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Abstract—Cloud computing infrastructures are providing re-
sources on demand for tackling the needs of large-scale dis-
tributed applications. Determining the amount of resources to
allocate for a given computation is a difficult problem though.
This paper introduces and compares four automated resource
allocation strategies relying on the expertise that can be captured
in workflow-based applications. The evaluation of these strategies
was carried out on the Aladdin/Grid’5000 testbed using a real ap-
plication from the area of medical image analysis. Experimental
results show that optimized allocation can help finding a trade-
off between amount of resources consumed and applications
makespan.

Index Terms—cloud infrastructures, resources allocation,
workflows

I. INTRODUCTION

Cloud computing infrastructures are being increasingly ex-

ploited for tackling the computation needs of large-scale

distributed applications. They provide resources on demand

to address the computation needs of the applications. The vir-

tualization technologies exploited ease the migration of heavy-

weight applications by adapting the execution environment to

the specific application requirements. Furthermore, business

models have been developed to determine the infrastructure

cost for a specific, metered usage.

From a user perspective, the problem of determining the size

of the infrastructure to deploy for supporting a given applica-

tion run is often a difficult one. Although a quasi-unlimited

amount of computing resources may be allocated, a trade-off

has to be found between (i) the allocated infrastructure cost,

(ii) the performance expected and (iii) the optimal performance

achievable, that depends on the level of parallelization of the

application. Resources could be allocated on demand, during

the application execution, but resources deployment is a time-

consuming process that impacts the application performance.

Without assistance, the user has to resort to a qualitative

appreciation of the optimal infrastructure to allocate, based

on her previous experience with the application and the cloud

computing system used.

Theoretically, the cost of an infrastructure deployment and

usage scenario may be quantitatively estimated by the system

if sufficient information on the application and the infrastruc-

ture is known. In the general case though, it is hardly feasible

to anticipate the precise needs of a parallel application or the

behavior of such an application given a determined size infras-

tructure. Restraining the problem a bit more, it appears that

workflow-based applications have good properties for such a

qualitative estimation. Workflow-based applications represent

a large class of coarse-grained distributed applications [6].

Taking advantage of the workflow formalism, the application

logic can be interpreted and exploited to produce an execution

schedule estimate.

The objective of this paper is to design virtual infrastructures

allocation strategies for cloud computing platforms which

size and topology are optimized according to some user-

controlled metric, using the application expertise captured by

the workflow representation. Four strategies are proposed and

evaluated through experiments involving a real application in

the area of medical image analysis. The Aladdin/Grid5000

research infrastructure provides a substrate for the virtual

infrastructures allocation.

II. COST MODEL FOR WORKFLOW-BASED APPLICATIONS

A workflow application is defined through a workflow graph

featuring the application services to be executed (workflow

nodes) and the dependencies between these services (edges).

An example application workflow is shown in Figure 5. In

this case, there are six services which are interconnected by

data dependencies. The workflow describes the application

computational logic independently from the actual data sets

to be processed. The role of a workflow engine is to scale the

execution for a specific input data set. Each application service

might be invoked a variable number of times depending on the

data set size and, as long as no dependency exists between

two of these invocations, they can be performed concurrently

to exploit distributed resources.

The trade-off between an execution infrastructure cost and

the application performance is optimized using a cost function

which parameters depend on the allocated infrastructure size.

Both computing resources and network bandwidth are consid-

ered in the cost function defined below. As will be discussed

later, only acyclic workflows for which the execution schedule

can be statically determined are considered. In our approach

an execution can occur in several stages. For each stage, a

given-size infrastructure is allocated to perform the execution

of part of the workflow during a period. Each infrastructure

redeployment, between different stages, is time-consuming.



One extreme condition, is to make a single reservation for

the whole duration of the complete workflow execution, thus

sparing the redeployment cost. Another extreme, is to allocate

new resources one by one on demand.

Commercial cloud infrastructures use a simple cost com-

putation model (e.g. Amazon EC21 charges users per day of

resources usage) and let the user responsible for precisely es-

timating the amount of needed resources. The model proposed

below makes a finer grain estimate of the real infrastructure

usage which helps the user estimating the exact amount of

resources that will be consumed for each run of an application.

After finishing the execution, allocated resources are returned

to the cloud infrastructure. Let mmax be the maximum number

of resources available on the infrastructure and s be the

number of execution stages of the application. The vector

m = (m1, m2, ...,ms) is the number of resources used in

each execution stage with ∀i, mi ≤ mmax. If we assume the

per-unit cost of a resource is cr, then the total computing cost

of the infrastructure allocated for the application is:

Cr = cr

s
∑

i=1

mi (Tdi + Ti(mi, n, b)) (1)

where Tdi and Ti(mi, n, b) is the deployment time and

execution time of stage i, respectively. Ti depends on the

number of resources reserved for this stage (mi), the num-

ber of input data items to process (n) and the bandwidth

(b = (b1, b2, ..., bki), i ∈ [1..s]) of the network links used for

data exchanges. The total infrastructure cost is also impacted

by the data transfer time. If the per-unit cost of the reserved

bandwidth is cb, then the total data transfer cost is:

Cb =
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where tj is the effective data transfer time on link j. Case 2a

applies if the infrastructures charges network usage according

to the amount of data transferred (e.g. Amazon EC2). Case 2b

applies if the infrastructure can allocate controlled bandwidth

and charge network usage according to the total time of

reservation (e.g. HIPerNet [9]).

From formulas 1 and 2, the total infrastructure cost to

execute the application is C = Cr + Cb. This cost has to

be optimized considering a maximum admissible cost and

the application performance scalability. C depends on the

value of Ti at each execution stage. The computation of Ti

is possible using the application logic described through the

workflow. The workflow engine used, MOTEUR [6], usually

produces an execution schedule and controls the distribution

of an application at runtime. It was enriched with a resource

allocation and scheduling planner that is used to estimate Ti,

given that information on the workflow services execution time

and links bandwidth is available.

1http://aws.amazon.com/ec2/

III. VIRTUAL RESOURCES ALLOCATION STRATEGIES

The application execution time for each stage (Ti) depends

on the resources allocated for execution by the scheduler.

Four strategies are described below to allocate resources and

schedule computing tasks on these.

A. Naive strategy

Given p the number of services composing an application

workflow and ti the benchmarked execution time of service

i ∈ 1..p, a set of m virtual computing resources may be

allocated and naively split: mti/
∑

j tj resources are dedicated

to each service i. The network bandwidth is similarly allocated

proportionally to the amount of data to transfer between each

pair of services. This strategy is naive in the sense that it

only considers a single execution stage and the resources are

statically allocated to each service even though a service may

not be invoked during the whole duration of the workflow

execution. It serves as a performance base-line.

B. FIFO strategy

In this approach, we make the simplifying assumption that

all services can be deployed on every computing resources.

These resources are thus indistinguishable and the scheduler

may request any task to be executed on any resource. A FIFO

scheduling strategy is optimal in this case and a single stage

is considered since infrastructure redeployment is unnecessary

(T = T1). In addition, the same bandwidth is reserved for all

links in the infrastructure (b1 = b2 = ... = bk). As an example,

figure 1 displays the estimated execution time and the total cost

of the workflow from figure 5 with regard to the bandwidth

(for n = 32 input data items and unit costs cr = cb = 0.2).

When the bandwidth is small, the total cost is high due

to the data transfer time. When the bandwidth increases,

the execution time and cost both decrease. However, after a

2.0Mbps threshold, the execution time only slightly reduces

while the bandwidth allocation cost increase dominates. The

optimization method used to numerically approximate the

optimal bandwidth leads to 0.6517Mbps. This value is much

smaller than bandwidth capacity of the cloud infrastructure

which however must have a mechanism to share the link for

other users without interfering with each other.

C. Optimized strategy

The FIFO strategy can only apply with identical resources

and without optimizing the bandwidths between each pair of

resources. Conversely, the optimized strategy described below

considers dividing the workflow execution in multiple stages

and allocating resources and bandwidth independently for each

stage. The cost minimization algorithm is executed for each

stage to allocate an optimal number of virtual resources to the

services involved in this stage.

An algorithm is needed to decide on the number of stages

and when infrastructure reconfiguration should happen. Firstly,

the workflow of services is transformed into a directed exe-

cution graph (DAG), using the second composition approach

presented in [14] for instance. Secondly, the DAG is divided in

http://aws.amazon.com/ec2/
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Fig. 1: Estimation of the execution time and total cost with

regard to the bandwidth of the FIFO strategy

execution stages, each of them meant to be executed on a spe-

cific virtual infrastructure. An example execution DAG for the

workflow of figure 5 is shown in figure 2, where IN and OUT

are special entry and exit nodes that are not accounted for in

the execution and data transfer times estimation. The pseudo-

code of the DAG split into stages is presented in algorithm 1.

An execution stage is defined as the set of invocations which

have the same depth in the DAG graph. Note that the DAG

generation is only possible for workflows without unbounded

loops (the exact number of invocations of each service needs

to be known). This represents a broad category of workflows in

e-Science (many data-intensive, scientific workflow languages

do not support loops).

Algorithm 1 Execution DAG split into stages

Require: processedServices list initialized with all workflow inputs.
Require: stage = 1

while There are still services to process do
stage-services = empty list
for each service S in workflow do

if all inputs of S come from the list of processed services
then

add S into stage-services
set stage of service S to stage

end if
end for
add list stage-services to list processedServices
increment the stage counter (stage = stage + 1)

end while

At each execution stage, the infrastructure is reconfigured

for only deploying the specific services involved in that stage.

The resources are allocated proportionally to the number of

invocations needed for each service. In a typical data intensive

application execution, there are more data items to process (n)

than resources available (mmax). For instance, in the case of

a stage i with only one service S (e.g. stage 1, 2 or 4 in

figure 2), mmax data items are processed concurrently by S

and the process is repeated n/mmax times, leading to the
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Fig. 2: DAG jobs of Bronze Standard application for n inputs

execution time:

Ti =

{

[ n
mmax

] ∗ TS if n mod mmax = 0;
(

[ n
mmax

] + 1
)

∗ TS otherwise
(3)

where TS is the execution time for S.

More generally, the optimal resources and bandwidth al-

location strategy, taking into account the number of service

invocations, the execution time and the data transfer time in

each stage is computed using the multi-criterions Downhill

Simplex minimization method. Let invj , j = 1..s be the

number of invocations of service j at stage i where s is

the number of services being executed at this stage. Let

vector m = (m1, m2, ...,ms) be a combination of number

of resources allocated to the service j. This combination must

satisfy the condition
∑s

j=1
mj ≤ mmax. The resulting optimal

execution time to complete invj invocations of service j is:

Tj =

{

[
invj

mj
] ∗ Tuj if invj mod mj = 0;

(

[
invj

mj
] + 1

)

∗ Tuj otherwise
(4)

where Tuj is the unit execution time of service j.

D. Services grouping optimization

The total execution cost also depends on the infrastruc-

ture deployment time of each stage. An optimization of

the total resources reservation and redeployment time was

designed, extending the job grouping strategy without loss

of parallelism introduced in [5]. This strategy minimizes the

application makespan by grouping services which would have

been executed sequentially, thus reducing data transfers and

the number of job invocations needed. Applying this strategy

to the workflow of figure 5, two services groups are identified

which do not cause loss of parallelism as shown in figure 3a.

The number of execution stages can also be reduced as shown

in figure 3b.

This strategy only exploits workflow topology information

but not the actual execution cost of the services, although

it might be preferable to loose some degree of parallelism,

when the grouping gain is higher. The trade-off can be found

thanks to the execution planner developed for the allocation
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strategies. Starting from the execution DAG split into stages,

job invocation groups are evaluated for each consecutive pair

of stages. For each service A of the workflow involved in

the stage i, let B0, B1, ..., Bj be all children from A in stage

i + 1. All possible combinations of grouping A with one or

more of the Bk services is tested and the resulting execution

cost is evaluated by optimizing the number of resources and

the bandwidth allocated. In the example used throughout this

paper, the best solution is shown in figure 4.
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PFMatchICP Yasmina Baladin 

PFRegister 

Database

Fig. 4: Grouping CrestMatch, PFMatchICP, Yasmina and

Baladin

IV. VALIDATION ON THE ALADDIN/GRID’5000 TESTBED

A. Test application

The experiments are performed using the Bronze Standard

(BS) a real workflow-based application from the area of med-

ical image analysis [7]. The BS technique tackles the difficult

problem of validating medical-image analysis tools. As there

is usually no reference, or gold standard, to validate the result

of a medical image analysis algorithm, it is very difficult

to objectively assess the results’ quality. The BS technique

statistically quantifies the maximal error resulting from widely

used image registration algorithms. The larger the sample

image database and the number of registration algorithms to

compare with, the most accurate the method. This procedure

is very scalable and described through a complex application

workflow illustrated in figure 5. In the experiments reported

below, a clinical database with 59 pairs of patient images was

used. For each run, 354 computing tasks were generated.

B. Experiments

For testing the allocation strategies, a system image contain-

ing the OS (based on a Debian Etch Linux distribution with a

kernel version 2.6.18-8), the domain-specific image processing

services, and the MOTEUR workflow engine was created. The

infrastructures allocated are managed by the HIPerNet virtual

infrastructure deployment middleware2 [9]. HIPerNet enables

the joint virtualization of computing and network resources.

Consequently, our experiments use equation 2b to compute

Cb. The physical resources were reserved on the fully recon-

figurable Aladdin/Grid’5000 research infrastructure3, clusters

helios and sol in Sophia Antipolis, France. It is to be noted

that the Aladdin/Grid’5000 infrastructure and the HIPerNet

virtualization layer currently do not enable the control of

bandwidth between pairs of nodes although this is a planed

extension. The physical resources are Sun Fire X2200 M2

machines, 2.6GHz, 4 cores and 4GB RAM interconnected

through 10Gbps Ethernet. One virtual machine is deployed per

physical machine. For all experiments, 35 physical machines

were reserved, 3 of which are dedicated to the central services.

The 32 machines left were allocated to application services.
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Fig. 5: Bronze Standard workflow.

Services Time (seconds) Input data Produced data

CrestLines 31.06 ± 0.57 15MB 10MB

CrestMatch 3.22 ± 0.51 25MB 0.2MB

PFMatchICP 10.14 ± 2.41 10.2MB 240kB

PFRegister 0.64 ± 0.22 240kB 160kB

Yasmina 52.94 ± 2.96 15.2MB 0.2MB

Baladin 226.18 ± 19.36 15.2MB 0.2MB

TABLE I: Benchmark of the BS services execution time and

data transfer volumes.
For the needs of the MOTEUR planner, all 6 services

involved in the BS workflow have been benchmarked for

2http://www.ens-lyon.fr/LIP/RESO/Software/hipernet/index.html
3http://www.grid5000.fr

http://www.ens-lyon.fr/LIP/RESO/Software/hipernet/index.html
http://www.grid5000.fr


execution time and amount of data transferred as reported in

table I. Data transfers are performed through the secure copy

protocol (scp). The scp connection establishment time between

two virtual machines proved to be non-negligible (seconds)

and it was taken into account by adding it to the service

effective computation time. For each experiment, the appli-

cation was executed 5 times and the makespan was averaged

to minimize the side-effect of other grid users activity on these

measurements. The standard deviation is also reported.

For each strategy, the planner optimizer was executed to

determine the configuration with the minimal execution time.

The naive and FIFO strategies are single-stage and they

consistently minimize execution time when all 32 resources are

allocated. The optimized strategies are multi-stages, optimize

bandwidth needed, and may allocate less resources than the

maximum available when there is no gain in doing so.

The naive allocation strategy allocated the 32 computing

nodes to each services as follows: 3 nodes for CrestLines,

1 node for CrestMatch, 1 node for PFMatchICP, 1 node

for PFRegister, 4 nodes for Yasmina, and 22 nodes for

Baladin. The application makespan is 60.35min ± 0.1min.

This experiment shows that the virtual resources are not well

exploited during the execution. Figure 6 shows a schedule of

this strategy. Each colored line represent one task duration:

it starts once the corresponding task has been submitted and

stops at the end of its execution. The first, darker part of the

line represents the task waiting time spent from submission

until a resource becomes available for execution. Colors are

arbitrary and just help to distinguish the different tasks. As can

be seen, at the beginning of the execution, only three nodes

are used to execute the CrestLines service. Other resources

are wasted. Similarly, the result of CrestMatch is needed for

three services: PFMatchICP, Yasmina and Baladin but there is

only one resource allocated to this service according to this

strategy and it becomes a bottleneck.

Fig. 6: Tasks schedule with the naive strategy

The makespan of the FIFO strategy is much improved:

21.10min ± 0.5min. The standard deviation of this strategy

is higher due to the variable arriving order of the tasks. Some

long tasks can be executed on the same computing resource,

leading to the increase of the application makespan. Firgure 7

shows a typical task schedule for this strategy.

For the optimized strategies, the planer determines the

number of virtual resources and the bandwidths yielding to

a minimal execution time. Without services grouping there

are 4 execution stages. According to the optimization results:

only 30 nodes were allocated for the first, second and fourth

stages (additional resources would be wasted). The bandwidth

is 3.25Mbps, 2.95Mbps and 0.54Mbps, respectively. For the

third stage, 4 nodes were allocated to PFMatchICP, 6 nodes

for Yasmina and 20 nodes for Baladin. The bandwidth for each

service in this stage is 0.69Mbps, 0.76Mbps and 0.80Mbps,

respectively. Although we cannot yet control the bandwidths

on the experimental testbed, the values found are supported by

the physical links. The application makespan is then 21.70min

± 0.25min. Further grouping the application services as shown

in figure 4, the application is divided into three stages only,

using 30 nodes each. The bandwidth allocated for each stage is

3.25Mbps, 0.94Mbps and 0.54Mbps, respectively. The applica-

tion makespan is then 18min ± 0.3min. Besides the execution

time improvement, the number of resources consumed is also

lowered. As we can observe in figure 8, all tasks of the same

stage do not finish exactly at the same time though, due to

some variations of the image analysis tools execution time

depending on the exact processed image content. This has an

impact as the tasks of stage n have to wait for the longest task

of stage n − 1 before the system can be reconfigured.

Fig. 7: Tasks schedule with the FIFO strategy

Fig. 8: Tasks schedule with optimized services grouping
In conclusion, table II compares the performance of the

strategies presented above. The worst case is the naive strategy

that uses the maximum number of resources for a very large

makespan. The FIFO and optimized strategy without grouping

services have approximately the same application makespan

but the optimized strategy uses less resources than FIFO. The



best case is the optimized strategy with grouping services, it

uses less resources and returns the results the most rapidly.

Strategy Makespan No. Resources

Naive 60.35min ± 0.1min 32

FIFO 21.10min ± 0.5min 32

Optimized (without grouping) 21.70min ± 0.25min 30

Optimized (with grouping) 18min ± 0.3min 30

TABLE II: Performance comparison between four strategies

V. RELATED WORK

This work is related to workflow scheduling, resources

management and mapping workflows onto resources. Many

existing resource allocation and task scheduling strategies for

grid applications (e.g. [2]) focus on matchmaking algorithms

that do not search for an efficient allocation. Workflow-based

allocation algorithms [1], [8], [10] can deliver better perfor-

mances than matchmaking algorithms. However, the objective

of these algorithms is to minimize the application makespan

and they do not take into account the execution cost.

In [11], Ramakrishnan et al presented a fault tolerance

workflow scheduling algorithm to orchestrate multiple work-

flows on Grid and Cloud infrastructures by duplicating the

execution of some workflows to increase the probability of

success of individual tasks. This kind of approach, although

potentially efficient in reducing execution time, does not

consider the infrastructure cost. Other workflow scheduling

algorithms under resource allocation constraints have been

also proposed [12], [13]. In [12], Senkul et al presented an

architecture for workflow scheduling that considers resource

allocation cost and control constraints (e.g. co-allocation of

tasks on a same resource). It does not take into account

resource limitations and heterogeneity. Furthermore, our ap-

proach differs as it considers the trade-off between allocation

cost and performance.

Within the Service Level Agreements (SLA) context, Dang

et al presented in [3], [4] the resource allocation algorithms

to map grid-based workflows onto grid resources. These algo-

rithms try to assign the workflow tasks to grid resources so

as to meet the user’s deadline and minimize the cost. These

algorithms do not take into account the network bandwidth.

VI. CONCLUSION AND FUTURE WORKS

This paper proposed a cost-based approach for allocating

resources to workflow-based applications. It defines virtual

infrastructure allocation strategies and presents associated ex-

periments using a real workflow-based medical application.

Experimental results assess the performance of the opti-

mized strategy and job grouping optimization. Based on these

promising results, our future works will explore an approach

to automate the translation of the workflow into a virtual

resources description language in order to externalize the

management of the infrastructure to the cloud middleware.
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