
HAL Id: hal-00677806
https://hal.science/hal-00677806

Submitted on 11 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A data-driven workflow language for grids based on
array programming principles

Johan Montagnat, Benjamin Isnard, Tristan Glatard, Ketan Maheshwari,
Mireille Blay-Fornarino

To cite this version:
Johan Montagnat, Benjamin Isnard, Tristan Glatard, Ketan Maheshwari, Mireille Blay-Fornarino.
A data-driven workflow language for grids based on array programming principles. International
conference on High Performance Computing, networking, storage and analysis (SC09), Nov 2009,
Portland, United States. pp.1-10, �10.1145/1645164.1645171�. �hal-00677806�

https://hal.science/hal-00677806
https://hal.archives-ouvertes.fr

A data-driven workflow language for grids based on array
programming principles

Johan Montagnat
CNRS / Univ. of Nice

I3S laboratory
johan@i3s.unice.fr

Benjamin Isnard
INRIA

ENS Lyon, LIP
benjamin.isnard@ens-lyon.fr

Tristan Glatard
CNRS / INSERM / INSA

CREATIS laboratory
glatard@creatis.insa-lyon.fr

Ketan Maheshwari
University of Nice

CNRS, I3S laboratory
ketan@polytech.unice.fr

Mireille Blay Fornarino
University of Nice

CNRS, I3S laboratory
blay@polytech.unice.fr

ABSTRACT

Different scientific workflow languages have been developed
to help programmers in designing complex data analysis pro-
cedures. However, little effort has been invested in com-
paring and finding a common root for existing approaches.
This work is motivated by the search for a scientific workflow
language which coherently integrates different aspects of dis-
tributed computing. The language proposed is data-driven
for easing the expression of parallel flows. It leverages array
programming principles to ease data-intensive applications
design. It provides a rich set of control structures and it-
eration strategies while avoiding unnecessary programming
constructs. It allows programmers to express a wide set of
applications in a compact framework.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifica-
tions—Data-flow languages

General Terms

Languages, Design

1. ON WORKFLOW LANGUAGES AND GRID

WORKFLOW ENACTORS
Workflows have become very popular in the eScience com-

munity to design, describe and enact parallel and data in-
tensive scientific processes. Apart from a minority of appli-
cations for which a specific, and often expensive, paralleliza-
tion work has been invested, many scientific data analysis
procedures are exploiting generic workflow description tools
and execution engines which lower development cost, deal
with distribution-specific issues and enable the scientists to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORKS ’09, November 15, 2009, Portland Oregon, USA.
Copyright 2009 ACM 978-1-60558-717-2/09/11 ...$10.00.

focus on their area of expertise rather than the gridification
of the application.

Theoretically, workflow design tools and workflow enac-
tors are independent components that have to be considered
in the life cycle of a scientific application exploitation. The
former relates to a language enabling the expression of the
application logic while the latter relates to the distributed
implementation and optimization of this logic, taking into
account the grid interface and capability. In practice though,
both aspects are often tightly coupled as there tends to be
a specific language for each grid workflow enactor designed.
This observation illustrates the fact that there is a wide va-
riety of needs for different scientific applications. The defi-
nition of a language suitable for a category of applications
is a trade-off between different aspects including the ease
of use, the expertise of the workflow design community, the
specificity of the workflows to be represented, performance,
etc. This paper specifically focusses on the definition of a
workflow language covering a wide variety of applications,
keeping in mind that the practice often leads to the defini-
tion of workflow- and grid-specific enactors.

The confusion between workflow languages and enactors
is such that the language is not always well defined nor docu-
mented. The language might be hidden behind the workflow
execution engine, or the workflow designer when a high level
graphical interface is used for visual programming. This lack
of language specification makes it difficult for end-users to
determine beforehand the workflow solution adapted to their
specific needs. As a result, practical considerations (which
middleware is supported, etc) are often prevailing over the
expressiveness of the underlying language.

This statement does not apply to the BPEL language [23]
which is a widely adopted specification as there exist many
different implementations of BPEL enactors. However, the
BPEL language was designed to describe business orches-
trations of distributed web services. It targets distribution
but not high throughput nor data intensive computing and
it received only limited attention in the grid community [2].
Yu and Buyya [27] proposed a detailed taxonomy, studying
many existing workflow management systems for grid com-
puting. This taxonomy is based to a large extent on the ca-
pabilities of the workflow enactors and provides only limited
insight to the workflow languages expressiveness. A more re-
cent work by Goderis and co-authors [8] studies a topic more
closely related to the workflow language expressiveness: it

compares the models of computations of various workflow
directors implemented in Kepler [17] with the perspective of
enabling composition of different models in sub-workflows
of a global orchestration. This works illustrates how differ-
ent enactors designed for different application needs have
different expressiveness power.

Many different languages have been considered within the
grid community, from raw Directed Acyclic Graphs (DAGs)
of computational processes (DIET MA-DAG [3], CONDOR
DAGMan [15]) to abstractions for parallel computations such
as Petri nets [1], meta-models [22], data-driven languages
such as Scufl [25] and scripting languages such as SwiftScript
[28]. Each of these approaches can be defended through
some aspects well covered in their design: DAGs are con-
venient for scheduling [18, 9], Petri nets can be used to
detect properties such as potential deadlocks, data-driven
languages ease the description of applications logic for non-
expert users and scripting is extensively used by program-
mers for prototyping, etc. However, among the plethora
of grid workflow engines developed today, there has been
relatively little effort invested in studying the underlying
language expressiveness. Some exceptions should be men-
tioned though, such as the Scufl semantics definition [25] or
the search for Turing completeness [6].

In this paper, we propose a workflow language dedicated
to scientific applications design on a grid infrastructure. The
language targets ease of use and high expressiveness as it is
mostly intended to be manipulated by scientists who are not
experts of distributed computing and it addresses a variety
of applications. The languages targets the coherent integra-
tion of (1) a data-driven approach; (2) arrays manipulation;
(3) control structures; and (4) maximum asynchronous exe-
cution. On the way, we analyze different existing approaches
to motivate the language introduced and compare it to ex-
isting material. This specification is the result of a joint
consortium working on applications from several scientific
domains (medical image analysis, drug discovery, astronomy,
etc) and different workflow enactors, in the context of the
Gwendia project [13]. Making a complete analysis of exist-
ing workflow languages is out of reach of this paper. More
details on this topic can be found in chapter 2 of [5]. We
defend the idea that data-driven languages are particularly
appealing for designing scientific data analysis applications
and execute them on a distributed system such as a grid.
Therefore, our language is data-driven as motivated in sec-
tion 2. It borrows from early principles and late extensions
of array programming as detailed in section 3. The language
and it operationalization are discussed in section 4.

2. GRID DATA-DRIVEN WORKFLOWS

2.1 Coarse-grain, implicit parallelism repre-
sentation languages

Workflows are representing an application logic and in
that sense, any programming language such as traditional
C, java or scripting languages could be adapted to represent
workflows. However, workflows act at a different scale than
software composition systems: they deal with human-scale
processes that are scheduled over time [4]. Detaching from
traditional programming language is important to obtain “a
workflow in which each step is explicit, no longer buried in
Java or C code. Since the workflow is described in a uni-
fied manner, it is much easier to comprehend, providing the

opportunity to verify or modify an experiment” [2].
Similarly, in the field of distributed applications, espe-

cially targeting grid infrastructures, workflows deal with coar-
se rather than fine-grain parallelism which is better described
with traditional parallel programming approaches such as
MPI or OpenMP. The ability to represent an orchestration
of coarse grain software processes, without the additional
complexity of a tightly coupled message passing interface,
is therefore desirable. Scientific workflows are a typical ex-
amples of procedure manipulating heavy computation codes
where lower level programming languages are used to tackle
the fine-grain complexity of the data analysis. Scientific
workflow languages are providing an extra level of data anal-
ysis procedure representation by describing the coarse-grain
interaction of independent codes. In this context, the added-
value of the workflow languages relies mostly on its ability
to federate non-instrumented codes in a single procedure, to
validate the integrity of the workflow and to provide higher
level capabilities that where not necessarily available in the
native code languages such as parallelism and data flow de-
scriptions. In the case of compute intensive scientific work-
flows considered in this paper, the expression of parallelism
is particularly important. By exploiting workflows, many
users, non-experts in distributed computing, expect to bene-
fit from a parallel implementation without explicitly writing
parallel code. Any workflow graph of dependencies intrin-
sically represents some degree of parallelism [7]. In many
scientific application though, the data parallelism is massive
and is the primary source of performance gain expectation.
Especially on large scale distributed systems such as grids
where communications are costly, data parallelism is a coarse
grain parallelism that can be efficiently exploited. As we will
see in this section, data parallelism is represented differently
depending on the approach adopted.

Platform-independence of the workflow definition is also
an important aspect of workflow programming [19], even
crucial in the grid computing area where applications are
typically composed from heterogeneous codes and software,
each of them having its own architecture or system require-
ments. It is also motivated by the emergence of component-
based programming models that promote code reusability
and platform-independence. While traditional scripts, that
are often considered as the ancestors of workflows, are de-
signed for execution in an homogeneous environment, work-
flows provide a representation of the logic of the application
independently from the implementation. Built on top of
service-oriented architectures, workflows foster code reusabil-
ity, thus reducing applications development time. As a con-
sequence, workflows are increasingly cited as a transparent
way to deploy applications on grids and a large amount of
applications rely on them for a successful gridification.

2.2 Most scientific workflow languages are data
driven

As orchestrations of coarse-grain processes, workflows are
well represented through graphs which nodes represent data
analysis processes and arcs represent inter-dependencies. In-
ter-dependencies may be data dependencies (data exchange
needed between subsequent processes) or pure control de-
pendencies (the dependency only expresses a synchroniza-
tion of processes execution in time). In practice though,
there is a data transfer involved in a majority of cases en-
countered. There exist some exceptions (e.g. real time

simulation engines) but many scientific applications are de-
scribed as data analysis pipelines: successive processes are
inter-dependent through data elements, usually exchanged
through files, that are produced and consumed during the
analysis. It is especially true when dealing with independent
codes without message passing interface.

Indeed, among the many existing scientific workflow lan-
guages, focus is often put on the data although it does not
always appear explicitly. The Scufl language is a good ex-
ample of a data-driven language. All inter-dependencies are
data links, except for a specific control link used for the cases
where there is no data transfer known from the workflow en-
gine. It is the availability of data which drives the execution
and the data flow plays a crucial role as will be illustrated
in section 3. DAGs as represented in DAGMan or MADAG
conversely, are typically pure control flows. Dependencies in
DAGMan for instance only represent temporal synchroniza-
tion barriers in the execution of subsequent processes. Yet,
each process defines a set of input and output files. In a ma-
jority of cases, subsequent processes happen to refer to the
same files (the output files of one process happen to be the
same as the input files of the subsequent one). In that case,
the control links are only hiding a data dependency. The
same DAG could be expressed by making the data transfers
explicit. With the language as it stands, there is a level of re-
dundancy in the representation and preserving its coherence
is important for the workflow semantics. Such languages are
usually not intended for direct human use anyway and they
are produced by higher-level tools that ensure the coherence.

An interesting example is the SwiftScript language, pro-
posed as a workflow language founded on a scripting ap-
proach programmers are familiar with. To make the lan-
guage adapted to grids, the inventors of SwiftScript gen-
eralized the use of futures [10] for every variables defined
in the script. Futures are non-blocking assignment vari-
ables, using a proxy to ensure immediate execution of as-
signment and performing lazy blocking on variable value ac-
cesses only. The systematic use of futures for every variables
in the language makes it completely data-driven: the exe-
cution progresses asynchronously as long as a data access is
not blocking. The availability of data enables blocked thread
to restart execution. The beauty of futures is to make this
process completely hidden from the programmer who can
use a scripting language he is familiar with without ever
manipulating explicit parallel programming constructs.

Another interesting example is AGWL, the Askalon lan-
guage [26], which defines a set of control structures with
specific control ports distinguished from the data ports used
for data exchanges. Despite the clear separation between
data and control ports and links, a fixed pattern is defined
for each language structure which imposes the coherence be-
tween the data exchanges and the associated control: control
links cannot be defined independently from data links except
for a specific pure control dependency structure.

Functional languages have also been proposed for express-
ing grid workflows given that they are data-centric program-
ming languages well adapted to represent data-driven work-
flows [16]. Yet, there is no real grid workflow language based
on functional principles as far as we know.

2.3 Data driven languages express parallelism
implicitly

Data driven languages separate the definition of data to

process from the graph of activities to be applied to the data.
This separation of the scientific data to analyze and the pro-
cessing logic is convenient in many experimental situations:
an application is designed and implemented independently
of the data sets to consider, and the same workflow can be
reused for analyzing different data sets without any change.
The data flow is produced at execution time by considering
the data to be analyzed in a particular run and the set of
inter-dependent activities the data is sent to. Depending on
the complexity of the workflow and the expressiveness of the
underlying language, this data flow computation may be a
static operation that can be performed once when starting
execution, or it may require a dynamic implementation.

Beyond the convenience of separating data and applica-
tion logic, data driven language are particularly appealing
to the grid community as they make it possible to express
parallelism without any explicit construct. Indeed, the ap-
plication graph expresses (independent) codes that may be
enacted in parallel and data parallelism is expressed through
the multi-entries input data set pushed in the workflow. In
addition, pipelining can be implemented to optimize work-
flow execution performance on a distributed platform [7].
The futures adopted in SwiftScript language similarly make
the language implicitly parallel.

The separation of data and applications logic has pro-
found implications for the programmer and the execution
engine. This makes a clear difference between a language
such as BPEL, where variables are explicitly assigned (data
to process is declared within the language) and explicit con-
trol structures are needed for exploiting parallelism (foreach
kind of language constructs), and languages such as Scufl
or SwiftScript where no additional parallel language struc-
ture is needed. (Although SwiftScript defines an explicit
foreach structure to handle data parallelism, this could be
avoided as will be shown in this paper). To declare data
to be processed, Scufl manipulates data lists which items
are mapped to activities input ports at run time. Sim-
ilarly, although adopting a more traditional scripting ap-
proach SwiftScript defines mapping functions to match the
workflow input (script variables) with their actual value read
from files or other data sources.

2.4 Data and control flows
To wrap up this discussion, figure 1 shows a simple ap-

plication workflow expressed with three different families of
languages from left to right: pure data-driven language (e.g.
Scufl), explicit variables assignments and parallel constructs
(e.g. BPEL), and pure control flow (e.g. DAGMan). Red
arrows represent data dependencies while blue connectors
represent control dependencies between subsequent activi-
ties.

Independently from the language considered, the execu-
tion engine will interpret the workflow with its inputs data
to produce the data flow : a directed acyclic graph of data
segments produced with provenance linking. The data flow
generated may be an extremely large DAG even for simple
application workflows. Scufl for instance defines iteration
strategies that enable the declaration of complex data flows
in a compact framework. Note that some expressive lan-
guage will accept application graphs with cycles while the
data flow is always a DAG (where possible loops have been
unfolded by the execution process).

As shown in this example, control structures defined in a

Activity 1

Activity 2

Activity 3

{D0, D1, D2...}

foreach d in D {

 Activity1 (d)

}

D = {D0, D1, D2...}

Activity1(D0)

Activity1(D1)

Activity2(D0)

Activity2(D1)

Activity2(D2)

Activity3(D0)

Activity3(D1)

Activity3(D2)

Activity1(D2)

foreach d in D {

 Activity2 (d)

}

foreach d in D {

 Activity3 (d)

}

Figure 1: Data-driven language (left), explicit variables assignment and parallel constructs (center) and pure
control language (right).

language may be needed or not, for declaring a given data
flow, depending on the model of computation adopted. In
existing languages, there appears to be a separation between
control structures-less data-driven languages such as Scufl
and imperative languages making extensive use of control
structures such as BPEL. The boundary is not as clear be-
tween the languages though. The Scufl language introduced
as special form of conditional (fail-if-true / fail-if-false) as it
is useful to manipulate control structures in data-driven lan-
guages. Conversely, SwiftScript adopted principles of data-
driven execution through futures. We claim that both ap-
proaches can be conciliated to produce an expressive lan-
guage that proposes to the programmer both control struc-
tures of interest to express any application and a data-driven
engine to make the implementation of parallel processes as
transparent as possible. This proposal is founded on the
principles of array programming introduced in section 3.

3. ARRAY PROGRAMMING PRINCIPLES
Array programming was introduced in the early sixties to

ease the description of mathematical processes manipulat-
ing arrays [11]. It was initially thought as a simplified way
for manipulating array data structures in the language and
many implementations are sequential. However, it was also
considered as a mean to take advantage of mainframes vec-
torial processors and exploit data parallelism. The principle
is simple: arrays are considered as first-class entities within
the language and traditional arithmetic operators (such as
addition, etc) are defined natively to operate on arrays or
combination of scalar values and arrays (e.g. if X and Y de-
note arrays of numerical values, X + Y and 2× X are valid
expressions). Array operations are seen as a convenience to
avoid writing explicit loops for simple repetitive operations.
They reduce the need for control structures use inside the
language.

Array programming principle is not limited to arithmetic
operations and can be generalized to any case of function
application. In [21], Mougin and Ducasse propose an exten-
sion of the array programming concepts to object-oriented
languages. They introduce the application of methods (re-
ferred to as message passing) on arrays of objects and/or the

application of methods to arrays of parameters. An explicit
syntax is used to denote expansion over an array: X@+@Y

and 2∗@X are the explicit denotations for X +Y and 2×X

respectively. Other array manipulation operators are also
defined: reduction (e.g. scalar sum of all array members);
compression as a form of test over all array components
(Xat(X > 10) returns the array of components greater than
10); sorting (for numeric arrays); joins (searching for indices
of some elements in an array); and transposition.

3.1 Arrays as first-class entities
In array programming, arrays are defined as indexed col-

lections of data items with homogeneous type. An array of
objects defines a new data type and therefore, arrays may
be nested at any depth. To a data item is therefore always
associated a type, and a possibly multi-dimensional inte-
ger index (one dimension per nesting level). For instance,
a = {{“foo”, “bar”}, {“foobar”}} is a 2-nested levels array
of strings and a0,1 designates the string “bar”.

SwiftScript defines first-class entities arrays which are com-
patible with this definition. The Scufl language refers to lists
of data items that are in fact corresponding to the same con-
cept: Scufl’s list items are indexed and typed [25]. Lists as
defined in functional languages can match this definition if
they are limited to objects of same type. We prefer to re-
fer to the term array as it is more usually referring to an
ordered collection of values than lists.

3.2 Arrays and functional processes
As an operator, or any function, may be defined to be ap-

plied either to scalars or arrays in array programming lan-
guages, the data-driven language define computing activities
independently from the data objects sent to these activities.
An activity will fire one or more times depending on the ex-
act input data set it receives. Consider the example given on
the left of figure 1: activity 1 will fire 3 times as it receives
an array with 3 scalar values during the workflow execution.
Iterations over the array element is handled implicitly by
the execution engine.

Similarly, functional language put the emphasis on the
definition of functions, independently of the data items that
are processed. It has been observed that the functional map

mean

depth: i=1

2

{ "/etc", "/var" }

depth: o=0

diffToMean

depth: o=1

{ 1, 0, −1 }

depth: i=1

{1, 2, 3}

listDir

depth: i=1

depth: i=0

{ { "/etc/group", "/etc/passwd" },
{ "/var/log", "/var/spool" } }

{1, 2, 3}

Figure 2: Impact of ports depth. Left: i = 1, o = 0.
Center: i = 0, o = 1. Right: i = 1, o = 1.

operator defined as:

map : (α → β) → [α] → [β]
f [x1 . . . xn] 7→ [f(x1) . . . f(xn)]

can be used to transform a scalar function into an array
function [16]. If f : α → β is a function operating over
scalar values then F : [α] → [β] such that F = map(f) is the
corresponding function operating over arrays with 1 nesting
level. It should be noted that in this case, the mapping
operator has to be applied explicitly though.

3.3 Activity ports depth
Activities may receive inputs with different nesting lev-

els. The usual behaviour of an activity receiving a nested
array is to fire once for each scalar value embedded in the
nested structure. However, there are cases where the seman-
tics of the activity is to process a complete array as a single
item rather than each scalar value individually. For exam-
ple, an arithmetic mean computation activity will consider
all numerical values received in an input array at once and
compute their mean. Such an activity reduces the depth of
data items received: an array of values is reduced to a single
scalar. Conversely, a number generator could take as input
a scalar seed value and produce as output a list of random
number, thus increasing the depth of the data processed.

To generalize this notion of input/output data structure
depths transformation, we can consider that activities have
input/output ports with defined depth. The ports are buffers
for the values received and produced. The depth of a port
determines the number of nesting levels the input port will
collect or the output port will produce. It impacts the num-
ber of firings of the activity considered. Let us denote with
n the nesting level of an array received by an activity input
port of depth i ≤ n. The activity will fire once for every
nested structure of depth i received and therefore produce
an output array with nesting level n − i (see an example
in figure 2, left). Similarly, if an output port has depth o,
a nested array with o nesting levels is produced for each
invocation and consequently, the global structure produced
has n − i + o nesting levels (see figure 2 center and right).
The default behaviour is obtained for activities with depth
0 input and output ports: the processed structures nesting
levels are unchanged.

An important property of activities invocation in an asyn-
chronous execution is that multiple invocations of an activity
on array items preserve the array indexing scheme: the jth

data item in the output port corresponds to the processing
of the jth data item in the input port, independently from
the actual execution order of the activity multiple firings.
An input port depth higher than 0 corresponds to an im-
plicit synchronization barrier: in an asynchronous execution

context, the port buffers input data and will fire the activity
only when sufficient data items have been collected.

3.4 Iteration strategies
An important concept introduced in the Scufl language is

the one of iteration strategies. An iteration strategy becomes
useful when an activity has 2 or more input ports, to define
how the data flow received on each port is combined and
triggers activity invocations. There are two basic iteration
strategies defined in Scufl, known as cross product and dot
product. When a cross product is defined between a pair
our input ports, all data values received on one port are
combined with all values received on the second one. If
arrays of size n and m are received on the ports, the activity
fires n×m times. The dot product causes the activity to fire
only once for each pair of data items received on its input
ports. The data items are matched with their index rank:
the activity will fire min(n, m) times and the output with
rank k ≤ m, n corresponds to the processing of the pair of
inputs with the same rank k in each input port.

Iteration strategies can be combined in a complete iter-
ation expression tree when more input ports are involved,
thus producing complex iteration patterns without requir-
ing the programmer to write any explicit loop. They are
expressive operators of a data-driven language. They can
be extended with additional iteration patterns as illustrated
in section 4.1.4.

It is to be noted that elaborated array programming lan-
guage such as [21] provide a syntax to specify iteration strate-
gies on multiple depths nested arrays. The “@” operator
may be followed by an index rank and used to define more
complex iteration strategies. For instance, X@1 × @2Y is
equivalent to a cross product (it produces an array of arrays
containing the produces of all components of X multiplied
by all components of Y instead of a simple array of all Xi×Yi

values).

4. GWENDIA LANGUAGE
Beyond the analysis of some existing scientific workflow

languages and the exhibition of some similarities between
the approaches proposed, this paper addresses the defini-
tion of a workflow language, named Gwendia, targeting the
coherent integration of (1) a data-driven approach; (2) ar-
rays manipulation; (3) control structures; and (4) maximum
asynchronous execution capabilities. As such, it borrows
ideas from data-driven languages (e.g. Scufl), array pro-
gramming and imperative languages (e.g. SwiftScript). The
objective is to obtain a compromise with maximum expres-
siveness (all workflows that can be expressed in the above
mentioned languages should be expressible in the Gwendia

language), ease of use (the expression should be as compact
as possible) and enable efficient execution. The major chal-
lenge is to obtain a coherent language as it bridges concepts
from different languages.

4.1 Language definition

4.1.1 Data structures

The data manipulated in the language is composed from
scalar typed data items (typically, the basic types integer,
double, string and file are considered). Data structures,
defined as fixed-size heterogeneous collections of data items
can be defined.

Data with homogeneous types may be grouped in arrays.
An array is an ordered collection of data items with the
same type. A simple array is a collection of scalars (e.g. a =
{2,−3, 1} is an array of integers). A one-dimension index
designates each of its data item (a0 designates the integer 2).
An array may be empty. An array may contain other arrays
at any nesting level. An array of arrays is further referenced
as a 2-nesting levels array, etc. Note that a scalar s and a
singleton {s} are different data entities, with different types.
A scalar data item corresponds to a 0-nesting level array.

The special value Ø (void) represents the absence of data.
It will be useful for special operations and insuring the con-
sistency of the language as described below.

4.1.2 Workflows

A workflow is described as a graph of activities intercon-
nected through dependency links. Each activity corresponds
to either one construct of the language or the execution of
an external application code. Activities are fired as soon
as input data becomes available for processing. Activities
may be fired an arbitrary number of times, or never fired at
all, depending on the data flowing in the workflow. An im-
portant property of activities invocation in an asynchronous
execution is that multiple invocations of an activity on ar-
ray items preserve the array indexing scheme: the indices of
produced data matches the indices of processed data as ex-
plained in section 3.3. The indexing scheme has no influence
on the order of activity firings though.

The interface to activities is defined through typed input
and output ports with known depth as defined in section 3.3.
The output port types define the activity type. Upon firing,
an activity may either execute successfully, thus producing
an output of known type, or encounter an error and throw
an exception. An exception causes the workflow engine to
be notified of the error (user reporting) and produce the
special value Ø as the result of the execution. An activity
may produce Ø as a result of its processing, meaning that no
value was considered (e.g. a data filter might forward data
items that passed the test and return Ø for the others).

An activity which receives Ø as input does not fire and just
pass the void value on to the subsequent activity(ies). This
execution semantics guarantees that the process continues
execution as much as possible, processing other data items
that did not raise exception conditions.

Workflow inputs are special activities, with no input port
and a single output port, that fire without pre-requesite
when the workflow is started. Valid workflow inputs are
(1) data sources receiving user defined data, (2) constants
containing a single value, or (3) user defined activities with
no input ports that will fire only once, when the workflow
is started. Workflow outputs are special activities, with no
output port and a single input port, that performs no pro-
cessing and collect results received from other activities in
the workflow.

4.1.3 Dependencies

A data link interconnects one activity output port with
one activity input port. The port types have to match. The
data link defines a data dependency between two activities.
An input port can only receive a single data link to preserve
the data indexing scheme during processing. Different out-
puts may be connected to different activities, causing the
produced data items to be replicated to all subsequent ac-

tivities connected.
In case there is no data dependency explicitly defined be-

tween two activities but an order of execution should be pre-
served, a control link interconnecting these activities may be
used. A control link emits a signals only once the source ac-
tivity completed all its executions (taking into account the
possible iteration strategy applied to it). The target activ-
ity will start firing only once it has received the control link
signal, processing the data items buffered in its input ports
or to be received, as usual. In case several control links
are connected to a target activity, it only starts firing when
all control signals have been received. In an asynchronous
execution environment, a control link thus introduces a com-
plete data synchronization barrier.

4.1.4 Iteration strategies

Iteration strategies define how input data items received
on several input ports of a same activity are combined to-
gether for processing. They specify how many times an ac-
tivity fires and what is its exact input data sequence for
each invocation. Iteration strategies are also responsible for
defining an indexing scheme that describes how items from
multiple input nested arrays are sorted in an output nested
array.

dot product.
The dot product matches data items with exactly the

same index in an arbitrary number of input ports. The
activity fires once for each common index, and produces an
output indexed with the same index. The nesting level of in-
put data items, as received and transformed after port depth
considerations (see section 3.3), in all ports of a dot prod-
uct should be identical. The number of items in all input
arrays should be the same. The ports of a dot product are
associative and commutative. A Ø value received on a dot
product port matches with the data item(s) with the same
index(ices) received on the other port(s) and produces a Ø
output without firing the activity.

cross product.
The cross product matches all possible data items combi-

nations in an arbitrary number of input ports. The activity
fires once for each possible combination, and produces an
output indexed such that all indices of all inputs are con-
catenated into a multi-dimensionnal array (data items ai

and bj received on two input ports produce a data item ci,j),
thus increasing the input data nesting depth. The ports of
a cross product are associative but not commutative. A Ø
value received on a cross product port matches with all pos-
sible combinations of data items received in other ports and
produces a Ø output without firing the activity.

flat cross product.
The flat cross-product matches inputs identically to a reg-

ular cross product. The difference is in the indexing scheme
of the data items produced: it is computed as a unique in-
dex value by flattening the nested-array structure of regular
cross produces (ai and bj received on two input ports pro-
duce a data item ck with index k = i × m + j where m is
the size of array b), thus preserving the input data nesting
depths. As a consequence, the flat cross product may be
partially synchronous. As long as the input array dimension
are not known, some indices cannot be computed. Similarly

as the cross product, the ports of a flat cross product are
associative but not commutative. A Ø value received on a
flat cross product port behaves as in the case of a regular
cross product.

match product.
The match product matches data items carrying one or

more identical user-defined tags, independently of their in-
dexing scheme (see [20] for a complete definition and moti-
vation of the match product). Similarly to a cross product,
the output of a match is indexed in a multiple nesting levels
array item which index is the concatenation of the input in-
dices. A match product implicitly defines a boolean valued
function match(ui,vj) which evaluates to true when tags
assigned to ui and vj match (i.e. the specified tags val-
ues are equal). The output array has a value at index i, j

if match(ui,vj) is true. It is completed with Ø values: if
match(ui,vj) is false then wij = Ø. The ports of a match
product are thus associative but not commutative. A Ø
value received on a match product input does not match
any other data item and does not cause activity firing.

4.1.5 Control structures

The data-driven and graph-based approached adopted in
the Gwendia language makes parallelism expression straight
forward for the end users. Data parallelism is completely
hidden through the use of arrays. Advanced data compo-
sition operators are available through activity port depth
definitions and iteration strategies. Complex data paral-
lelisation patterns and data synchronization can therefore
be expressed without additional control structures. fore-

ach kind of structures that are usually used for explicit data
parallelization are not needed. Code parallelism is implicit
in the description of the workflow graph. fork and join

kind of structures are not needed either.
The only control structures considered for the Gwendia

language are therefore conditionals and loops. The seman-
tics of contional and loops operating over array types need to
be precisely defined. To our knowledge, existing array-based
languages do not define such a semantic and the program-
mer needs to define the conditional and loop expressions on
scalar values (consequently using foreach kind of structures
to iterate on the content of arrays, refer to SwiftScript for
an example). Special activities are defined to express condi-
tionals and loops. These activities have a constrained format
and input/output ports for enforcing the semantics defined
in this document.

Conditional and loop expression computations are expres-
sed using the java language and interpreted each time the
activity is fired. The data received on the input ports of a
control structure is mapped to java variables (basic types or
java ArrayLists depending on the input port depths).

Conditionals.
A conditional activity represents an array-compliant if

then else kind of structure. A conditional has:

1. an arbitrary number of input ports (possibly operating
iteration strategies), each of them mapped to a variable
of the test expression;

2. a test expression to evaluate for each data combination
received from the input ports; and

3. an arbitrary number of special paired output ports.
Each pair corresponds to a single output with the first
pair element linking to the then branch and the second
pair element linking to the else branch.

The test expression is evaluated each time the conditional
activity fires. A user-defined result is assigned to the then,
and optionally to the else, output port for each data se-
quence evaluated. A void result (Ø) is assigned to the op-
posite port automatically. Consequently, the then and the
else output ports receive a nested array with the same struc-
ture and size, as defined by the input nesting levels, ports
depths and iteration strategies used, but complementary in
the sense that if a value is available in one of the ouput, the
corresponding item is empty in the other output and vice
versa. The indexing scheme used is coherent with the usual
indices computed by iteration strategies. The void results
are therefore indexed coherently. In case the else assignment
is omitted by the user, a Ø output value is produced on the
else outputs each time the condition is invoked. A Ø value
received on the input ports cause the conditional activity to
produce two Ø values in all its then and else outputs without
evaluating the conditional.

Figure 3 shows examples of conditional activity and the
result of the enactment over multiple-nesting level arrays.
The left side example is a simple conditional without def-
inition of the else condition. The output list contains one
empty item for the value that did not pass the condition in
the then branch and the else branch only receives Ø values.
The center example is a complete conditional with both then
and else branches. The two output arrays are complemen-
tary. This example also shows the use of two inputs. The 1
nesting level input arrays are transformed in 2 nesting lev-
els output arrays by the iteration strategy applied between
the inputs. The right side example is a complex example
with the mixed use of multiple port depth values, iteration
strategy and multiple output ports.

With partial (and complementary) arrays produced by
conditionals, two additional list manipulation activities be-
come useful as exemplified in figure 4.

The filter activity is a single input / single output ports
activity that filters a nested array structure such that all
empty items are removed from the array. This activity is
useful to discard all results that have not passed the condi-
tion, if the indexing of resulting items does not need to be
preserved. As a consequence, the items in the structure will
be re-indexed. It is to be noted that this activity introduces
a partial synchronization barrier: an item in an array cannot
be re-indexed until all preceding items have been computed
and determined as empty or not. The filtering operation can
create unbalanced lists in terms of size.

The merge activity is a two input ports / one output port
activity that merges the content of two complementary lists
with the same structure into a single list. It can be used to
merge the lists resulting from the then and the else branch of
the conditional for instance. If the list structures differ or the
lists are not complementary (an item at a given index is non
empty in both lists) the merge activity raises an exception.

Loops.
A loop represents an array-compliant while kind of struc-

ture. A loop is composed by:

1. An expression used as stop condition.

depth=0
y

depth=0
x

 { , , , 11} }

{ 1, !1 } { 3, !3, 11, !11}

{ { 3, !3, , !11},

out1 = x;

= x;out1

then

if

else

double average = (x.get(0) + x.get(1)) / 2.0;

(average > y)

depth=0x

depth=0 depth=0

out (then) out (else)

{ , { 1, 3 } }

{ { !1, 3 }, }

depth=1 depth=0

out2

out2

= y;

= y;

out2 (then)

out2 (else)

{ , , }

(x*y<10)if

then out = y

= !youtelse

 { 3, !3, 11, } }
{ { , , !11, },

{ { !1, 3 }, { 1, 3} }

x
depth=1

{ 1, 1 }

y
depth=0

= xout

(x<10)

then

if

{1, 11, !1}

{1, , !1}

out1 (else)out1 (then)

out (then) out (else)

{ , 1} {1, }

Figure 3: Three conditional examples. ⊙ denotes the dot iteration strategy and ⊗ denots the cross.

{ { 3, !3, !11},

{ 3, !11 } }

filter

{1, 11, !1}

merge

{ , 11, }{1, , !1}
{ { 3, !3, , !11},

{ 3, , !11, } }

Figure 4: Filtering and merging lists with empty
items.

2. One or more input ports. Loop input ports have a par-
ticular dual structure: they are composed of an outer
part, receiving the loop initialization value from the
outer part of the workflow, and an inner part, receiv-
ing the values that loop back to the activity after one
or more iteration of the loop.

3. One output port bound to each input port. It receives
the values sent to the corresponding input port and
also has a dual structure: the outer part only receives
a value when the loop condition becomes false (hence
the loop stops iterating) while the inner part receives
iteratively all values received either on the initializa-
tion (outer) or the looping (inner) part of the corre-
sponding input port.

The inner input port of a loop can only receive a link that
is connecting from an activity which one of its ancestors
is connected to the inner output port (i.e. a loop has to
exist). In addition, a loop activity has a specific indexing
scheme on its inner port which increases the nesting level
of input arrays by one: for each initialization value causing
the activity to fire, a sub-array is created that will hold
all the values generated by this initialization while the loop
iterates. A Ø value received on the input ports cause a
Ø value to be produced on the corresponding outer port
without evaluation of the condition.

Figure 5 illustrates a simple loop and the data flowing
through each port. This loop receives an array with two
values (1 and 2) as initialization. As the condition passes
for the first value, it is transferred to the inner part of the
output port, causing a 2 nesting levels array to be created.
The second initialization value also passes the condition and
is transferred to a second 2 nesting levels sub-array. The
first value will cause 2 iterations of the loop before the stop

condition is met while the second value will only cause 1 iter-
ation. As a consequence, the inner array as two sub-arrays
with different lengths. The outer part of the output port
only receives the stop condition values. The array trans-
ferred on the output port has the same nesting level as the
input since both input and output ports have depth 0.

depth=0

depth=0
x

{1, 2}

{3, 3}

(x<3)

x_out = x

while

x_out

{ { 2, 3 }, { 3 } }

x++

(associated to x)

{ { 1, 2 }, { 2 } }

Figure 5: Simple loop example.

A for kind of control structure has exactly the same struc-
ture as the loop structure, except that the starting value,
end value and step are fixed (hence the number of iterations
is fixed). In the for case, the number of iterations is the
same for all initialization values. Consequently, the inner
sub-arrays will be of equal length.

Complete example.
Figure 6 illustrates a complete example including a loop,

a conditional and a merge activity. The input value is the
array {−1, 2} received on the x port of the while activity.
The output is the {−3, 3} array produced on port xout. The
arrays defined on the workflow links show all data items and
their indexed position as they have been transferred at the
end of the workflow execution.

4.2 Implementation
As outlined in the introduction, defining a workflow lan-

guage and building the engine supporting that language are
different problems. However, the engine capability (perfor-
mance, robustness, interfaces, etc) if of outmost importance
for the end user. The workflow language has some impact
on the engine(s) supporting as it (1) gives an upper bound of
what kind of workflow is expressible and (2) may impact the
performance that the engine can achieved depending on the
flexibility provided by the language. This section discusses
practical considerations when coming to an implementation
of the Gwendia language.

while

{!1, 2}

(abs(x)<3)

x_out = x

{!3, 3}

merge

x_out

depth=0

depth=0
x

if
then
else

(x >= 0)
out = x
out = x

{ {}, { 3 } }

{{!2,!3},{3}}

(associated to x)

then else

x!!

{ { !1, !2 }, { 2 } }

{ { !1, !2 }, {} }

{ { !2, !3 }, {} }

x++

Figure 6: Complete example with loop, conditional,
and array merging activities.

The definition of rich data flows including nested arrays
and iteration strategies, requires the definition of a strict
data indexing scheme and operational rules relating to each
control structure and iteration strategy for indexing the pro-
duced data. All control structures and iteration strategies
do not have the same properties regarding the implementa-
tion though. Some are foreseeable in the sense that given the
workflow inputs, the data flow can be inferred statically prior
to execution. Other are unforeseeable in the sense that it is
only at execution time that the data flow can be dynamically
computed. Pre-computing the complete data flow allows to
transform the workflow in a DAG prior to its execution,
enabling various optimizations such as DAG scheduling and
DAG transformations for optimization purposes. Unforesee-
able language constructs bring additional expressiveness to
the language but prevent DAG generation.

Among the language constructs introduced above, the dot
product, cross product, flat-cross product and for loops are
foreseeable. Thanks to the knowledge of the fixed number
of iterations, a for loop can be unfolded to compute the
data flow DAG. There is a significant difference between the
cross product and the flat-cross product iteration strategies
though. While the cross product can be implemented com-
pletely asynchronously (when a new input data item is re-
ceived on one of the ports, the resulting firing of the activity
can be triggered without delay), the flat-cross product may
be blocking due to the need to know one array dimension
prior to the results indices computation (see section 4.1.4).

There are many constructs in the Gwendia language that
lead to an unforeseeable behavior. A simple one is an ac-
tivity that produces an output array of unknown size. The
resulting data flow cannot be inferred unless the activity can
guarantee a fixed size for the arrays it will produce. An op-
tional array size attribute can be defined in Gwendia work-
flows in order to make this construct foreseeable whenever
possible. However, the conditionals can only be resolved
at execution time and loops cannot be statically unfolded as
the number of iteration will depend on the execution results.
The match iteration strategy is also completely dependent
on user-defined tags. Workflows depending on these con-
structs are definitely unforeseeable (including the possibility
for non terminaison due to an infinite loop).

Two workflow engines are currently being implemented
to support the Gwendia language. Both are operational at
the time of writing this paper but only cover a part of the
language. The MOTEUR workflow engine is a dynamic in-
terpretor of the data flow [14]. Initially designed to support

the Scufl language and enable complete asynchronous execu-
tion, the engine is being extended. MOTEUR continues to
support Scufl workflows as the Gwendia language covers it.
The MA DAG [12] engine is a DAG generator engine built
on top of the DIET middleware. MA DAG benefits from all
the workflow scheduling mechanisms included in the middle-
ware. Due to the impossibility to produce complete DAGs,
MA DAG generate partial DAGs greedily: a sub-DAG, as
complete as possible, is produced as soon as possible. In-
complete nodes are produced on the unforseeable constructs
until the execution engine reaches these points and they can
be resolved. More sub-DAGs are then produced until com-
pletion of the execution.

5. CONCLUSIONS
Workflow languages are important for the end user as they

define the kind of workflows that can be expressed. There
are many approaches adopted in the grid community today
but more effort has been spent in the workflow engines than
in the underlying languages. The Gwendia language targets
the coherent integration of:

• a data-driven approach to achieve transparent paral-
lelism;

• arrays manipulation to enable data parallel application
in an expressive and compact framework;

• conditional and loop control structures to improve ex-
pressiveness; and

• asynchronous execution to optimize execution on a dis-
tributed infrastructure.

Workflows are enacted independently of the language, through
two different engines adopting completely different approaches.

6. ACKNOWLEDGMENTS
This work is supported by the French ANR Gwendia

project under contract number ANR-06-MDCA-009.

7. REFERENCES
[1] M. Alt and A. Hoheisel. A grid work. In 6th

international conference on Parallel processing and
applied mathematics (PPAM’05), page 715?722,
Poznan, Poland, Sept. 2005.

[2] R. Barga and D. Gannon. Scientific versus Business
Workflows, chapter 2, pages 9–16. In [24], 2007.

[3] E. Caron and F. Desprez. Diet: A scalable toolbox to
build network enabled servers on the grid.
International Journal of High Performance Computing
Applications, 20(3):335–352, 2006.

[4] D. Gannon. Component Architectures and Services:
From Application Construction to Scientific
Workflows, chapter 12, pages 174–189. In [24], 2007.

[5] T. Glatard. Description, deployment and optimization
of medical image analysis workflows on production
grids. PhD thesis, Université de Nice Sophia-Antipolis,
Sophia-Antipolis, Nov. 2007.

[6] T. Glatard and J. Montagnat. Implementation of
Turing machines with the Scufl data-flow language. In
3rd International Workshop on Workflow Systems in
e-Science (WSES’08), Lyon, France, May 2008.

[7] T. Glatard, J. Montagnat, D. Lingrand, and
X. Pennec. Flexible and efficient workflow
deployement of data-intensive applications on grids
with MOTEUR. International Journal of High
Performance Computing Applications (IJHPCA)
IF=1.109, 22(3):347–360, Aug. 2008.

[8] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and
C. Goble. Heterogeneous composition of models of
computation. Future Generation Computer Systems,
25(5):552–560, May 2009.

[9] R. Hall, A. L. Rosenberg, and A. Venkataramani. A
Comparison of Dag-Scheduling Strategies for
Internet-Based Computing. In International Parallel
and Distributed Processing Symposium (IPDPS’07),
pages 1–9, Long Beach, CA, USA, Mar. 2007. IEEE
Computer Society.

[10] R. Halsted. Multilisp: A language for concurrent
symbolic computation. ACM Transactions on
Programming Languages and Systems, 7(4):501–538,
Apr. 1985.

[11] H. Hellerman. Experimental personalized array
translator system. Communications of the ACM
(CACM), 7(7):433–438, 1964.

[12] http://graal.ens-lyon.fr/ diet/workflow.html. DIET
MA-DAG workflow manager.

[13] http://gwendia.polytech.unice.fr. GWENDIA (Grid
Workflow ENactment for Data Intensive Applications)
contract ANR-06-MDCA-009.

[14]
http://modalis.polytech.unice.fr/softwares/moteur/start.
MOTEUR workflow manager.

[15] http://www.cs.wisc.edu/condor/dagman. CONDOR
DAGMan DAG meta-scheduler.

[16] B. Ludäscher and I. Altintas. On Providing
Declarative Design and Programming Constructs for
Scientific Worklows based on Process Networks.
Technical Report SciDAC-SPA-TN-2003-01, San Diego
Supercomputer Center, San Diego, USA, Aug. 2003.

[17] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific Workflow Management and the Kepler
System. Concurrency and Computation: Practice &
Experience, 18(10):1039 – 1065, Aug. 2005.

[18] G. Malewicz, I. Foster, A. L. Rosenberg, and
M. Wilde. A tool for prioritizing DAGMan jobs and
its evaluation. In Proceedings of the 15th International
Symposium on High Performance Distributed
Computing (HPDC’06), pages 156–167, Paris, France,
June 2006.

[19] A. Mayer, S. McGough, N. Furmento, W. Lee,
M. Gulamali, S. Newhouse, and J. Darlington.
Workflow Expression: Comparison of Spatial and
Temporal Approaches. In Workflow in Grid Systems
Workshop, GGF-10, Berlin, Mar. 2004.

[20] J. Montagnat, T. Glatard, and D. Lingrand. Data
composition patterns in service-based workflows. In
Workshop on Workflows in Support of Large-Scale
Science (WORKS’06), Paris, France, June 2006.

[21] P. Mougin and S. Ducasse. Oopal: integrating array
programming in object-oriented programming. In 18th
annual ACM SIGPLAN conference on Object-oriented
programing, systems, languages, and applications

(OOPSLA’03), pages 65–77, New-York, USA, 2003.
ACM Press.

[22] C. Nemo, T. Glatard, M. Blay-Fornarino, and
J. Montagnat. Merging overlapping orchestrations: an
application to the Bronze Standard medical
application. In International Conference on Services
Computing (SCC 2007), Salt Lake City, Utah, USA,
July 2007. IEEE Computer Engineering.

[23] C. OASIS. Web Services Business Process Execution
Language Version 2.0. Technical report, OASIS, 2007.

[24] I. Taylor, E. Deelman, D. Gannon, and M. Shields.
Workflows for e-Science. Springer-Verlag, 2007.

[25] D. Turi, P. Missier, C. Goble, D. de Roure, and
T. Oinn. Taverna Workflows: Syntax and Semantics.
In IEEE International Conference on e-Science and
Grid Computing (eScience’07), pages 441–448,
Bangalore, India, Dec. 2007.

[26] M. Wieczorek, R. Prodan, and T. Fahringer.
Scheduling of scientific workflows in the ASKALON
grid environment. ACM SIGMOD records (SIGMOD),
34(3):56–62, Sept. 2005.

[27] J. Yu and R. Buyya. A Taxonomy of Workflow
Management Systems for Grid Computing. Journal of
Grid Computing (JGC), 3(3-4):171 – 200, Sept. 2005.

[28] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, I. Raicu, T. Stef-Praun, and M. Wilde.
Swift: Fast, Reliable, Loosely Coupled Parallel
Computation. In IEEE International Workshop on
Scientific Workflows, Salt-Lake City, USA, July 2007.

