
HAL Id: hal-00677817
https://hal.science/hal-00677817

Submitted on 11 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scientific workflows development using both
visual-programming and scripted representations

Ketan Maheshwari, Johan Montagnat

To cite this version:
Ketan Maheshwari, Johan Montagnat. Scientific workflows development using both visual-
programming and scripted representations. International Workshop on Scientific Workflows (SWF’10),
Jul 2010, Miami, United States. pp.1-8. �hal-00677817�

https://hal.science/hal-00677817
https://hal.archives-ouvertes.fr

Scientific workflows development using both
visual-programming and scripted

representations

Ketan Maheshwari

University of Nice – Sophia Antipolis

I3S Laboratory

06903 Sophia Antipolis, France

ketan@i3s.unice.fr

Johan Montagnat

CNRS

I3S Laboratory

06903 Sophia Antipolis, France

johan@i3s.unice.fr

Abstract

In this paper we propose to achieve a semantic equivalence between a

visual- and a script-based workflow development paradigm. We accomplish

this by building a script language which execution semantics matches an

existing sophisticated, data-parallel scientific workflow language and its

underlying GUI-based core workflow enactor. This development caters to the

need of users with different levels of expertise in writing scientific workflows.

A two-ways representation translator makes it possible to convert any source

workflow into its semantically equivalent counter-part, and therefore use a

single enactor independently of the user’s preferred representation.

1. Introduction

A Scientific workflow development lifecycle involves much

similar steps as in the traditional programming languages

albeit at a higher level of abstraction. A typical scientific work-

flow evolves through a repeated cycle of planning, designing,

composing, testing and debugging phases. A core part of this

cycle is the workflow language and the mode of composition

of workflows. Due to the broad variety of scientific domains

making use of scientific workflows today, many different

scientific workflow description languages or frameworks have

been proposed in the literature addressing different usages and

users with different programming skills. Scientific workflow

representations are usually characterized by their ability to

formalize complex computational processes composed by po-

tentially massively concurrent execution threads that can only

be efficiently handled on distributed infrastructures. Sound

parallel programming is known to be a difficult task requiring

a high level of expertise through.

Graphical representations, such as the one represented in

figure 4, are appealing for the design of scientific workflows,

especially when addressing non-expert users in parallel pro-

gramming, for different reasons:

• A graphical representation allows users to design work-

flows through visual programming, requiring only limited

understanding of programming.

• Graph-based workflow representations intrinsically cap-

ture parallelism, without requiring explicit parallelism

control structures.

• The graphical representation can be used during the

workflow enactment phase to monitor the progress of

workflow execution intuitively.

As a consequence, many scientific workflow environments

have adopted a graphical representation and GUI-based editing

capabilities [15, 11, 10, 5]. The environment GUI completely

shields the user from the underlying programming language.

In many cases, there is not even a well-specified programming

language used for the workflow representation: the graphical

representation is self-describing the computational process.

There are limitations to the visual-programming paradigm

though. While the graphical interface for workflow devel-

opment is appealing to visually build a workflow, a script-

based interface caters to a different user-base adapted to

writing compact scripts for workflow development. The script

based workflow composition environment eases the task of

transparently embedding application-invoking code within the

workflow description. In the hands of expert users, scripts lead

to a rapid prototyping and compact representation of poten-

tially complicated workflows. Furthermore, pure graphic-based

workflow environments may lead to misunderstanding of the

execution semantics adopted by the workflow enactor. Without

a language with a sound execution semantic defined, it may be

difficult to understand what will be the execution behavior. In

the worst case, evolutions of the workflow environment may

even lead to subtle changes in the execution semantics and

lead to different results when executing a same workflow.

The objective of this work is two investigate how a visual-

programming scientific workflow management environment

can be complemented by a script-based workflow representa-

tion language, semantically equivalent to the visual representa-

tion. This dual representation aims at addressing a broader user

community within the same environment, by letting scientists

decide on which representation they prefer to use. In addition,

this approach guarantees a well-defined execution semantics

to the workflow enactor, ensuring clear understanding of

the workflows and reproducibility of the computations over

time. These are critical properties for scientific experimental

campaigns design and execution.

Designing a script language that is semantically equivalent

to a graph-based workflow representation is not a straight

forward process due to two major differences:

1) The graphical representation is a powerful mode of

expression of parallelism as compared to scripts. Scripts

are composed by sequences of statements. Parallelism is

introduced into scripts through specific control structures

(e.g. foreach , dopar, fork/join kind of constructs)

which semantics breaks down the usual sequential ex-

ecution order by enabling multiple execution threads.

Those constructs are not needed in workflow graphs

where parallel branches are implicitly carrying a parallel

thread execution semantics.

2) Scripts are inherently control-centric. On the other hand,

visual programming environments used for scientific

workflows are most often data-driven: they represent

processors (graph nodes) with inter-dependencies (graph

links). Data items are flowing through the graph links.

It is the availability of data on the inbound links of a

processor that causes it to fire. In order to achieve the

data-driven semantics expressed in the graphical repre-

sentation, it is required to induce special mechanisms in

the script execution semantics.

In the current work we present the GWENDIA-script or

gscript, a script-based scientific workflow composition lan-

guage well suited to designing workflows involving parallel

data flows and sophisticated array processing semantics. We

propose gscript as an alternative representation for workflow

design and composition. The gscript language is semantically

equivalent to the existing graph-based GWENDIA language

but it is complementary as it exploits a different programming

modality. Syntactically, a gscript workflow is a series of

functional-programming like equational statements forming a

compact and succinct representation of a scientific workflow.

2. The GWENDIA Workflow Language

GWENDIA [13] is a scientific workflow language suitable

to express workflows involving complex data flow patterns. A

GWENDIA workflow is composed of a series of processors

connected through data channels. A processor is a basic unit

of a GWENDIA workflow that embodies the executable spec-

ification of a given action. Processors are connected to each

other and the workflow inputs and outputs forming a graph.

The processors are connected through their input and output

ports. Ports are the I/O data buffers connected to the data

channels enabling data flow between connected processors.

These processors are connected through ports that form the

data channels to and from a processor. Sophisticated array-

programming modalities makes it suitable to design workflows

involving applications dealing with multi-dimensional arrays.

Arrays are first-class entities in the language.

Each port has a special property called port-depth associated

with it. The port-depth of the port has special semantics asso-

ciated with it in the GWENDIA language. Multidimensional

arrays with port-depth leads to a very powerful and flexible

array processing mechanisms. The depth of arrays received by

a processor are determined by the port-depth through which

the array data is received. The arrays are demoted or promoted

to the dimensionality specified at a given port. The arrays

dimensionality is promoted or demoted based on the following

three rules: 1) If the port-depth is less that the array dimension,

the array will be flattened to match the port-depth, 2) if the

port-depth is greater than the array dimension, the array will be

promoted to match the port-depth and 3) the array dimension

will be unchanged in the case where both port-depth and

array dimension are equal. At each instance, the processor

fires as many times as the number of elements in the array at

that dimension. This mechanism is illustrated in figure 2. The

number of times a processor fires depends upon the port-depth

at which the dataset is received. Despite these changes in array

dimensions, the original dimensions of array is maintained

throughout the workflow.

p1 (4 runs) p3 (1 run)p2 (2 runs)

in=[[a, b], [c, d]]

[[a’, b’], [c’, d’]]

d=0
d=2d=1

[[a, b]’, [c, d]’] [[a, b], [c, d]]’

outout out

Fig. 1. Array Processing semantics in GWENDIA Work-

flow Language

The MOTEUR workflow engine is used to enact GWEN-

DIA workflows. MOTEUR has built-in delegators responsible

for execution of local code as well as generic web services

on the grid. The advantage of delegators is that they take

away a lot of complexity from the processor specification itself

making it simple and readable. A GWENDIA workflow and

its dataset can be composed graphically using the MOTEUR

GUI and enacted readily from the underlying workflow engine.

Arrays are first class entities in GWENDIA. A workflow with

arrays as inputs exhibits asynchronous enactment behavior,

in that the array elements are processed by the processors

individually and irrespective of their order in the array. These

processors are fired as soon as a set of data-set sufficient

for it’s firing is available. However, the outputs of the array

ordering must be maintained across invocations of processors.

Workflow enactment could be made parallel by creating in-

stances of processors based on the number of items in the

arrays they operate upon. The language allows for implicit

parallelism and synchronization by employing lazy evaluations

of futures variables.

Advanced iteration strategies are supported by GWENDIA,

enabling efficient expression of data combinations to be ap-

plied to the processors. An iteration strategy is an expression

enabling combinations of data-items arriving at more than one

ports of a processor. These data items form a ‘horizontal-tuple’

called lists. Lists are the items on which a processor fires at

a time. Lists become the parameters of a unit execution in

a workflow. Iteration strategies are array compatible. A dot

iteration acts similar to vector dot product acting one-to-one on

the data items. A cross is an all-to-all combination. The cross

iteration strategy has special semantics for arrays. A cross

iteration operating on arrays will result in an array that has the

depth as the sum of the depths of the input arrays. A flatcross

iteration strategy is similar to the cross strategy except that the

nesting level of the array does not change and remains ‘flat’

in the result. A match iteration strategy is a limited version of

cross combining data items based on their associated tags. The

array depth are promoted in match just as they are in the cross.

Iteration strategies are array granularity conscious. This means

that a mismatch in specifying the array depth on a processor

may cause it to return a void result. Well defined semantics

associated with voids exist in the GWENDIA language. The

void item indicates absence of any data. However, if an item

is void inside of an array, its placeholder is still preserved.

3. The Gscript Language

The gscript language is syntactically different but seman-

tically equivalent representation of a GWENDIA workflow.

While being semantically equivalent, the script interface for

composition of workflows caters to the needs of users who are

more comfortable writing scripts for their workflows instead

of using a GUI. The gscript language intends to provides

a loosely coupled representation of workflow, in that the

processors are represented as simple function calls without

any explicit coupling with other processors.

Textual representation of GWENDIA is as XML. Although

XML is human readable, its verbosity makes it difficult to

compose and comprehend workflows without the aid of a GUI.

It is tedious to use GUI to make minor modifications to a

workflow for debugging purposes.

One of the main needs of the scientific workflow users is to

write short and compact representation of complex workflows.

A script-based representation simplifies this process. An intu-

itive and familiar syntax provides for ease in comprehending

the workflow graph from the program description itself.

The proposed syntax of gscript intends to be a simple, con-

cise, compact, intuitively expressive representation of scientific

workflows. Listing 1 shows main parts of the gscript syntax

specification in an Extended Backus-Naur Form 1. The syntax

is validated through the ANTLR language processing tool.

A gscript program is composed of a series of zero or

more statements, blocks, scalar or array expressions. Each

statement defines a processor, its inputs and outputs and the

iteration strategies in a single statement. The language supports

definition of various processor invokers including a local java

invoker, webservices and the grid application service wrapper

(GASW) [4]. These invokers are equivalent to the GWEN-

DIA/MOTEUR delegators. A result part consists of variables

1. for complete grammar spec see http://modalis.polytech.unice.fr/ ketan/-
files/gscript.g

along with their array dimension or ‘port-depth’ expressed

in the form of ‘@depth’ notation. The arguments may be

wrapped in macros which indicate the iteration strategy the

processor is to be executed with. The blocks supported form

the control structures of the language. The control structures

supported are the if-conditionals, the while-loops and for-

loops. The syntax of control structures are much similar to the

traditional scripting languages, for instance, bash script. Scalar

and array expressions are used to describe the scalar or vector

data for the workflow consumption. An item is a collective

term for simple-item and compound-item. A simple-item is a

symbol representing a scalar or an array or a void item. A

compound-item is a simple-item that is prefixed by one of the

mapstrings [file:/, lfn:/, http://]. More prefixes can be added

if supported by an invoker at the gscript layer and a delegator

at the engine level. A tagged-item is required for the match

iteration strategy.

<prog>::(<stmt> | <block> |

<scalar-exp> | <array-exp>)*

<stmt>::<id>@<int> (,<id>@<int>)* = <proc-spec>

<proc-spec>:: <id>(<invoker>,<macro>(<item>)

<invoker>:: <ws> | <bs> | <gasw> | <cmd>

<macro>:: ’dot’ | ’cross’ | ’flatcross’ | ’match’

<args> :: <id>@<int> (,<id>@<int>)*

<ws> :: ’ws’:’uri’:’action’

<gasw> :: ’gasw’:’descriptor’

<bs> :: ’bs’:’beanshell-code’

<cmd> :: ’cmd’:’file:///cmd’

<item> :: <simple-item> | <compound-item>

| <tagged-item>

<simple-item> :: <id> | <string> | <int> | <void>

<compound-item> :: <prefix> <simple-item>

<tagged-item>:: <simple-item>’%’<simple_item>

’:’<simple-item>

<scalar-exp>:: <id> ’=’ <item>

<array-exp>:: <id> ’=’ [<item> (, <item>)*]

<block>:: <if-block> | <while-block> | <for-block>

<if-block>:: ’if’ ’(’ <cond_stmt> ’)’

’then’ <prog> ’end’

<while-block>:: ’while’ ’(’ <cond-stmt> ’)’

’do’ <prog> ’end’

<for-block>:: ’for’ (<id> | <int>) ’to’

(<id> | <int>) ’step’

(<id> | <int>) ’do’ <prog> ’end’

<cond-stmt>:: <expr> (OP <expr>)*

<expr>:: <item> OP <item>

OP : ’<’ | ’>’ | ’<=’ | ’>=’ | ’==’ | ’+’ | ’-’ | ’*’ | ’/’

Listing 1. A Brief gscript Grammar Specification in EBNF

Form

4. Language Semantics

Each statement of a gscript program consists of an

equational-like processor specification. A processor is exe-

cuted as per its invoker specification and the specified iteration

strategy along with the type of arguments.

To match the data-driven semantics inherent to the graph-

based GWENDIA language, gscript uses single-assignment

futures variables [12]. Future variables assignment are non-

blocking operations that trigger the right-hand side expression

of the assignment to be executed in an independent thread

while the execution flow past the assignment continues in the

main thread. A synchronization of the expression thread and

the main thread is only performed when the future variable

value is read. Future variable assignments and reads are

transforming traditional imperative statements into data-driven

ones: the availability of data causes blocked execution threads

to restart. All assignments of variables are futures in gscript,

lending it a maximum parallel execution semantics. A variable

is evaluated as it is required in the form of a parameter by

another statement. This leads to an execution of the script

in completely asynchronous and parallel mode. As a result

a script-based workflow environment lends itself into a nice

balance between data and control flow.

The advanced array programming semantics implemented

in the GWENDIA language are adapted and supported by

the gscript language. Thanks to these semantics, complex

expressions involving arrays can be significantly simplified

avoiding traditional programming language structures like for-

each kind of loops. An invocation of a processor with an

array of n elements is equivalent (≡) to n invocations of

the processor. Following is an illustration of the execution

semantics in the case of a statement that involves an array

‘arg’ with three elements as arguments:

arg=[a,b,c]

proc(<invoker>, arg) ≡ proc (<invoker>, [a, b, c])

≡ [proc (<invoker>, a),

proc (<invoker>, b), proc(<invoker>, c)]

Listing 2. Array-based Semantics in gscript

A processor involving arrays, the depth of the array at which

the processor should fire is determined by the accompanied

‘@depth’ with the array. For example:

somearray = [1,2,3]

res=avg(cmd:"file://bin/avg", somearray@1)

In the example above the processor ‘avg’ will fire once for all

elements of the array ‘somearray’.

res=sqr(cmd:"file://bin/sqr", somearray@0)

In the example above the processor sqr will fire thrice, ie. once

for each item of the array ‘somearray’ resulting in squaring

of each element of the array. These semantic extends for the

array with arbitrary depth where the processor will fire once

for the deepest element in the array. This representation of

data items is equivalent to the port-depth specification of a

GWENDIA workflow. Shown in figure 4 is a simple workflow

with two inputs and two processors connected back to back.

The iteration strategy is a cross and the inputs are both arrays.

An equivalent gscript code is shown in the listing below. Here

in1

in2

p1 p2
out

[a,b,c]

[1,2,3]

x

Fig. 2. A Graph Representation of a Simple Workflow

the processor p1 will fire six times owing to the cross iteration

strategy at the processor p1.

in1=[a,b,c]

in2=[1,2,3]

p1out@0 = p1 (ws:http://uns.fr/serv:act, cross(in1@0,in2@0))

wfout@0 = p2 (bs:"print (\" + p1out + \");", p1out@0)

Listing 3. A two-processor gscript Workflow Showing

Array Declaration and ‘cross’ Iteration Strategy

Shown in figure 4 is a workflow with more complex dataflow.

A first look on the graph indicates that the processors B and C

can be executed in parallel as well as the processors D and E.

A possible code using the ‘dopar’ structure to express explicit

parallelism is shown in listing 4. However, on a closer look,

we find that the parallelisation profile of this workflow could

not be optimally expressed since processors B and E may also

be executed in parallel.

exec A

dopar {

exec B, exec C

}

dopar {

exec D, exec E

}

exec F

Listing 4. A representation of the workflow graph using a

language providing explicit parallel constructs

On the other hand, as shown in listing 5 with gscript and

implicit parallelism, the workflow could be expressed in a

straightforward manner relying for parallelism on the under-

lying control flow implemented by the enactor.

in = [a,b,c]

aout@0 = A (<invoker>,in@0)

bout@0 = B (<invoker>,aout@0)

cout@0 = C (<invoker>,aout@0)

dout@0 = D (<invoker>,dot(bout@0,cout@0))

eout@0 = E (<invoker>,cout@0)

wfout@0 = F (<invoker>,dot(dout@0,eout@0))

in

A

E

B

F

C

D

out

Fig. 3. A Graph Representation of Workflow Exhibiting

Multiple Parallel Execution Profile

Listing 5. A gscript Representation of Workflow Exhibiting

Multiple Parallel Execution Profile

The gscript supports the iteration strategies in the form of

iteration-macros. These iteration-macros joins and expands the

items into list of items based upon their definition.

5. Related Work

There are two approaches that can be taken to implement

a script equivalent to an existing graphical form: First, by

extending an existing language to accommodate the workflow

paradigm of programming. This philosophy of extending an

existing language is not new and has been argued upon in

[3]. The main challenges in doing so would be to retain the

semantics of existing language constructs without changing

their meaning while providing GWENDIA language equiv-

alence. Advantages of this approach being: 1) User does not

have to learn a new language and 2) Developers does not have

to implement a new compiler/interpreter for the language from

scratch.

Second, by building an interpreter from scratch. With the

availability of open languages, the former looks to be an

attractive prospect. Building a language from scratch requires

more investment in terms of development efforts and user’s

learning curve. However, there are also advantages, mainly,

the freedom to define dedicated constructs for the purpose of

that language as argued in [6].

With the availability of the GWENDIA workflow engine,

we chose an intermediate strategy of defining gscript as a new

scripting language and providing a ‘translator’ (figure 5) that

can translate the script to and from the equivalent GWENDIA

representation saving the effort of developing a new interpreter

from scratch.

gscript MOTEUR2GWENDIA
translate enact

Fig. 4. gscript enactment

The swiftscript language [16] offered by the swift system

is similar in spirit to the gscript proposed here. Swiftscript is

a scripting language that can be employed to execute large

number of loosely coupled processors. Similar to gscript,

swiftscript adopts futures to express asynchronous execution

in a script-based language. A swiftscript workflow contains

statically typed datasets that can be specified using “annota-

tions” in the script. This makes the type inference at run-time

a problem as compiler does not check for types. SwiftScript

does not provide iteration strategies. However, executions to

the effect of iterations strategies can be artificially simulated

using foreach loops. Currently multi-dimensional arrays are

not supported. SwiftScript provides for fault-tolerance and

exception handling at run-time. The underlying datasets or-

ganization in swift is represented using an XDTM XML-

representation. This means that effectively, a workflow is

swiftscript plus the XDTM which is specific to that workflow

and must change with the changes in the workflow. SwiftScript

supports creation of nested-workflows in the form of com-

pound procedures. Conditional execution is supported using

the if-statements. A parameter-sweep like operation can be

carried out in Swift using the “iterate” operator.

Authors in [14] argue on the expressive power of dataflow

and their relation with functional programming. [9] argue

for the economy and efficiency of non-GUI based workflow

representations. Work described in [8] and [1, 2] are examples

of declarative workflow languages that implements various

control structures and interfaces with the external computa-

tional entities. The Martlet workflow language described in

[6] is another parallel enactment workflow language inspired

by the functional programming paradigm. Authors of [7]

advocates for the need of a visual-textual hybrid interfaces

for workflow management systems. As seen above, several

past efforts similar to ours exists with the closest one in

Swiftscript. However, our effort is unique in the sense that it

provides a two-way modality to designing a non-abstract, rich

with iteration strategies and multi-dimensional arrays based

environment for ready-to-run workflow.

6. The Drug Discovery Workflow: A Case Study

We consider the drug-discovery workflow as a case study to

demonstrate the expressiveness of gscript. We also attempt to

represent the same workflow using the swiftscript code. The

goal of the drug-discovery workflow is to identify by simula-

tion the favorable proteins by finding the docking energy of

many candidate compounds against a set of parameters. The

drug-discovery workflow represented in Figure 6 takes two

different parameters as inputs:

• A target which is a known protein involved in a disease.

• The compounds which are a set a small synthesizable

molecules. The structures of these elements are available

in a database. The database can host up to several millions

compounds.

The first step of the workflow is to compute the docking

energy of each compound. This is achieved by using a docking

software. The software takes as inputs the target, a compound

and a set of parameters. The first step produces a result file that

contains all the information concerning the docking, especially

its binding free energy level which will be used to rank all the

compounds as well as the best conformation of the compound.

The second step is to parse the result file in order to extract

Params1 Compounds Proteins

Autodock1
Thresh

Autodock2

Threshold

Params2

res

Fig. 5. The Drug discovery workflow graph

the free energy of binding. The extracted information can be

stored in a database for post-treatments. Basically this step

takes a result file as input and it outputs the extracted binding

energy linked with the corresponding compound. As all the

compounds have been docked against the target, a ranking is

made based on the binding free energy. The compounds with

the lowest binding free energy will be selected. This step can

be time consuming depending on the number of compounds

and cannot be easily parallelized. However this could be

avoided by choosing an absolute threshold for the binding free

energy instead of choosing a percentage of compounds. So

this step will take as input all the binding energies with their

corresponding compounds, and will output the list of selected

compounds. The next step is used to extract the coordinates

of the ligand conformation which corresponds to the best run,

computed in a new result file. This can then be directly input

to a new docking process (this operation last a few seconds).

Finally the compound is docked again with the same target

but with different parameters. The idea is to compute a more

accurate docking. Once all the docking have been performed,

a new ranking is made according to the scores extracted from

the new result files. The workflow can be iterated for as many

targets as desired.

The code in listing 6 shows a possible swiftscript code for

the drug discovery workflow. The script declares the types

of structures involved in the workflow. This is followed by

describing the application code along with its iteration strategy

and the data. A cross iteration strategy is achieved among the

compounds, protein and parameter using a nested for-each

loop iterating over the compounds and proteins. Assuming

that an array of compounds is readily available from the

database, these compounds are cast into an array The results

are collected into a ‘res’ array. These results are processed

further in a second call to autodock and new results are

collected that pass the threshold limit.

The script in listing 7 shows the gscript representation of

the drug discovery workflow. Variables, params1, params2,

represent the parameters. Variables compoundsdb, proteinsdb

represent the arrays of compounds and proteins to be fetched

from the database. A threshold variable holds the constant

threshold value for filtering of autodock results. A ”cmd“

invoker is used to fetch the parameters from the parameters file

and proteins & compounds from the database. A first autodock

call is made using the autodock binary along with a ‘cross’

iteration-macro of gscript. The results filtering to generate new

results is achieved using a local java “beanshell” invoker on

the first autodock results computed previously by comparing

them against a threshold value. Finally, a score and compounds

are produced on the threshold results by running a second

autodock run on the threshold results and a new parameters

in a cross iteration strategy.

As seen in the example above, with a combination of

iteration-strategies and implicit array processing semantics, a

gscript workflow could be expressed in a compact manner. It

does not require any explicit nested iteration loops over the

data sets not other parallel control structures. The invokers

makes it simple to express different types of application

specific code into the workflow specification.

7. Conclusions

In the current work, we exploit the GWENDIA language

and the underlying MOTEUR workflow engine in order to

build a script-based interface to compose parallel workflows

with rich data interactions. The proposed script language,

gscript, is capable of efficiently expressing array-based sci-

entific workflows. Its semantic is well specified. With the

help of the futures variables semantics, it achieves highly

parallel and asynchronous execution behavior for a workflow.

The language translators implemented within the MOTEUR

workflow engine makes it trivial to switch between the visual

and text based workflow composition paradigm to adapt to a

broad community of scientific workflow designers.

type params {}

type compound {}

type protein {}

type result {Compound compound; int score}

(Result res[]) autodock (Compound comp[], Protein prot[], Params param) {

foreach c, i in comp step 1 {

foreach p, j in prot step 1{

int k = j * comp.len + i;

res[k].compound = c;

res[k].score = app {file:///bin/autodock (c, p, param)}

}

}

}

Protein prot[];

prot[0] = p0; prot[1] = p1;

Compound comp[];

comp[0] = c0; .. comp[10000] = c10000;

Result res[];

res = autodock (comp, prot, param1)

Compound filtered[];

int i=0;

foreach r in res step 1{

if(r.score > threshold){

filtered[i++] = r.compound;

}

}

res = autodock(filtered, prots, param2)

Listing 6. The Drug Discovery application workflow in swiftscript

params1 = "file:///param1"

params2 = "file:///param2"

compoundsdb = "file:///compoundsdb"

proteinsdb = "file:///proteinsdb"

threshold = THRESH_VAL

params1@0 = fetchparams1(cmd:"file:///bin/fetchparam $1", params1@0)

params2@0 = fetchparams2(cmd:"file:///bin/fetchparam $1", params2@0)

compounds@0 = fetchcompounds(cmd:"file:///bin/fetchcomp $1", compoundsdb)

proteins@0 = fetchproteins(cmd:"file:///bin/fetchprot $1", proteinsdb)

res1@0 = autodock1(cmd:"file:///bin/autodock $1 $2 $3", cross(params1@0, compounds@0,proteins@0));

res2@0 = threshold(bs:" int i=0; if (res1 > threshold) res2[i]=autodockres[i];\

i++;", cross(autodockres@0,threshold@0))

comp@0, score@0 = autodock2(cmd:"file:///bin/autodock $1 $2 $3", cross(res2@0,params2@0))

Listing 7. The Drug Discovery application workflow in gscript

Acknowledgments

This work is supported by the French ANR GWENDIA project

under contract number ANR-06-MDCA-009.

References

[1] T. Fahringer, J. Qin, and S. Hainzer. Specification

of grid workflow applications with agwl: an abstract

grid workflow language. In CCGRID ’05: Proceedings

of the Fifth IEEE International Symposium on Cluster

Computing and the Grid (CCGrid’05) - Volume 2, pages

676–685, Washington, DC, USA, 2005. IEEE Computer

Society.

[2] Thomas Fahringer, Alexandru Jugravu, Sabri Pllana,

Radu Prodan, Clovis Seragiotto, Jr., and Hong-Linh

Truong. Askalon: a tool set for cluster and grid comput-

ing: Research articles. Concurr. Comput. : Pract. Exper.,

17(2-4):143–169, 2005.

[3] Alexander Forst, Eva Kühn, and Omran Bukhres. Gen-

eral purpose work flow languages. Distrib. Parallel

Databases, 3(2):187–218, 1995.

[4] Tristan Glatard, Johan Montagnat, David Emsellem, and

Diane Lingrand. A Service-Oriented Architecture en-

abling dynamic service grouping for optimizing dis-

tributed workflow execution. Future Generation Com-

puter Systems, 24(7):720–730, jul 2008.

[5] Tristan Glatard, Johan Montagnat, Diane Lingrand, and

Xavier Pennec. Flexible and efficient workflow de-

ployement of data-intensive applications on grids with

MOTEUR. International Journal of High Performance

Computing and Applications (IJHPCA), 2007.

[6] Daniel James Goodman. Introduction and evaluation of

martlet: a scientific workflow language for abstracted

parallelisation. In WWW ’07: Proceedings of the 16th

international conference on World Wide Web, pages 983–

992, New York, NY, USA, 2007. ACM.

[7] Paul Groth and Yolanda Gil. Analyzing the gap between

workflows and their natural language descriptions. In

SERVICES ’09: Proceedings of the 2009 Congress on

Services - I, pages 299–305, Washington, DC, USA,

2009. IEEE Computer Society.

[8] Geoffrey C. Hulette, Matthew J. Sottile, and Allen D.

Malony. Wool: A workflow programming language.

In ESCIENCE ’08: Proceedings of the 2008 Fourth

IEEE International Conference on eScience, pages 71–

78, Washington, DC, USA, 2008. IEEE Computer Soci-

ety.

[9] Hasan Jamil and Aminul Islam. The power of declarative

languages: A comparative exposition of scientific work-

flow design using bioflow and taverna. In SERVICES ’09:

Proceedings of the 2009 Congress on Services - I, pages

322–329, Washington, DC, USA, 2009. IEEE Computer

Society.

[10] Péter Kacsuk and Gergely Sipos. Multi-Grid, Multi-User

Workflows in the P-GRADE Grid Portal. Journal of Grid

Computing (JGC), 3(3-4):221 – 238, September 2005.

[11] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,

E. Jaeger, M. Jones, E.A. Lee, J. Tao, and Y. Zhao.

Scientific Workflow Management and the Kepler System.

Concurrency and Computation: Practice & Experience,

2005.

[12] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr.

Lazy task creation: a technique for increasing the gran-

ularity of parallel programs. In LFP ’90: Proceedings

of the 1990 ACM conference on LISP and functional

programming, pages 185–197, New York, NY, USA,

1990. ACM.

[13] Johan Montagnat, Benjamin Isnard, Tristan Glatard, Ke-

tan Maheshwari, and Mireille Blay-Fornarino. A data-

driven workflow language for grids based on array pro-

gramming principles. In Workshop on Workflows in

Support of Large-Scale Science(WORKS’09), November

2009.

[14] R.S. Nikhil. Dataflow programming languages. 13th

IACS World Congress on Computation and Applied

Mathematics, Trinity College, Dublin, Ireland, 1991.

[15] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,

M. Greenwood, T. Carver, K. Glover, M.R. Pocock,

A. Wipat, and P. Li. Taverna: A tool for the composition

and enactment of bioinformatics workflows. Bioinfor-

matics journal, 17(20):3045–3054, 2004.

[16] Yong Zhao, M. Hategan, B. Clifford, I. Foster, G. von

Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, and

M. Wilde. Swift: Fast, reliable, loosely coupled parallel

computation. In Services, 2007 IEEE Congress on, pages

199–206, 2007.

	Introduction
	The GWENDIA Workflow Language
	The Gscript Language
	Language Semantics
	Related Work
	The Drug Discovery Workflow: A Case Study
	Conclusions

