in Virtual Infrastructures
Guilherme Koslovski, Wai-Leong Yeow, Cedric Westphal, Tram Truong Huu,

Johan Montagnat, Pascale Vicat-Blanc Primet

To cite this version:
Guilherme Koslovski, Wai-Leong Yeow, Cedric Westphal, Tram Truong Huu, Johan Montagnat, et
al.. Reliablility Support in Virtual Infrastructures. IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom’10), Nov 2010, Indianapolis, United States. pp.49-58,
�10.1109/CloudCom.2010.23�. �hal-00677823�

https://hal.science/hal-00677823
https://hal.archives-ouvertes.fr


Reliability Support in Virtual Infrastructures

Guilherme Koslovski∗, Wai-Leong Yeow†, Cedric Westphal†, Tram Truong Huu‡,
Johan Montagnat§ and Pascale Vicat-Blanc¶

∗INRIA - University of Lyon †DoCoMo USA Labs ‡University of Nice - I3S §CNRS - I3S ¶INRIA - LYaTiss

Email: guilherme.koslovski@ens-lyon.fr, wlyeow@ieee.org, cwestphal@docomolabs-usa.com, tram@polytech.unice.fr,

johan@i3s.unice.fr, pvb@lyatiss.com

Abstract—Through the recent emergence of joint resource and
network virtualization, dynamic composition and provisioning of
time-limited and isolated virtual infrastructures is now possible.
One other benefit of infrastructure virtualization is the capability
of transparent reliability provisioning (reliability becomes a
service provided by the infrastructure). In this context, we discuss
the motivations and gains of introducing customizable reliability
of virtual infrastructures when executing large-scale distributed
applications, and present a framework to specify, allocate and
deploy virtualized infrastructure with reliability capabilities. An
approach to efficiently specify and control the reliability at
runtime is proposed. We illustrate these ideas by analyzing the
introduction of reliability at the virtual-infrastructure level on a
real application. Experimental results, obtained with an actual
medical-imaging application running in virtual infrastructures
provisioned in the experimental large-scale Grid’5000 platform,
show the benefits of the virtualization of reliability.

I. INTRODUCTION

Several proposals have been made to combine the virtual-

ization of the computing resources with that of the network

infrastructure (see for instance [1], [2], [3], [4]), delivering a

provision model known as Infrastructure-as-a-Service or Cloud

infrastructure services. This virtualization of the infrastructure

encompasses computing, storage and networking resources,

enabling the definition of confined execution environments,

with a user-specified amount of virtual resources intercon-

nected by a private virtual network. A key element of the

virtualized infrastructure is to specify the reliability to be pro-

vided to the different tasks within the execution environment.

Some tasks are critical and their failure would cause the system

to collapse; the failure of some non-critical tasks could still

significantly impact (for instance, delay) the completion of

the overall effort. On the other hand, an element of a virtual

infrastructure can be migrated to a different location in case

of failure of the physical substrate.
One key goal is thus for the infrastructure user to be

able to specify the reliability associated with a task during

the virtual infrastructure bootstrap, and for the infrastructure

provider to transparently provide the reliability to the user

and to effectively provision the desired reliability through the

allocation of virtual back-up nodes ready to take over in case

of node failure through active state synchronization.
We present in this paper the key components to achieve

this goal and to achieve reliability in the middleware. These

components include a language to allow the specification

of the reliability level for the different network elements;

an interpretation mechanism to translate the reliability of

the specified virtualized infrastructure into a provisioning of

back-up resources; and an allocation mechanism to efficiently

associate the reliable virtual infrastructure onto the physical

resources.

These tools are designed so as to render the reliability

transparent: an application could perform an assignment of

tasks to the virtualized reliable resource, and receive in re-

turn the outcome of the tasks’s execution independently of

any physical node failure. The underlying physical resource

providing the task might have changed, but the integrity of

the virtual infrastructure is preserved. Reliability becomes a

service provided by the infrastructure. Further, virtualizing

reliability allows the use of the same node as back-up to

multiple primary nodes, and thus strongly reduces the cost

of providing reliability.

As a proof of concept, we implemented these tools over a

large-scale distributed platform (Grid’5000 [5]) and evaluated

the costs and benefits of reliability for an existing large-scale

distributed application. In this example, an application highly

sensitive to substrate failures, which is not able to be executed

without reliability support in the presence of failures, was

executed with no modification on its original code. A cost

analysis using a simple pricing model shows that the overall

cost to the application user for reserving additional resources

for reliability is more than offset by the reduced execution

time.

The paper is organized as follows. Section II motivates the

introduction of reliability in virtual infrastructures and identi-

fies system goals which will guide our design choices. In Sec-

tion III, we discuss the issues associated with a specification

language for reliability. Section IV discusses how to synchro-

nize nodes to effect the desired reliability. In Section V, we

discuss how to translate the language into a graph; Section VI

then describes the tools used to allocate this graph onto the

physical substrate. In Section VII, we describe an application

we implemented as a proof of concept and show preliminary

experimental results, as well as a cost analysis. Related works

are reviewed in Section VIII. Section IX discusses our design

and offers suggestions for future works.

II. MOTIVATIONS AND SYSTEM GOALS

Networking and computing infrastructures are subject to

random failures of nodes and links. These failures are not

rare in the case where the number of physical entities are

large, especially in distributed systems. The reliability of a



system may be evaluated quantitatively and qualitatively. The

Mean Time Between Failures (MTBF) is a statistical metric

to determine the failure rate of the underlying infrastructure,

which can be evaluated by the infrastructure’s management

system. Already, the impact of a node failure to a distributed

application can be very different; a failed worker node amongst

hundreds of others is less significant than the failure of a

database server.

One approach is for the system designer to ensure relia-

bility her/himself, by providing redundancy in the elements

composing the system. However, this requires different sets of

expertise: one is the expertise to design the system in order

to deliver the intended application; another is to ensure that

the components are integrated so as to support the desired

reliability.

Furthermore, the actual reliability will depend on the phys-

ical resource upon which the system is deployed. If the

application developer provides his/her own physical servers

and switches, then s/he can specify the reliability of each

individual element. If on the other hand the system is deployed

using a virtualized infrastructure, the reliability characteristics

of the physical resources might be unknown.

Since it is common for the application developer to delegate

the elastic provisioning of resources to the infrastructure

provider, in order to only use the proper amount of resource in

the face of varying demands, the corresponding provisioning

of the reliability must by the same token be delegated as well.

From the point of view of the application provider, it is

easier and more flexible to specify a level of reliability and

have the physical substrate provide it transparently as part of a

service-level agreement. From the point of view of the physical

network operator, reliability becomes a service that can be

added and that can generate new revenue streams. Further, the

infrastructure provider is free to manage reliability in light of

his/her own constraints and optimization opportunities: a back-

up might be associated to different resources from different

independent applications. This multiplexing of the back-up

resources provides economy of scale to the infrastructure

provider.

These observations highlight a few requirements for a

reliable virtualized infrastructure:

• the virtual-infrastructure user should be able to specify

reliability in a flexible and expressive manner (this is

discussed in more detail in Section III);

• the virtual-infrastructure provider should be able to im-

plement reliability transparently for the user (Section IV);

• the virtual-infrastructure provider should be able to im-

plement and allocate back-up resources efficiently (Sec-

tion V and VI);

• both the virtual-infrastructure user and the physical-

network provider need to see their business objectives

satisfied (Section VII).

Fig. 1 summarizes the stages and requirements to provide

reliable virtual infrastructures considering the application-

provider specification. Our goal is to describe tools which

allow to satisfy these requirements, and to deliver the effi-

cient provisioning of reliability in a virtual infrastructure, as

specified by the virtual infrastructure user.
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Fig. 1. The vertical integration of reliability from the user specifica-
tion to the physical resource allocation.

An immediate consequence of the last requirement is that

we will build upon tried-and-true existing components and

technologies wherever possible, so as to provide an easier

evolutionary path to implement our suggested designs.
The remainder of this paper is dedicated to translating this

overarching goal into specific and practical design for the

different required components.

III. VIRTUAL INFRASTRUCTURES DESCRIPTION

For the efficient provisioning of reliability, we use a Vir-

tual Private eXecution Virtual Infrastructure (ViPXi) [1], as

specified by the virtual-infrastructure user. A ViPXi is a

time-limited interconnection of virtual computing resources

interconnected by a virtual private network. By combining

resource virtualization and network virtualization, the user of

a ViPXi has the illusion s/he is using a private distributed

system, while in reality s/he is using multiple systems that are

part of a virtualized physical substrate.
ViPXis are dynamically-provisioned entities which can be

defined and modeled to represent the application’s require-

ments in terms of computing and communication. A descrip-

tive language dedicated to virtual-infrastructures specification

must be abstract enough and more adaptive than conventional

resources-description languages and models [6], [7], [8]. In

addition, it needs to combine the spatial and temporal aspects

of virtual infrastructures.
New challenges coming from virtualization techniques have

to be considered to complement the specification proposed

by classical infrastructures. For example, the Open Virtual-

ization Format (OVF) [9] proposes a mechanism to package

and distribute software to be run in one or more virtual

machines. In [10], this standard is extended to address the

service-specification requirements in Cloud environments, in-

cluding key performance indicators, service-elasticity rules

and bounds, and required (public and private) network links.
Already, the Open Cloud Computing Interface Working

Group (OCCI-WG) [11] is investigating a solution to interface



with Cloud Infrastructures exposed as services. The cloud

infrastructures resources (compute, network and storage) are

described using a simple key-value-based descriptor format.

Unfortunately, none of the proposed languages meet all the

specification requirements in terms of flexibility, expressive-

ness, reliability, and simplicity, required to achieve an optimal

ViPXi specification and allocation [4], [12].

We extend the Virtual eXecution Description Language

(VXDL: for more details, please refer to [13]) to enable

the specification of reliable virtual infrastructures. VXDL

is an XML-based language that allows the description of

virtual infrastructures; more specifically, the identification and

parameterization of virtual resources and groups of resources

(according to their functionalities), as well as the network

topology (based on the link-organization concept), using the

same grammar. VXDL also introduces the internal virtual

infrastructure timeline, which explores the elasticity of ViPXis,

enabling applications providers to specify the exact intervals

when virtual resources must be provisioned.

The extension proposes the identification of the required

reliability level for each virtual resource (nodes and links).

The application provider can set the requirement individually

or for a group of resources. To illustrate the flexibility of the

specification language, the example below is part of a VXDL

file and describes a group of 30 virtual nodes with a reliability

specification of 99.9% (among others parameters).

<vxdl:vGroup id="workers" multiplicity="30">

<vxdl:vNode id="worker">

<vxdl:reliability>99.9%</vxdl:reliability>

<vxdl:memory>

<vxdl:simple>512</vxdl:simple>

<vxdl:unit>MB</vxdl:unit>

</vxdl:memory>

<vxdl:cpu>

<vxdl:cores>1</vxdl:cores>

<vxdl:frequency>

<vxdl:simple>1.0</vxdl:simple>

<vxdl:unit>GHz</vxdl:unit>

</vxdl:frequency>

</vxdl:cpu>

</vxdl:vNode>

</vxdl:vGroup>

IV. PROVIDING TRANSPARENT RELIABILITY

Recovering from failures has been well studied in the liter-

ature, and we can leverage existing solutions in our reliability

design. This section specifies which solution we use from the

available ones.

On a large-scale execution environment, the re-submission

mechanism is one of the solutions used to make the application

continue running when a failure is detected [14], [15]. The

application’s makespan is longer in this case especially when

the submitted task’s execution time is long. Another possible

solution is to periodically save static snapshots of the entire

ViPXi [16] to disk, while execution is in progress. The

live snapshots are reloaded as a new submission if failures

are encountered in the current execution. The application’s

makespan then depends on the re-submission interval and the

snapshot interval, which may be long due to disk-access times.

These mechanisms, unfortunately, do not provide sufficient

transparency against failures. Re-initiating or resuming appli-

cations at a later time to recover from failures will impact

any time-sensitive applications. Therefore, a live protection

mechanism such as Remus [17] or Kemari [18] is needed.

In both Remus and Kemari, the memory state of a protected

(critical) node is continuously “synchronized” with a replica

(back-up node), as with checkpointing. When a failure in the

protected node occurs, the back-up node can resume execution

immediately, and the failover process can be made transparent

to other nodes in the ViPXi. This live protection mechanism

has another advantage over prior snapshotting mechanism:

instead of the entire ViPXi, only the critical nodes need to

be checkpointed.

The key difference between Remus and Kemari is that

Kemari initiates a checkpoint only when external events occur,

such as disk writing and network-packet sending, whereas

Remus checkpoints at a regular interval. One important feature

of Remus is that, at every checkpoint, the external output

is buffered locally in the critical node until it is assured

that the back-up node completes that checkpoint update. This

ensures that any failover operation will be transparent to other

unaffected nodes. Moreover, the protected node continues exe-

cution in parallel until the next checkpoint, thereby increasing

system performance over classical lock-step checkpointing.

Kemari, on the other hand, does not perform any buffering and

relies on pausing the protected node to achieve the required

transparency. We chose to use Remus over Kemari in our proof

of concept as it provides a finer and customizable granularity

between checkpoints, which can be as frequent as tens of

milliseconds. As of Xen 4.0.0, Remus is included in the official

Xen releases.

V. TRANSLATION OF THE SPECIFICATION LANGUAGE INTO

A VIPXI REQUEST

The VXDL parser [19] is a versatile tool that interprets

and translates a ViPXi specification into a resource request to

the physical infrastructure. Specifically, it analyzes the ViPXi

specification, automatically fills in any missing components

(e.g., default elements and values by some predefined tem-

plates), and translates the ViPXi into a graph representation for

resource allocation (see next section). Furthermore, automated

inclusion of back-up components into the graph for targeted

reliabilities is added onto the VXDL parser. The procedure is

described below.

A. Automatic Generation of Backup Nodes

A targeted reliability, in general, can be achieved with

sufficient back-up nodes. A critical node with a low MTBF

will require more back-up nodes on standby (synchronized

through Remus) than another node with a higher MTBF for

the same reliability level, if physical failures are independent.

As noted in [20], back-up nodes can be shared among different

groups of critical nodes to minimize the total number of

back-up nodes (and hence, minimal idle nodes). For example,

a ViPXi has two groups of critical nodes with n1 and n2



critical nodes respectively, requires at least r1 and r2 reliability

respectively, and k1 and k2 back-up nodes respectively. It is

possible to share the back-up nodes for n1 + n2 nodes such

that the total number of back-up nodes is lower than k1 + k2
provided that every back-up node is a standby for all other

critical nodes. In [20], the Opportunistic Redundancy Pooling

(ORP) mechanism imposes a sharing policy between groups

of critical nodes such that it is possible to have min(k1, k2)
back-up nodes so long as the reliabilities of every group is

satisfied.

The VXDL parser uses ORP to evaluate the number of back-

up nodes required. Since ORP assumes independent physical

failures, it also generates additional physical-embedding con-

straints such that the physical locations of all shared back-up

nodes and critical nodes validate that assumption. For example,

virtual nodes may not be embedded onto the same physical

host, or rack that is connected to the same switch, or power

supply.

B. Backup links: consistent network topology

Failovers from the critical nodes to back-up nodes are

expected to be transparent to the unaffected nodes of the

ViPXi. While Remus guarantees the failover time in tens

of milliseconds and consistency across the ViPXi through

output buffering, consistency in the network topology has to

be guaranteed through additional links to the back-up nodes.

That is, failed critical nodes which are resumed at the back-up

nodes must be connected to the rest of the ViPXi as described

in the original specification.

To ensure failover transparency, the additional back-up links

are pre-allocated (together with the ViPXi) rather than on

demand after failures occurred. In the latter case, resources

for back-up nodes cannot be guaranteed and, even if sufficient

resources are available, undesired delays may be incurred

during failover. Furthermore, active synchronization from the

critical nodes to back-up nodes consume bandwidth, which

has to be allocated as well.

Harary and Hayes [21] have devised methods to minimize

the number of additional links required. Specifically, a new

graph G′ is constructed with n+k nodes such that the original

ViPXi is always a subgraph of G′ when any k nodes are

removed. Unfortunately, this class of solutions is infeasible

in our system:

1) Guaranteeing that the ViPXi is a subgraph of G′ only en-

sures that the graph after k node failures is isomorphic.

Hence, recovering from failures may result in unaffected

nodes being moved around in order to recover the ViPXi.

2) Exact solutions are found only for regular graphs such as

rings, lines, square-grids and trees. For general graphs,

heuristics are used [22], [23].

3) The solution assumes unweighted links; adding weights

on top of the solution introduces an additional layer of

complexity.

As such, similar to the approach in [20], we add (i)

links from nodes of the ViPXi to back-up nodes such that

every back-up node is linked to neighbors of critical nodes,
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Fig. 2. The figures show the steps (from left to right) as each
back-up node is added to the original ViPXi for reliability. Nodes
r
v
1 and r

v
2 are critical nodes, and nodes r

b
1 and r

b
2 are back-up nodes.

Backup links are reused for synchronization (in bold dotted lines),
and the respective attributes are determined by the existing links in
the original ViPXi.

and (ii) links interconnecting the back-up nodes since two

critical nodes which are neighbors of each other may fail

simultaneously. We call the former set first-order back-up links

and the latter set second-order back-up links. The second-order

links are only required if two critical nodes are linked in the

original ViPXi.

In addition to the results of [20], we reuse the first-order

back-up links for synchronization between critical nodes and

back-up nodes whenever possible. Algorithm 1 shows the

procedure for the generation and reuse of first-order back-up

links and their attributes: bandwidth (bw) and latency (lat).

We omit details on the generation of second-order links and

the remaining synchronization links that were not reused from

the first-order links, since the procedure is similar to that of

the first order.

Algorithm 1: Generating First-Order Backup links

Rb: set of back-up nodes.1

C(b): set of critical nodes which uses b as a back-up2

node.

Lv: set of links in ViPXi.3

for b ∈ Rb do4

for (i, j) ∈ Lv do5

if i ∈ C(b) then6

bw(b, j) ← bw(b, j) + bw(i, j)7

lat(b, j) ← min {lat(b, j), lat(i, j)}8

if j ∈ C(b) then9

Label (b, j) as synchronization link.10

Ensure bw and lat suffice for Remus.11

Fig. 2 shows an example of how back-up links are gen-

erated. A new link between a back-up node and some other

node is created if it is a neighbor of a critical node. Hence,

in Fig. 2b, node rb
1

connects to all three nodes. Furthermore,

the attributes of link (rb
1
, rv

3
) can function as links (rv

1
, rv

3
) or

(rv
2
, rv

3
). Links (rb

1
, rv

1
) and (rb

1
, rv

2
) are reused for synchro-



nization. With one more back-up node (as in Fig. 2c), the

first-order back-up links of node rb
2

are the same as those of

node rb
1
, and with a second-order back-up link between node

rb
1

and rb
2

to function as the link (rv
1
, rv

2
) when both critical

nodes fail.

VI. VIPXI ALLOCATION ALGORITHM

Translating a ViPXi to a graph representation results in

a unified input to a resource allocation manager, regardless

whether a ViPXi requires reliability support. This immedi-

ately translates the resource allocation problem into a graph

embedding problem. However, reliability support demands

tighter allocation constraints that are not present in ViPXi’s

that does not require any reliability guarantee. That is, virtual

nodes should be mapped in a way that virtual node failures

resulting from the physical substrate should be independent.

Then, virtual nodes of the same ViPXi should not be allocated

onto the same physical node. In a data center scenario, placing

virtual nodes onto the same rack should be prohibited. In

the subsequent sections, we describe the graph embedding

problem, to the constraints.

A. Graph embedding and mapping constraints

Given a ViPXi graph Gv(Rv, Lv, t) and a physical substrate

graph Gp(Rp, Lp, t) at time t where Rv and Rp are the set

of virtual and physical nodes, respectively, and Lv and Lp are

the set of virtual and physical links, respectively. Let Pp be

the set of all simple physical paths between any two physical

nodes. Further, denote by QR(r, t) be the vector of capacities

(storage, memory, CPU) of a node r (physical or virtual) at

time t. Let QL(l, t) be the vector of characteristics (capacity,

latency) of link l, and Q
p
P (p, t) be the vector of the same

characteristics of a physical path p at time t. For a path p =
(lp
1
, l

p
2
, . . . ), the capacity of p is the minimum of all capacities

of l
p
i in p and the latency of p is the sum of all latencies of

l
p
i in p.

The embedding problem is then to obtain a map that maps

virtual nodes Rv to physical nodes Rp, denoted by MR, and

virtual links Lv to physical paths Pp, denoted by ML, such

that the resource demands are satisfied, i.e., QR(MR(r
v
i )) �

QR(r
v
i ) and QP (ML(l

v
i )) � QL(l

v
i ) for all virtual nodes and

links in Gv . An example of an embedding of a ViPXi with one

back-up node (Fig. 2b) onto a physical substrate is shown in

Fig. 3. The physical substrate is composed of three racks that

host two physical nodes each: r
p
1

and r
p
4
, r

p
2

and r
p
5
, and r

p
3

and r
p
6
, respectively. Suppose all physical node capacities are

sufficient in this example, one mapping solution could be that

in Fig. 3b. A virtual link can be mapped onto multiple links,

e.g., in the case of l
p
2

and l
p
8

providing a virtual link between

node rv
1

and back-up node rb
1
, provided that the minimum

capacity and total latency are sufficient for the virtual link

requirements. Physical links can host multiple virtual links,

e.g., l
p
2
. The remaining capacities of the links and nodes are

then considered for embedding other virtual graphs that arrive

at a later time t.
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Fig. 3. Example of embedding a graph in Fig. 2b onto a physical
substrate represented by (a).

While the classical graph embedding problem enforces

virtual nodes to be placed only onto unique physical nodes, it

is insufficient to assure independent failures. In the example,

nodes to be protected rv
1

and rv
2

, and back-up node rb
1

would

need to be placed on different racks, hence creating additional

mapping constraints to the graph embedding problem.

B. Mapping Solution

The graph embedding problem is well-known to be NP-

hard [24]. It differs from that of a graph isomorphism problem

(which is solvable in polynomial time) as virtual links can be

mapped onto a series of physical links and thereby exploding

the complexity. There has been numerous work on solving the

graph embedding problem: isomorphism-based detection [25],

[26], path-splitting methods [27], multicommodity flow model-

ing [28], and heuristics based on substrate characteristics [29].

These proposals aim at maximizing the resource usage or

at minimizing the maximum link load. From the application

perspective, the objective is to minimize the execution time

and the cost of renting the infrastructure [12].

The additional allocation constraints between virtual nodes,

however, does not make the problem less complex since

solution space remains the same even though the search space

may be reduced. To this end, we choose to use Lischka and

Karl’s [25] graph embedding method based on isomorphism

detection. Furthermore, it is relatively straightforward to incor-

porate the additional allocation constraints using this method.

We briefly describe the graph embedding method as follows.

It is essentially a depth-first search that looks at all possible

node mappings and eliminate the choices based on feasibility

of virtual links emanating from the node in consideration.

Initially, all possible node mappings are generated and sorted

in some order that optimize some objective (e.g. minimize

cost). The first mapping is picked, and the subsequent possible

mappings on the neighbors of that node is considered. At each

search step, one such possible node mapping is examined and

is considered only if links of that node to existing mappings are

feasible. Refer to Fig. 4 for an illustration of the intermediate

steps. Suppose a possible mapping considered in Fig. 4a

and the next possible node mappings for neighbors of rv
2

are generated: for both rb
1

and rv
3

, possible mappings are to
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Fig. 4. Intermediate steps of mapping a graph in Fig. 2b onto a physical
substrate represented by Fig. 3a. The list of the top left of each figure
represents the available options for mapping the next step.

r
p
1
, r

p
4
, r

p
5

and r
p
6
. Fig. 4b supposes the mapping rb

1
→ r

p
4

is considered and subsequently examines it in depth. This

mapping is feasible because the virtual links to existing node

mappings are feasible, and links from rb
1

to other unmapped

neighbors are still feasible in the remaining graph. The next set

of possible for the remaining virtual nodes are generated and

examined further in depth. If there are no feasible mappings

for remaining nodes, the steps are backtracked and continued

on the next available options.

There are other optimizations involved while considering

possible mappings, particularly the ordering of possible map-

pings considered and pre-filtering possible mappings to avoid

looking too deep into a search tree. We refer the reader to the

paper [25] for further details. For our purpose of incorporating

the additional placement constraints, a filtering step can be

added to the list of generated possible mappings. For example,

in Fig. 4a, r
p
5

and r
p
6

can be omitted from the possible

mappings of rb
1

(underlined) because they are in the same rack

as the existing map. Further optimizations may be made, e.g.,

sorting the order of possible mappings to be considered based

on the additional constraints. We leave this to future work.

C. From Mapping to Allocation

The map provided by the allocation step is interpreted and

instantiated using the HIPerNet framework1. The HIPerNet

framework combines system and networking virtualization

technologies with bandwidth sharing and advance reservation

mechanisms to offer dynamic networking and computing

infrastructures as services [1], [30]. At the lower level, the

HIPerNet framework accesses and controls a part of the

physical infrastructure that is virtualized and exposed. Enrolled

physical resources are then registered to the HIPerNet registrar

and can be allocated to ViPXis. Once the resources have

been exposed, HIPerNet gets full control over it. This set of

exposed virtualized resources composes the substrate hosting

the ViPXis.

At run-time, the HIPerNet manager communicates with

physical resources to deploy virtual nodes (configured respect-

1HIPerNet was designed in the context of the HIPCAL project http://hipcal.
lri.fr/

ing the users requirements), monitor their status and configure

control tools to supervise the resource usage. In this fully-

virtualized scenario, HIPerNet interacts with multiple resource

providers to plan, monitor and control them. Functions such

as fault management, load balancing, bandwidth management

and performance control are handled taking both network- and

resource-virtualization techniques into account.

VII. EVALUATION THROUGH A USE CASE APPLICATION

We now apply these to an existing large-scale distributed

application, named bronze standard, for proof of concept

purpose. The bronze standard [31] technique tackles the

difficult problem of validating procedures for medical-image

analysis. As there is usually no reference, or gold standard, to

validate the result of the computation in the field of medical-

image processing, it is very difficult to objectively assess the

results’ quality. The statistical analysis of images enables the

quantitative measurement of computation errors. The bronze

standard technique statistically quantifies the maximal error

resulting from widely used image registration algorithms.

The larger the sample image database and the number of

registration algorithms to compare with, the most accurate

the method. This procedure is therefore very scalable and it

requires to compose a complex application workflow including

different registration-computation services with data transfer

inter-dependencies.

The bronze standard application can be represented as a

workflow of computational processes with I/O data dependen-

cies, as illustrated in Fig. 5. In the experiments reported below,

this workflow is enacted with the data-intensive grid-interfaced

MOTEUR workflow manager [32] designed to optimize the

execution of data-parallel flows. A clinical database of 59 pairs

of patient images to be registered by the different algorithms

involved in the workflow is used. Each service depicted in

Fig. 5 is instantiated as an independent computing task that

is delegated to one of the infrastructure computing nodes.

For each run, the processing of the complete image database

thus results in the generation of 354 computing tasks (with a

computation time of 30 seconds to 5 minutes each on a state-

of-the-art PC). The data volume transferred for each task is

in the order of 30 MB. The makespan of the application’s

parallel execution is in the order of 20 minutes in the absence

of failures.

The reliability mechanisms of HIPerNet presented in this

work, are based on a modified version of Remus. To enable

Remus protection, all VMs file-system were deployed on a net-

work file system (NFS) server. The first benchmarks performed

with Remus demonstrated that communication between the

NFS server (source) and VMs (destination) should be limited

to a maximum transfer rate of 100Mbps. Otherwise, Remus

cannot keep a stable copy of the critical VM for the default

checkpoint intervals of 200ms. In this initial work, the relia-

bility mechanisms are applied to virtual nodes. The protection

of network communication and data persistent on NFS are

out of scope and they are not discussed. The experiments are

carried out using virtual infrastructures managed by HIPerNet

http://hipcal.lri.fr/
http://hipcal.lri.fr/
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within the Grid’5000 testbed [5]. Grid’5000 enables a user to

request, reconfigure, and access physical machines belonging

to nine sites distributed in France. In our experiments, we

use 100 physical nodes to compose a pool of virtualized

physical resources. The number of physical nodes exceeds that

of the number of virtual resources specified (see next section)

because virtual machines of the same application cannot be

co-located in the same physical node to prevent correlated

failures and additional virtual back-up nodes are needed to

protect the critical nodes.

Faults are simulated by shutting down physical machines re-

specting the Mean Time Between Failures (MTBF) parameter.

The MTBF of each node in each experiment is 60000s, 30000s

and 15000s. Assuming the largest makespan to be 30 minutes,

the failure probability of each node is then 0.03, 0.06 and

0.12, respectively. The initial MTBF value (60000s) is based

on failure rate of servers (with a probability between 0.02

and 0.04) identified by [33]. The other lower MTBF values

represent worse failure rates which could be attributed to a

variety of reasons. Some examples are improper cooling in

racks, irregular maintenance and inadequate protection from

power interruptions.

A. ViPXi composition

The optimal virtual infrastructure specification to bronze

standard is based on [12], where 31 virtual resources are con-

figured with 512MB of RAM, and 1GHz of CPU, and 10Mbps

of bandwidth requirement for each virtual link between the

database and the workers. Virtual nodes require exclusivity

on physical nodes. As shown in Fig. 6, the HIPerNet engine

deploys and manages virtual machines on these computers on

demand (dark arrows), either with on OS image of the input

database server or the application services.

The MOTEUR workflow engine, as a client of the HIPerNet

framework, was hosted on one physical host, outside of the

virtual infrastructure. MOTEUR produces VXDL descriptions

including the reliability requirements that are requested to the

HIPerNet engine (blue connection). After receiving all virtual

machines allocated to the ViPXi, MOTEUR connects to the

computing nodes (worker nodes) to invoke the application

services (red connections). The computing nodes connect to

the database host to copy the input data and send the com-

putational results, and the final results are sent to MOTEUR

(green connections).

Virtual Machine 2 
Computing Node

Virtual Machine 1 
Database

HIPerNet engine

Virtual Machine k
Computing Node

Virtual Machine 31
Computing Node

Fig. 6. Experimental infrastructure.

B. Cost model

From an infrastructure provider point of view, the major

challenge is to account (financially or not) for resources

usage according to specific criteria (e.g. fair share among

users, digressive price, reliability level etc). Although a quasi-

unlimited amount of computing resources may be allocated,

a trade-off has to be found between (i) the allocated in-

frastructure cost, (ii) the expected performance, and (iii) the

optimal performance achievable, which depends on the level

of parallelization of the application.

Considering this scenario, we introduce a simple cost

model for the pricing of a ViPXi with reliability support.

The substrate provider estimates the provisioning cost of an

extended ViPXi (already with back-up resources identified).

We consider different prices for active and back-up resources.

We define a price function ΨR(r, t) which sets the price

for an amount of resource r at time t. Similarly, ΨL(l, t)
would set a price for the bandwidth. The total price for the use

of the resource is thus, over the lifetime [0, T ] of the virtual

infrastructure G:

PG(T ) =

∫ T

0

(

Σi∈Rv
ΨR(r

v
i (t), t) + Σj∈Lv

ΨL(l
v
j (t), t)

)

dt

Introducing link and node redundancy to increase the reli-

ability corresponds to an additive cost to the user which has

to be evaluated. The cost function is extended to calculate the

total price (PG′(T )) for the extended graph (G′

v(R
′

v, L
′

v, T )),
including reliable resources (Rb, Lb). The price of reliability

(PB) of a virtual infrastructure is given by

PB(T ) =

∫ T

0

(

Σi∈Rb
ΨR(r

b
i (t), t) + Σj∈Lb

ΨL(l
b
j(t), t)

)

dt

and the total price of a reliable virtual infrastructure is of

course PG′(T ) = PG(T ) + PB(T ).
For a first order assessment of the performance of our

model, we consider a pricing model based on the published



prices of Amazon EC22 for Europe. A detailed economics

analysis is outside of the scope of this document and we set

ΨR(r, t) to correspond to a fixed price per hour use for one

of two types of nodes, and one of two types of contract: basic

node (with 1.7GB RAM) and high performance node (with

7.5GB RAM); short term lease, and long term lease. Those

prices are given on Table I. EC2 does not charge any link cost

in between nodes of its data center, and since the data transfers

in our application can be fulfilled by typical ethernet links,

we do not include any specific link pricing in our basic cost

analysis. For EC2-like infrastructures, there is a cost and delay

associated with uploading the medical images to process up to

the data center over the Internet, however this is independent

of the reliability and outside of the scope of our paper.

TABLE I
AMAZON EC2 EUROPE PRICES FOR VMS (PER HOUR OR PART

THEREOF).

VM Specifications 1.7GB RAM 7.5GB RAM

Short term lease $0.095 $0.38
Long term lease $0.031 $0.031

We consider prices for the user, but an analysis of the

costs to the provider would yield similar results. Our intent

is to provide some rough estimates to illustrate the trade-off

between resource and reliability.

C. Experimental results

The application makespan when the application is executed

on a substrate without simulated failures is 1205s ± 40s,

serving as the base-line. For these values, the regular cost of

this virtual infrastructure without reliability support is $2.95

(short term lease), serving as base cost to analysis.

The first experiment examines the protection of the database

node. In this case, the database is the unique component

protected, and faults are submitted in accordance with MTBF

definition. Table II summarizes the execution of this scenario.

The application makespan increases proportionally to the

number of failures detected on database node. Comparing with

the base-line, the application makespan increases by +16%,

+26% and +40% with regard to the MTBF values, 60000s,

30000s and 15000s, respectively.

In our experimental set-up, we provided reliability by

backing-up the database 1:1, and the price for all values of the

MTBF would be $3.04. However, while 1:1 replication made

our proof-of-concept implementation feasible3, it does not

keep the required reliability at the specified level. To calculate

the theoretical price of each ViPXi with the proper reliability

support, we compute the number of back-up nodes required

to provide the reliability level of 99.99% as a function of the

MTBF, computed according to [20]. For this scenario, the cost

of database protection with reliability level 99.99% increases

2Amazon EC2: http://aws.amazon.com/ec2/
3The current Remus implementation for Xen 3.4 is limited to a 1:1

protection. This limitation also resulted in simpler allocation constraints than
that described in Section VI.

the ViPXi cost by about 6%, 10%, and 13% for MTBF 60000s,

30000s, and 15000s, respectively (see table IV).

If we assume that the back-up nodes are selected from a pool

of nodes reserved for this purpose by the physical substrate

operator with a long-term lease, then the price of reliability

amounts to an increase of 2%, 3%, and 4% for MTBF 60000s,

30000s, and 15000s, respectively (again, see table IV).

Each workflow service has a pre- and post-processing stage

where the input data is copied to worker node and the results

are sent to the database. The more failures happen during these

two stages, the more the application makespan increases. In

table III, we present the data transfer time (in seconds) of this

scenario. The data transfer time increase dominates when there

are more failures detected on database node.

TABLE II
EXECUTION TIME AND % INCREASE OVER BASELINE FOR

CRITICAL DATABASE PROTECTION ONLY (COLUMN DB), AND FOR

COMPUTING NODES PROTECTION (COLUMN CN).

MTBF DB Increase CN Increase

∞ 1205s 1205s
60000s 1401s 16.26% 1208s 0.2%
30000s 1524s 26.47% 1225s 1.7%
15000s 1688s 40.08% 1244s 3.2%

TABLE III
TOTAL DATA TRANSFER TIME OF SIX APPLICATION SERVICES

RUNNING WITH CRITICAL DATABASE PROTECTION SCENARIO.

MTBF Total data transfer time

∞ 165.02s ± 44.30s
60000s 190.20s ± 96.75s
30000s 292.96s ± 115.38s
15000s 299.61s ± 128.26s

The second experiment analyzes the protection of workers

nodes. The MTBF varies in accordance with the failure model

presented above. After a MTBF, a random physical machine

will be crashed. The back-up virtual machine is automatically

started and continues running the same workflow task. As

presented in table II, the application makespan slightly in-

creases with regard to the number failures detected on the

infrastructure. The delay on the back-up node activation is

compensated for by other parallel executions and the variation

of input data.

Providing reliability for workers nodes (99.9%) dramatically

decreases the time to complete the application, from execution

time for the 15000s MTBF of 1688s down to 1244s in Table II,

a gain of almost 40%. Table V shows the price increase due to

reliability for the different values of the MTBF, assuming that

the back-up nodes are drawn from the same (short term lease)

pool as the rest of the virtual infrastructure, or from a long

term lease pool set aside by the physical substrate operator.

In both cases, database protection and workers protection,

the application ran normally, with faults being transparent to

the application provider.

http://aws.amazon.com/ec2/


TABLE IV
PRICE WITH RELIABILITY FOR DATABASE PROTECTION

(RELIABILITY LEVEL 99.9%) AND FRACTION OF PRICE

CORRESPONDING TO RELIABILITY WITH BACK-UP PROVISIONED

ON SHORT TERM LEASES OR LONG TERM LEASES.

Short term Long term

MTBF pFAIL nrb
PG′ PB/PG′ PG′ PB/PG′

60000s 0.03 2 $3.13 6% $3.01 2%
30000s 0.06 3 $3.23 10% $3.04 3%
15000s 0.12 4 $3.33 13% $3.07 4%

TABLE V
PRICE OF RELIABILITY FOR COMPUTING NODE PROTECTION

(RELIABILITY LEVEL 99.9%) AND FRACTION OF PRICE

CORRESPONDING TO RELIABILITY WITH BACK-UP PROVISIONED

ON SHORT TERM LEASES OR LONG TERM LEASES.

Short term Long term

MTBF pFAIL nrb
PG′ PB/PG′ PG′ PB/PG′

60000s 0.03 5 $3.42 16.1% $3.10 5.3%
30000s 0.06 8 $3.71 25.8% $3.19 8.4%
15000s 0.12 12 $4.09 38.7% $3.32 12.6%

We also performed the experiments using the task resubmis-

sion mechanism (application level) to compare with the ViPXi

reliability service. In general, after a failure occurs on a worker

node, a new worker node must be provisioned, and the task

executed on the failed node has to be relaunched on the new

worker node. We minimize the activation time of a back-up

node to zero by reserving, deploying and configuring back-up

nodes prior to the execution of the Bronze Standard. Hence,

the only difference from the previous experiments is the time

needed to rework the tasks on the failed worker nodes.

The number of back-up nodes for task resubmission mech-

anism is set to be the same as that in the previous scenario

(i.e., 5, 8, and 12 for MTBF of 60000s, 30000s, 15000s,

respectively) so that the cost and amount of resources used

are equivalent.

Our experimental results show that the application

makespan increases significantly in comparing with the vir-

tual infrastructure reliability service, +13.08%, +19.67% and

+22.19% with respect to 60000s, 30000s and 15000s of the

MTBF, as presented in table VI. The makespan gap would

have been more if back-up nodes were not pre-allocated and

configured. We do not present results otherwise since the time

required for reservation, deployment and configuration may

vary with the configuration and total utilization of the grid.

TABLE VI
APPLICATION MAKESPAN WITH RESUBMISSION MECHANISM AND

PERCENTAGE INCREASED WHEN COMPARED WITH VIPXI

RELIABILITY SERVICE.

MTBF Reliability Resubmission Increase

60000s 1208s 1366s +13.08%
30000s 1225s 1466s +19.67%
15000s 1244s 1520s +22.19%

VIII. RELATED WORK

Providing reliability on virtualized environments is an issue

that has been studied in the recent years. Within virtual nodes,

hypervisors such as Xen provides the capability to store live

snapshots of the virtual machines to reliable storage, which

can be resumed on other physical nodes if failures occur.

Remus [17] and Kemari [18] improves on static snapshots by

periodically updating live snapshots to replica nodes that are

on standby. To checkpoint the entire virtual infrastructure as a

whole, VNsnap [16] has been developed. VNsnap captures the

entire virtual infrastructure’s execution, communication and

storage states, which can be resumed in other sites to recover

from failures. From another perspective, proactive migration

of virtual machines to other healthy nodes is considered [34]

upon early warnings of impending failures.

Fault tolerance is provided some contexts, such as data

centers [35], [36]. However, it is achieved through specific

engineering of the network nodes and links overprovisioned

for redundancy.

The allocation of virtual infrastructures has been already

explored in previous works. Some algorithms focus on prob-

lem formulation considering nodes requirements together with

network configuration [29], [27], [28]. In Emulab, a network

is modeled characterizing the bandwidth capacity of each link,

and the substrate nodes are not shared among multiples virtual

infrastructures. Ricci et al. [37] developed the software assign,

which explores the resources homogeneity of Emulab and

introduces the definition of vclasses and pclasses (equivalence

classes) that limits the search space of an allocation. While

our framework requires a resource allocation mechanism, none

of the above took into account reliability for embedding the

virtual resource request onto the physical topology.

[20] provides mechanisms to pool back-up nodes to achieve

some desired level of reliability. However, it is mostly a

theoretical work and does not provide any vertical integration

from the user specification to the physical substrate allocation.

In [38], Menth et al. focus on providing link reliability in

wide-area network, by considering the most likely link failure

combinations, and providing back-up links for these failures.

This is distinct from this work, where reliability is applied to

links but also node failures within a virtual infrastructure.

IX. CONCLUSIONS

We have presented a framework that introduces transpar-

ent reliability support into virtualized infrastructures. The

transparency allows virtual infrastructure users to focus on

application development and scale reliability requirements

at deployment. The physical substrate operator can provide

reliability as a service, and implement reliability transparently

from the point of view of the service operator.

Our framework contains a specification language which

describes the reliability parameters in a flexible and expres-

sive manner; an algorithm to translate virtual infrastructure

specifications to physical resources; an resource mapping

algorithm to allocate them; and a synchronization mechanism

that preserves virtual machine states in cases of physical node



failures. To provide an easier evolutionary path to implement

the framework, some of these components are built upon tried-

and-true existing technologies.
We implemented the framework on top of the HIPerNet

framework, deployed over the Grid’5000 infrastructure, and

demonstrated that it effectively supports reliability and enables

the transparent execution of fault-sensitive distributed applica-

tions. In particular, our implementation points to a reduced

completion time for the application for a slight increase of the

resource cost.
Further work includes the implementation of a n : k

reliability ratio within our testbed, in order to fully benefit

from the virtualization of reliability. This also involves im-

plementing the sharing of redundant node across different

virtual infrastructures in order to minimize the number of

such redundant nodes, as described in Section V. For the

cost benefit, we presented a simple yet promising back-of-

the-envelope analysis. We would like to refine the model to

better distinguish the economical trade-offs for each of the

stakeholders: service customer, service provider and virtual

infrastructure provider, in particular when the virtual infras-

tructure is hosted across different administrative domains.
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