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Abstract

Resource-intensive and complex medical imaging ap-
plications can benefit from the use of scientific workflow
technology for their design, rapid implementation and
reuse, but at the same time they require a Grid comput-
ing infrastructure to execute efficiently. In this paper
we describe a technical architecture that bridges the gap
between the Taverna workflow management system and
the EGEE grid infrastructure. This is achieved through
a novel Taverna gLite activity plugin that makes the in-
terface between the multi-threaded, centralized workflow
enactor and the massively distributed, batch-oriented
grid infrastructure. The plugin significantly increases
the performance of Medical Imaging workflows over an
equivalent plain Taverna workflow.

1 Introduction

Workflows are commonly used to execute data- and
compute-intensive medical-image analysis pipelines.
Such workflows are typically composed of legacy image
analysis software components interconnected through
data dependencies. Although a number of scientific
workflow systems support this task, many medical data
analysis pipelines require large-scale Grid computing
infrastructures to cope with their high compute and
storage requirements. In this paper we focus on the
combination of a specific workflow manager, i.e., Tav-
erna [8], and a specific Grid infrastructure, namely

EGEE (Enabling Grids for E-sciencE)1. We show how
the flexibility in pipeline design provided by Taverna
can be combined with the computational resources of
EGEE, in order to efficiently support a variety of sci-
entific experiments that involve medical-image process-
ing. We expect the resulting architecture to bene-
fit both the Taverna user community and the med-
ical image analysis community, as it provides a new
Grid access functionality to Taverna, at the same time
increasing the usability of the EGEE infrastructure.
Section 2 presents an overview of the Taverna work-
bench, the EGEE infrastructure and its gLite middle-
ware capabilities. The core software component de-
veloped to bridge Taverna and EGEE is an “activity”
plugin to the Taverna Workbench that interfaces to
EGEE’s gLite middleware. Its design and implemen-
tation are discussed in Section 3. The various error
conditions encountered in a complex grid environment
are countered by implementing strong fault tolerance
mechanisms. In addition to the workflow enactment
provided by Taverna, this enables users to: (1) fit their
legacy executable/binaries and port them to the Grid,
and (2) accomplish secure and transparent application-
data transfer to and from the Grid. We evaluate the
plugin through our cardiac image processing applica-
tion use-case in Section 4. Related work is finally dis-
cussed in Section 5.

1http://www.eu-egee.org/



2 Tools and Environments

2.1 Taverna Workbench

The Taverna Workflow Management System2 is an
open source scientific dataflow manager developed by
the myGrid consortium in the UK. A first version of
Taverna was released in 2004, and has since enjoyed a
broad adoption within the e-science community3. Tav-
erna includes a GUI-based rich-client workbench for
workflow design and a workflow enactment engine. A
Taverna workflow consists of a collection of processors
connected by data links, which establish a dependency
between the output(s) of a processor and the input(s)
of another. The processors are of different kinds de-
pending on the application code to be invoked: typi-
cally, processors are Web Services, with input and out-
put ports that correspond to the operations defined in
the service‘s WSDL interface. Java classes and local
scripts can be used as workflow processors, as long as
they expose their signature as input and output ports
as required by the model. An additional gLite proces-
sor kind has been defined in the context of this work.
The engine orchestrates the execution of the proces-
sors in a way that is consistent with the dependencies,
and manages the flow of data through the processors’
ports. The overall workflow execution is data-driven,
with a push model: a processor’s execution is started
as soon as all of its inputs are available. A new ver-
sion of the Taverna workbench is released as Taverna
version 2, henceforth referred to simply as T2. Some
of the new features of T2 are directly relevant to the
work described in this paper, namely:

A separation of the data space from the pro-

cess space within the engine, whereby all the data
involved in the execution is managed by a Data Man-
ager through an external database, and is addressed by
the engine only by reference. This facilitates the man-
agement of data-intensive workflows in a scalable way,
as high volume data is only transferred into the en-
gine space when needed by processors that are unable
to resolve external data references on their own. The
cardiac imaging application described in Section 4.1,
which involves a potentially high data volume, is an
example.

Extensions points in the processor’s invocation se-
quence, which can be programmed to enhance the per-
formance of some of the processors. We exploit this
feature by effectively programming a T2 processor to
create jobs and inputs/outputs definitions for the gLite
middleware.

2Taverna, http://www.mygrid.org.uk/tools/taverna/
3In 2008, myGrid has estimated the user base at about 350

organizations with 1000+ known users.

A plugin architecture for extending the engine’s
functionality, through a Service Provider Interface
(SPI). In this work we have used SPI-based extensions
to support the gLite job management lifecycle. T2’s

data parallelism offers two modes of workflow exe-
cution: 1) A single-stage pipeline, and 2) an advanced
data parallelism mode. The data is pushed to each pro-
cessor only for one executing instance in single-stage
pipeline. In the advanced data parallelism mode mul-
tiple instances of execution are realized which are only
limited by the number of data-items available.

T2 is designed to support the key phases of the e-
science lifecycle, namely (1) the discovery and reuse
of services and prior experiments, (2) assembling and
encoding new experiments as dataflow, (3) executing
the dataflow and monitoring its progress, (4) analyz-
ing its results (primarily by capturing and querying
information-rich provenance logs), and finally (5) shar-
ing both services, dataflow, and results. By feeding
data and processes back into a pool of reusable knowl-
edge, the last step enables other scientists to undertake
new in-silico experiments.

2.2 The EGEE Framework

EGEE is a premiere grid infrastructure for conduct-
ing e-science in Europe. It has diverse capabilities for
data and computation management. Currently, the
EGEE infrastructure supports 125 Virtual Organiza-
tions (VO) comprising of 9000 users across 50 coun-
tries. Approximately 20 petabytes storage and 80000
cores are at their disposal. EGEE facilitates the job
management lifecycle. The EGEE infrastructure is
composed of various components working in coordina-
tion at logical and physical level. The data storage
of EGEE is realized in the form of Storage Elements
(SE) that facilitate the physical storage. A Logical
File Management System along with a cataloging ser-
vice maintains the data on these SEs. The compute
facilities are provided by the Compute Elements (CE),
which in most cases are a cluster of many Worker Nodes
(WN). A Resource Broker (RB) schedules the jobs to
appropriate job queues based on the job requirements
parsed as Job Descriptio n Language (JDL) descrip-
tion. The Logging and Bookkeeping (LB) component
manages the state of jobs and job-queues in the sys-
tem.

The gLite Middleware supports batch-oriented
experiment execution management in the form of a
managed job submission system. A simple JDL is used
to construct the specification of a job to be submit-
ted. Jobs are submitted to the queues based on the



matching execution times and the average waiting time
for that queue. The job life cycle is handled without
notification to the user who has to periodically poll
the system to discover the progresses made. The data
transfer between the user’s localhost and the grid nodes
is performed with secure protocols such as sFTP and
gridFTP. Language bindings including C++ and java
APIs are available in order to programmatically man-
age jobs.

3 The T2 gLite Plugin

A T2 gLite plugin was developed in order to inter-
face the T2 workbench with the EGEE grid infrastruc-
ture. This plugin enables a T2 user to submit jobs to
EGEE via gLite middleware in the form of workflow
tasks. Job execution states are periodically checked
and results are collected to localhost at the success-
ful completion of each task. These tasks are enacted
in parallel and run asynchronously over the EGEE in-
frastructure. The design and implementation of the
plugin are motivated by the following goals: 1) Lever-
age the powerful data parallel modes of T2 workflow
enactment, 2) Execution of multiple tasks simultane-
ously over the batch-oriented EGEE infrastructure and
3) Robust and fault-tolerant interface which can han-
dle various error conditions commonly encountered in
a complex Grid environment.

3.1 Design Considerations

The T2 workbench is a centralized multi-threaded
execution environment while the EGEE grid provides
a massively distributed computing infrastructure run-
ning isolated batch processes without progress noti-
fication mechanism. The former is an event-driven
lightweight tasks orchestrator while the latter deals
with compute intensive user jobs through an active
polling mechanism. The main design challenge consti-
tutes of coupling both environments. The gLite plugin
has to transform asynchronous T2 calls to the EGEE
poll-based jobs management system and notify back
the T2 core on batch execution completion. Figure 1
shows a schematic of the interaction between T2 and
EGEE via the gLite plugin. The T2 engine enacts the
gLite processor which in turn contacts the gLite mid-
dleware. The plugin prepares the job, then submits it
to EGEE, obtains a jobID and polls for the job sta-
tus in an independent thread until its completion. As
T2 activities are naturally parallelized whenever pos-
sible, other activities (with no data dependencies on
the EGEE job) can be executed asynchronously in the
meanwhile. Upon job completion, the results are sent

to the T2 data manager. Throughout this interaction,
the T2 engine remains unaware of where the job has
been executed. Different types of processors can be
mixed within a single workflow. In terms of perfor-
mance, the choice of executing a fraction of local versus
remote processes may have a very significant impact.

Taverna2(T2)

T2 gLite
plugin

gLite
Middleware

Submit Job 

Prepare Job gLite Activity 

Return Results 

Job ID

Poll for status(JobID) 

Job Status 

Get Job Output 

Return JobOutput 

Transfer DataOther Activit ies 

Figure 1. Interaction of the T2 gLite Plugin

with gLite during job submission

Security and Confidentiality In order to success-
fully submit a job to EGEE, the user must provide a
valid VO membership and proper authentication cre-
dentials, which must be delegated to the WMS-proxy
service endpoint. This is usually done once and a
credential may need to be renewed for long running
workflows.
Medical images are often anonymized or
pseudonymized prior to grid transfer and execu-
tion to fulfill medical privacy requirements. DICOM
images in particular may be anonymized by clearing
a list of well identified header fields. For data with
stringent security requirements, gLite proposes a
file encryption keystore and API which enables the
encryption of files for storage and transfer (gLite
Hydra service). Files are decrypted, if the user is
authorized to access the file keys, on the worker node
processing the files only. There also exists an EGEE
Medical Data Manager (MDM) that encompasses
DICOM files handling, including files registration,
headers prot ection in secured database and data files
encryption [6]. However, the plugin described does not
address the problem of resources authorization and



it is dealt with by the gLite middleware. This work
makes the assumption that a securely accessible gLite
infrastructure is deployed and available.

3.2 Implementation

The plugin uses the java API of gLite WMS (Work-
load Management System) in order to interact with
EGEE. In the current work we use the gLite WMS
proxy’s java API for client side interactions with
EGEE. The java API contacts the service endpoint of
the WMS Proxy services in order to submit a job to
the EGEE. T2’s plugin extension framework acts as a
ready made container for the activity plugin. This con-
tainer is used as a wrapper to the desired functionality.
The gLite plugin provides an EGEE user with the fol-
lowing functionality for Job lifecycle management via
gLite middleware:
Job Description and System Properties: The
workflow designer may configure any T2 task as a gLite
job. Typical properties include the executable, argu-
ments, standard streams and sandbox. These proper-
ties are then passed into the gLite API. A prewritten
JDL file can be directly chosen from the filesystem.
Data Transfer: The data is transferred to the Stor-
age Elements of the EGEE and identified with a unique
ID managed by the Data Management System on
EGEE. The transmission protocol used is the standard
gridFTP.
Job Submission: Job is submitted to the WMS proxy
endpoint corresponding to the user’s VO. gLite returns
a unique jobID that is held by the plugin for future ref-
erence, and to poll EGEE for its completion status.
Job Status Polling: As EGEE currently provides no
notification mechanism to notify clients of the state of
a submitted job, clients must periodically poll the jobs
for their status, until either the job is completed, or an
error is generated. The polling frequency of the gLite
plugin can be configured in order to avoid either exces-
sive overhead, or unnecessary delays in retrieving the
results.
Timeouts and Resubmission: The plugin includes
a number of fault recovery measures, in order to reduce
the probability of workflow failure (workflows execute
in a distributed environment). These include: (i) a job
resubmission policy (after a certain waiting time the
jobs are resubmitted [5]), (ii) a Round-Robin selection
policy for EGEE Workload Manager Services, and (iii)
resubmitting the data transfer requests in case of fail-
ures.
Results Collection: Job completion status and out-
put sandbox as specified in the Job Description are
collected into the local file system. The output sand-

box usually contains the standard output/error files
and relatively small output files if any.

Figure 2. A cardiac workflow with application

tasks, dataflow links, inputs and outputs

To conclude, the following steps summarize a step-
by-step procedure of creation, execution and reuse for
a T2 workflow with gLite processors:

1. Create a workflow using the Taverna workbench.

2. Add gLite processor(s) to the workflow.

3. Set/configure the properties of the gLite processor.

4. Create a grid proxy certificate for authentication.

5. Delegate the proxy to gLite middleware (builtin).

6. Add inputs/outputs and other local/gLite proces-
sors to the workflow.

7. Save, submit and reuse the workflow.

4 Use Case and Evaluation

4.1 Use Case Application

The cardiac-image processing application [1] ana-
lyzes time series of 3D heart images to analyze the
myocardial motion. The sources images are sets of 2D
slices encoded in the DICOM file format segregated
into a hierarchy of patient-wise and time instant-wise
data. Diverse compute load characteristics are found
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time, Tq=Time in Job Queue). Right: Performance Results of Cardiac Image Processing Workflow.

among the tasks forming the cardiac workflow. On the
one extreme are the tasks that need to transfer only a
few string values while on the other are the tasks requir-
ing to transfer image data in the order of a few MBs.
From the compute requirements point of view the tasks
range from a minimal sequential algorithm to MPI
based parallel algorithm requiring multiprocessor sup-
port and running for up to 12 hours. A pipeline show-
ing these tasks is shown in Figure 2. Image Crop crops
all the DICOM files into a Region of Interest bounded
by Cartesian coordinates. Interpolation interpolates a
series of 2D images corresponding to o ne volume to
form one 3D image. Pyramid Decomposition produces
images at successively lower resolution from an im-
age. Gradient Computing computes the motion gradi-
ent from points on the cardiac image. Border Detection
is an edge detection filter that outputs the cardiac im-
age border based on the pixel contrast threshold values.
Motion Estimation estimates the quantitative motion
of points on the image across the myocardial motion.

4.2 Results and Evaluation.

This section presents the scalability results for the
Cardiac Image Processing workflow executed on the
EGEE grid. Performance is measured in terms of work-
flow execution time for an increasing number of pa-
tients data. Four different execution modalities are
considered as described below. The design of the 4
workflows corresponding to the 4 modalities is simpli-
fied by the fact that one workflow template can be used
as a base, to be modified according to design the other
ones.

Execution Modalities. Different execution mode
are considered for performance assessment: (M1) pure

sequential run on a local processor used as a baseline;
(M2) pipelined workflow mode in pure grid execution;
(M3) advanced data-parallel mode in pure grid execu-
tion; and (M4) mixed execution mode, mixing data-
parallel grid processors and local processors. Perfor-
mance measurements as a function of the number of
patients are reported in the right of figure 3 for all four
modes. The M3 and M4 curves display the average ex-
ecution time over 5 runs ± 1 standard deviation to take
into account grid execution time variability (heteroge-
neous resources and variable workload conditions).

Application Execution Profiles. The left side of
figure 3 shows the average grid profile of the processes
involved in the workflow. Tx is the execution time of
process on a grid Worker Node, Td is the time required
to transfer the data from grid Storage Elements to the
worker node and back after process execution, and Tq
represents the time spent inside the job queue after
the job has been submitted and before the start of its
execution. As seen from the histogram, the “Motion
Estimation” process execution time largely dominates
the complete workflow execution time. In addition, the
grid processes turnaround time (sum of Tx, Td and Tq)
shows a very significant overhead, as compared to the
local execution time (Tx), especially considering the
shortest processes. This overhead includes the time
spent in setting up the tasks to be submitted as jobs
to gLite (generating JDL and a wrapper script defini-
tion provi ding pre and post processing steps), commu-
nication latency and data transfer times between the
workflow engine and the EGEE nodes, and batch queue
time.

Performance Analysis The sequential workflow
execution time (M1 curve) increases almost linearly



with the number of patients, although the execution
time is dependent on each data set and not completely
regular. The M2 curve shows the execution of this
workflow on EGEE using the pipeline modality. The
poor performance of this modality is explained by the
overhead incurred, in the form of data transfer and
waiting times at job queues. Further, as the Mo-
tion Estimation process is dominating the workflow,
the enactor waits for that stage of the pipeline to
be completed before a next execution instance starts.
This problem is solved by the data-parallel modality
as shown by the M3 curve. The workflow executes
concurrently for all patients in this modality. The
performance gain obtained is in the order of three-
fold better that of the simple pipeline and local exe-
cution. When 8 patients or more are processed concur-
rently, the grid parallelism gain overcomes the over-
hea ds and M3 out performs M1. The performance
is increased further with the “mixed-mode” execution
(M4 curve). This mode is by far the best enactment
strategy as it executes lightweight tasks through locally
invoked execution threads avoiding costly data trans-
fers and job queue waits. Only the heavy weight ‘Mo-
tion Estimation’ task is ported to EGEE in this case.
A combination of data parallel grid execution and local
execution can significantly increase the overall perfor-
mance of a workflow execution. Care should be taken
though as to set a limited number of local processors
while using the “mixed-mode” workflow. Too many
local threads might saturate the local resources.

Data Management. Relatively small application
data is managed by gLite middleware directly through
“sandboxes”. However, large application data needs to
be managed separately. T2’s reference handling mech-
anism ensures that unnecessary data transfer does not
take place between enactor and remotely executing pro-
cesses. We use EGEE Data Management facility that
enables registration of data into an EGEE catalog and
store it into its Storage Elements (SE). This way the
data needs to be transferred only once across the whole
workflow. At the beginning of the workflow, the data
is transferred to EGEE from localhost and at the end
of the workflow, it is transferred back to the localhost.

5 Related Work

Our effort complements the past research on other
infrastructures with different approach. MOTEUR [2]
is a data-intensive, fully asynchronous workflow engine
for scufl-based workflows. MOTEUR provides a direct
interface to grid middlewares including the Grid5000-
OAR and EGEE-gLite. The workflows are submitted

to the middleware via a generic web service application
wrapper [3]. However, currently, MOTEUR lacks a
sophisticated user interface. A caGrid [9] plugin is a
service interface to the Globus Toolkit that exposes the
caGrid services to the T2 workbench. An ARCGrid [4]
plugin to T2 provides access to a middleware based
portal and optionally directly to the NorduGrid via an
enhanced GridFTP interface.

6 Conclusion and Perspectives

The current work successfully demonstrates advan-
tages of Medical-Image processing applications ported
to the Grid infrastructures via workflow enactment.
While we have considered Medical-Imaging, this could
be well applicable to other applications area using data
pipeline.
It is far from trivial to efficiently bridge a workflow
enactor and the Grid infrastructure. The data-flow
and task representations differ greatly on the two do-
mains posing challenges to end-users. We show that
there could be different enactment strategies depend-
ing upon the nature of different tasks and that those
tasks could be selectively scheduled on local or Grid re-
sources. A simple resubmission policy has significantly
increased the overall reliability of the workflow execu-
tion on EGEE.
Currently it is required by the workflow designer to
judge the complexity of each involved task in a work-
flow and a manual judgment for its target execution
environment. This is not trivial and requires special
eff orts for each case. Developing heuristics for selec-
tion of tasks for local or Grid execution considering
their execution profiles and load capacity of local envi-
ronment will ease the decision for workflow enactment
strategies.
Work is ongoing for optimization of the job status
polling, which can be addressed by polling together a
collection of submitted jobs, in order to minimize net-
work traffic.
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