
HAL Id: hal-00677819
https://hal.science/hal-00677819v1

Submitted on 12 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

jGASW: A Service-Oriented Framework Supporting
High Throughput Computing and Non-functional

Concerns
Javier Rojas Balderrama, Johan Montagnat, Diane Lingrand

To cite this version:
Javier Rojas Balderrama, Johan Montagnat, Diane Lingrand. jGASW: A Service-Oriented Frame-
work Supporting High Throughput Computing and Non-functional Concerns. IEEE Interna-
tional Conference on Web Services (ICWS’10), Jul 2010, Miami, United States. pp.691-694,
�10.1109/ICWS.2010.59�. �hal-00677819�

https://hal.science/hal-00677819v1
https://hal.archives-ouvertes.fr


jGASW: a service-oriented framework supporting HTC and non-functional concerns

Javier Rojas Balderrama, Johan Montagnat, Diane Lingrand

University of Nice-Sophia Antipolis / CNRS, I3S, Sophia Antipolis, France. Email: {javier,johan,lingrand}@i3s.unice.fr

Abstract—Although Service-Oriented principles have been
widely adopted by High Throughput Computing infrastructure
designers, the integration between SOA and HTC is made
difficult by legacy. j GASW is a framework for wrapping legacy
scientific applications as Web Services and integrating them
into an intensive computing-aware SOA framework. It maps
complex I/O data structures to command lines and enables
dynamic allocation of computing resources; including execu-
tion on local hosts or on grid infrastructures; data transfer
management and support of non-functional concerns.

Keywords-Legacy code as services; HTC services; SOA

I. INTRODUCTION

The growth of the Internet in terms of size, reliability and

bandwidth enabled High Throughput Computing (HTC) [1],

in particular through cross-institutional Grids [2] that exploit

large amounts of regular distributed computing resources.

Seminally implementing the Global Computing (GC) model

that shields the users from the heterogeneity and complex-

ity of the underlying distributed system, grid middleware

adopted Service-Oriented principles almost unanimously

over the last years (WS-RF standard [3]) to deliver a flexible

and adaptive support compatible with modern application

development methodologies. However, the integration of GC

and SOA models is not yet completed. This paper outlines the

gap existing between these computing models and proposes

a practical solution to bridge them.

As illustrated in top-left of Figure 1, in a GC environment,

clients connect to an intermediate brokering service that

acts as an proxy, handling the requests on their behalf and

caching results. This model is very efficient to control and

balance the overall system workload and therefore addresses

well the needs of HTC. The broker implements a scheduler

and/or resource allocator that optimizes the usage of the sys-

tem. Managed resources are allocated temporarily for each

computation task and have minimal system requirements.

The GC model is easy to deploy and efficiently manages

legacy command-line applications. Batch systems are good

implementation examples, manipulating legacy applications

as binary packages, transporting them to the computing

resources, and executing them through remote command line

invocation.

Conversely in a traditional SOA framework (bottom-left

of Figure 1), services embedding the business codes are

pre-deployed over a set of resources and invoked directly

by clients through a standardized protocol. Clients first

query a registry to locate the target(s) business service(s),

and possibly balance workload among them. This Meta-

Computing (MC) model has been implemented in Service-

Oriented HTC solutions, such as GridRPC compliant mid-

dleware [4], [5]. Inheriting from SOA principles, the MC

model provides flexibility, interoperability, autonomy, and

re-usability. However, it requires business codes to be instru-

mented with a service interface as well as pre-deployement

procedures that can be complex and frequent in large scale

applications. Furthermore, clients are directly exposed to the

communication with various resources and therefore they

need to integrate complex concerns related to performance,

reliability, fault-tolerance, security management, etc.

This paper describes the j GASW command-line applica-

tion wrapper which implements the convergence between GC

and MC as illustrated on right of Figure 1. It enables complex

typed I/O data structures mapping, dynamic allocation of

resources from high performance infrastructures, transparent

local and/or remote execution, data transfers management,

and non-functional concerns integration.

Figure 1. j GASW approach: convergence of Global Computing and SOA.

II. REQUIREMENTS ANALYSIS AND RELATED WORK

Although non-functional core grid services (in charge

of resources allocation, authentication, data transfers, etc)

usually already benefit from a SOA, many scientific ap-

plications are developed as non-parallel, Command-Line

Interfaced (CLI) business codes by domain experts. Due to

the absence of an Interface Description Language (IDL),

CLI are not well defined and often make assumptions on

special file formats, implicit arguments, dependencies, and

I/Os structure. To expose CLI applications as relocatable,

self-consistent, remote invokable grid-aware services [6], an

embedding process is needed that maps service message

sequences, properly defined through an IDL, to the command

lines. The resulting services are intended to be reused in



compute-intensive data analysis procedures described as

flows of services. Grid workflow engines control concurrent

services invocation exploiting the potential data and service

parallelisms described through the workflow representation

to deliver HTC.

Research initiatives aiming at integrating legacy busi-

ness codes into SOA are usually targeting either domain-

driven environments that provide ready-to-use frameworks

or generic SOA that deliver interoperability and remote

invocation through WS interfaces. Soaplab2 [9] provides the

ACD metadata language to describe wrapped WS but it has

no support for grid execution. The LONI Pipeline [7] and

GEMLCA [8] are grid-aware but oriented towards building

workflows in non-SOA environments. Opal2 [10] is a toolkit

which enables the wrapping of CLI applications as WS

on Grids and Clouds. It provides data management, and

optional security enforcement. It proposes a global SOA

solution, although it is domain specific in terms of data

typing. GASW [12] and gRAVI [11] are respectively WS

and WS-RF compliant wrapping tools but they both lack

support of complex data structures representation. gRAVI is

independent from a specific infrastructure and proposes both

graphical and API for services invocation. gRAVI and Opal2

are dedicated to grid infrastructures and they do not enable

local execution. Although demonstrating the need to bridge

intensive computing models and SOA principles, most of

these approaches require advanced technical skills and none

cover the complete cycle including wrapping, deployment

and execution of CLI.

In the rest of this paper, a real-world use case from

the medical imaging domain (GWENDIA project, http://

gwendia.polytech.unice.fr) is used to illustrate com-

plex multi-dimensional structures description of CLI appli-

cations and a simple invocation mechanism. The application

aims at estimating the myocardium deformation from time

sequence of cardiac magnetic resonance image using non-

rigid registration between consecutive image pairs [13].

The application workflow is composed of multiple codes

dedicated to image intensity correction, region of interest

identification, contours extraction, non-rigid registration, etc,

and produces a dense motion vectors field for each time

instant of the sequence. It features a compute intensive

algorithm, too prohibitive for enactment on local resources.

The workflow composition and enactment is handled by the

MOTEUR engine, which is grounded on array programming

principles [14] to handle complex data flows. The workflow

description language of MOTEUR includes iteration strate-

gies (defining how to iterate services invocation over the

data segments) and array nesting (to dynamically assemble

or disassemble data segments as requested by the application

semantics and performance concerns). The CLI wrapper

interface has to be highly expressive and flexible to cover

all data flows composition capabilities.

Detailed description of each application parameter is vital

for complete description of the workflows. For each embed-

ded code, our framework generates a structured descriptor

formalizing the application interface. The descriptor pro-

duced for the motion estimation code is partially represented

in Figure 2. It is complex, due to different description needs.

<res:bundle res:category="application" res:osname="linux">

<res:target>cme.sh</res:target>

<res:version>1.0.0</res:version>

<res:symbolicName>cme</res:symbolicName>

<res:organization>CREATIS-LRMN</organization>

<res:copyright>CNRS</res:copyright>

<res:arguments>

<res:argument res:io="in" res:type="URI"

res:mapper="filesystem" res:implicit="true">

<res:label>pyramids</res:label>

<res:option/>

<res:value res:regex="false" res:brand="replace">

<res:content/>

<res:extensions/>hdr</res:extensions>

</res:value>

<res:space>false</res:space>

<res:nesting res:separator="," res:initDelimiter=" "

res:endDelimiter=" ">

<res:dimension>1</res:dimension>

</res:nesting>

</res:argument>

...

<res:argument res:io="out" res:type="URI"

res:mapper="filesystem" res:implicit="true">

<res:label>models</res:label>

<res:option/>

<res:value res:regex="true" res:brand="regular">

<res:content>.*\.txt</res:content>

<res:extensions/>

</res:value>

<res:space>false</res:space>

<res:nesting res:separator="," res:initDelimiter=" "

res:endDelimiter=" ">

<res:dimension>1</res:dimension>

</res:nesting>

</res:argument>

</res:arguments>

<res:dependencies>

<res:dependency res:category="application" ...>

<res:target>Motion_Estimation</res:target>

<res:version>1.0.0</res:version>

<res:symbolicName>cme_bin</res:symbolicName>

<res:organization/>

<res:copyright>CNRS</res:copyright>

</res:dependency>

</res:dependencies>

</res:bundle>

implicit file for 
A
nalyze format

one dim.-array

one dim.-array

de
pe

nd
en

cy
ou
tp

ut
in
+p

ut

Figure 2. CLI application description using j GASW XML schema

First, inputs are list of Analyze-format images. This type

of image volume is stored on disk into two files: image

body (img) and header (hdr extension). The reference to

the body file name is provided explicitly at run-time as an

argument but the header is implicit. It is explicited in the

descriptor through the extensions tags and the brand

replace operation. Second, the execution produces fixed-

name output text files that are not explicitly appearing on

the command-line (attribute implicit is true). In the

example, a regular expression (regex) is used to identify

the relevant output file names to map (see the value of the

second argument). The output is a one-dimension array of

files (dimension is 1 in the nesting section). Third, the

main processing script (cme.sh) depends on another binary

(Motion_Estimation) as specified in the collection of

dependencies.

http://gwendia.polytech.unice.fr
http://gwendia.polytech.unice.fr


Figure 3. j GASW toolkit: (1) generation of service packages, (2) deployment and (3) invocation.

III. HIGH PERFORMANCE SOA

Our method to integrate compute intensive application

codes in a SOA framework is a java-based Generic Ap-

plication Service Wrapper toolkit (j GASW) that provides a

wrapper shell for CLI and a standard WS interface. j GASW

is composed by three main parts, illustrated in Figure 3: (A)

a service wrapper describing parameters of a command-line

as service arguments; (B) a set of libraries to manage the

allocation of resources and execution instrumentation; and

(C) a programmatic interface (API) to invoke the wrapped

applications. The wrapper and the libraries are based on

a common data model. The API is an independent service

consumer used on the client-side.

A. Description of CLI applications

The description of a CLI is based on a detailed XML

schema covering technical information such as application

name and operative system; declarative information to per-

mit traceability such as version, symbolic name, applica-

tion license; lists of arguments; and dependencies such

as required external binaries and libraries. The parameters

description need to be detailed enough to assemble the

command line and manipulate I/O files. In j GASW the

transformation of the description into a WS interface is

based on a template engine that is used to generate the

code and the configuration files needed to execute the CLI

application through the service container. The generated

code is compiled at run-time. It complies to JAX-WS, a

WS implementation that makes extensive use of the java

annotations mechanism. The generated code preserves the

structures and data types defined in the description and

represents a personalized skeleton of the WS and the file

stubs used to serialize data between transactions. The appli-

cation, its XML description, all its dependencies, compiled

code and server-side configuration files are packaged into

a Web application archive. To simplify the description file

generation process and the service creation, j GASW includes

both a command-line and a graphical interface.

j GASW stubs and skeletons map the service I/O argu-

ments, preserving their data types and structure. The j GASW

XML schema represents primitive data with four simple

data types that are sufficient for describing CLI interfaces:

string, double, integer and URI (references to data

files). To adapt to the most complex data flows encountered

and ease the declaration of data-parallel constructs, I/Os can

be described as elements of homogeneous arrays, nested

at any depth in case of multi-dimensional structures. In

Figure 2 for instance, an input argument of type URI

labeled ‘models’ is described. It is an implicit parameter, not

associated to any option of the CLI but identified through a

regular expression filter. It is treated as an ordered collection

of files with a given dimension declared in the nesting tag.

The computation results may be URIs associated to output

data files and/or values printed in the process standard output

stream. These outputs are interpreted through a non-trivial

process taking into account their structure as documented in

the application description (e.g. array delimiters and element

separators). j GASW includes several mappers to parse, cast

and map outputs to the appropriate data structures: a string

mapper to interpret results printed on standard output; a

file system mapper for the manipulation of set of files

and directories produced; and a configurable mapper to

manipulate application-specific structures.

B. Resources allocation

j GASW packages are instrumented to implement the

server-side execution logic: interpretation of all arguments,

dependencies configuration, data transfers and execution.

This process adapts both to local and grid execution. It is

extensible to support additional non-functional concerns.

Support for local and grid execution modes: The local

instrumentation runs the application in the place where

the service is hosted. This is useful for short execution



tasks which do not need intensive computing and would be

penalized by the overhead introduced with grid submission.

An isolated sandbox is created on the server to retrieve all

necessary data and properly configure dependencies. The

grid instrumentation performs remote executions of an appli-

cation transparently allocating computing resources on the

Grid through its Workload Management System (the broker

in right of Figure 1). The WS wrapper submits computing

tasks to the Grid and monitors their execution progress until

completion before returning outputs to the client. Currently,

j GASW supports execution on EGEE, the leading European

Grid Infrastructure (http://www.eu-egee.org). Never-

theless, its design abstracts the notion of executor, to ease

other middleware integration.

Data management: Files manipulated during execution

need to be transferred to/from computing resources. For

performance reasons, a dedicated file transfer protocol is

preferred to transferring file content as part of service invo-

cation messages. Furthermore, on the Grid, files are directly

transferred between nodes and never transit through the

workflow engine which would become a potential bottleneck

in data-intensive applications. Only references to files are

exchanged between the execution client and the j GASW

service. Two scenarios are considered for output data files

retrieval. For local execution, j GASW publishes files into a

public space of the server host. A translation of the output

file reference (e.g. server file path) is possible in favor

of other protocols (e.g. public URL). For grid execution,

j GASW registers all output files to a grid storage resource.

In both cases files are delivered to the client using additional

data transfer operations.

Integration of non-functional concerns: Additional non-

functional concerns can be integrated within the j GASW

wrapper shell to address specific deployment considerations

without impacting the data modeling nor the core applica-

tion. They are inserted as template macros and merged with

the description during the generation of source code. j GASW

natively includes non-functional concerns related to the Grid.

The overhead introduced by grid submission and low relia-

bility of grid infrastructures is impacting performance [16].

These issues may be overcome using adapted job submission

strategies [17] such as (i) simple resubmission, time-outing

and resubmitting abnormally delayed jobs; (ii) multiple

submission, using a collection of the same job and canceling

all but the first job that starts the execution to lower latency;

and (iii) delayed resubmission, periodically submitting a

copy of the job without canceling the previous submissions

until at least one job starts executing. Fault tolerance is

another concern since executions on the Grid face major

inconveniences such as system incompatibilities (brokering

mismatches) and resource unavailability. A simple strategy

of white and black lists is implemented to select most

reliable and faster grid resources. The j GASW framework is

easily extensible: for example, access control, logging and

accounting have been implemented to handle neurological

studies [15].

C. Generic invocation API

Clients such as MOTEUR interface with the legacy ap-

plication tools through the j GASW client API. It provides

parsing and interpretation the WS description, and dynamic

creation of the messages. It is generic and supports third-

party WS as long as they comply to the array programming

data structures. In Figure 2 for example, all resulting files

with extension txt are returned to the client as a one-

dimension array. The j GASW wrapper shields clients both

from details of the CLI tools invocation and from the

grid invocation interface (including data handling and grid

security credentials management).

IV. CONCLUSIONS AND DISCUSSION

j GASW is a rich framework to expose and invoke CLI

applications as WS, bridging intensive computing and SOA.

It provides a simple set of tools to assist non-computer

specialist scientists to build, run, combine, and share their

work. It covers advanced data flow manipulation capabilities

and adopts a standard WS interface compliant with many

workflow engines (e.g. Taverna [18], Triana [19] or BPEL

engines). The integration of grid-related concerns into the

application wrapper itself enables intensive computations,

even for workflows enacted through non grid-aware engines.

ACKNOWLEDGEMENTS

This work is funded by the French National Re-

search Agency (contract number ANR-06-TLOG-024, Neu-

roLOG project http://neurolog.polytech.unice.

fr). j GASW is an open source toolkit (http://modalis.

polytech.unice.fr/jgasw).

REFERENCES

[1] D. Thain, Conc. & Comp.: P. & Exp., 17(2-4):323-356, 2005.

[2] I. Foster, ACM CCCS, San Francisco, USA, 1998.

[3] I. Foster, IFIC Intl. Conf. NPC, Beijing, China, 2005.

[4] E. Caron Intl J. HPCA, 20(3):335-352, 2006.

[5] H. Nakada, “A GridRPC Model”, GGF, Tech. Rep. July 2005.

[6] C. Mateos, Soft. - Pract. & Exp., 38:523-556, 2008.

[7] I. Dinov, Frontiers in Neuroinfofmatics, 3(22), 2009.

[8] T. Delaitre, Jnl of Grid Computing, 3(1-2):75-90, 2005.

[9] M. Senger, Bioinfo. OS Conf., Toronto, Canada, 2008.

[10] S. Krishnan, SERVICES, Los Alamitos, USA, 2009.

[11] K. Chard, Intl. Conf. WS, Los Angeles, USA, 2009.

[12] T. Glatard, Future Generation CS, 24(7):720-730, 2008.

[13] K. Maheshwari, HealthGrid, Berlin, Germany, 2009.

[14] J. Montagnat, WORKS, Portland, USA, 2009.

[15] A. Gaignard, HealthGrid, Berlin, Germany, 2009.

[16] D. Lingrand, Parallel Computing, 35(10-11):493-511, 2009.

[17] D. Lingrand, HPDC, Munich, Germany, 2009.

[18] T. Oinn, Bioinformatics, 17(20):3045-3054, 2004.

[19] I. Taylor, Conc. & Comp.: P. & Exp., 17(9):1197-1214, 2005.

http://www.eu-egee.org
http://neurolog.polytech.unice.fr
http://neurolog.polytech.unice.fr
http://modalis.polytech.unice.fr/jgasw
http://modalis.polytech.unice.fr/jgasw

	Introduction
	Requirements analysis and related work
	High performance SOA
	Description of cli applications
	Resources allocation
	Generic invocation api

	Conclusions and discussion
	References

