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Abstract It is commonly observed that production grids are inherently unreliable.

The aim of this work is to improve grid application performances by tuning the job

submission system. A stochastic model, capturing the behavior of a complex grid work-

load management system is proposed. To instantiate the model, detailed statistics are

extracted from dense grid activity traces. The model is exploited for optimizing a sim-

ple job resubmission strategy. It provides quantitative inputs to improve job submission

performance and it enables the impact of faults and outliers on grid operations to be

quantified.

Keywords Production grid monitoring · submission strategy optimization

1 Introduction

In response to the growing consumption of computing resources and the need for global

interoperability in many scientific disciplines, inter-continental production grid infras-

tructures have been deployed over recent years. Grids are understood here as the fed-

eration of many regular computing units distributed world-wide, taking advantage of

high-bandwidth Internet connectivity. Production grids are systems exploiting dedi-

cated resources administrated and operated 24/7, as opposed to desktop grids that

federate more volatile individual resources. The production systems operated today

(e.g. EGEE1, OSG2, NAREGI3...) have emerged as a global extension of institutional

clusters. They federate computing centers which operate pools of resources almost au-

tonomously. The grid middleware is designed to sit on top of heterogeneous, existing

local infrastructures (typically, pools of computing units interconnected through a LAN

and shared through batch systems) and to adapt to different operating policies.
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These complex systems have passed feasibility tests and are exploited as the back-

bone of many research and industrial projects today. They provide users with an un-

precedented scale environment for harnessing heavy computation tasks and building

large collaborations. Their exploitation has led to new distributed computational mod-

els. However, they also introduce a range of new problems directly related to their scale

and complex software stacks: high variability of data transfer and computation per-

formance, heterogeneity of resources, multiple opportunities for job failures, hardware

failures, difficulty with bug tracking, etc. This leads to an inherent unreliability [5,10,

11]. Among the grid services delivered, the workload management system is probably

one of the most critical and most studied. Despite the tremendous efforts invested in

guaranteeing reliable and performing workload managers, the current records demon-

strate that achieving high grid reliability remains a work in progress [5]. Performances

may be disappointing when compared to the promise of virtually unlimited resources

aggregation. As a consequence, grid users are directly exposed to system limitations

and they adopt empirical application level strategies to cope with the problems most

commonly encountered.

Production grid infrastructures remain to a large extent complex systems whose

behavior is little understood and for which “optimization” strategies are often empiri-

cally designed. The reason for this cannot be attributed to the youth of grid systems

alone. The complexity of software stacks, the split of resources over different adminis-

trative domains and the distribution over a very large scale makes it particularly dif-

ficult to model and comprehend grid operations. Structured investigation techniques

are needed to analyze grids behavior and optimize grid performances. Considering the

grid workload management systems in particular, users are often in charge of manu-

ally resubmitting jobs that failed. They need assistance to adopt smart resubmission

strategies that improve performance according to objective criteria.

1.1 Objectives and organization

In this paper we analyze the operation of the EGEE production grid infrastructure

and more particularly its Workload Management System (WMS) in order to assist

users in performing jobs submission reliably and improving application performance.

Experience shows that EGEE users are facing a significant ratio of faults when using the

WMS [1,10] and their applications’ performance is impacted by very variable latencies.

Each job submitted to the grid may succeed, fail, or become an outlier (i.e. get lost

due to some system fault). The execution time of successful jobs is impacted by the

system latency. Faulty jobs and outliers are similarly introducing variable delays before

the error is detected and the jobs can be resubmitted. From the user’s point of view,

the overall waiting time, including all necessary resubmissions, should be minimized.

Ad-hoc fault detection and resubmission strategies are typically implemented on a per-

application basis. Determining the optimal grace delay before resubmission is difficult

though, due to (i) the absence of notification of outliers, (ii) the impact of faults, and

(iii) the variability of workload conditions and faults on a production infrastructure.

The objective of this study is to provide quantitative input and optimal resubmission

timing.

Previous works have demonstrated that statistics collection on the live grid system

and derived probabilistic models could help in optimizing grid performance according

to user-oriented and system-oriented criterions [9,15]. However, the statistics utilized
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so far were collected through invasive probing of the grid infrastructure, thus leading

to rather sparse and incomplete data retrieval, difficult to update, as grid workload

is highly variable. This work describes a more structured approach leveraging on the

international effort to set up a Grid Observatory4 which tackles the problems related

to grid operation traces collection in order to provide accurate, dense and relevant

statistics for modeling and optimizing the infrastructure. In this paper, we exploit

these traces to derive a stochastic model aiming at the optimization of jobs resubmission

time-out. We also study the impact of the EGEE grid workload and fault rate variations

along time on the model and the consequences for performance of computing tasks

submitted to the grid.

In the remainder, the EGEE grid architecture, and more specifically its Workload

Management System, is introduced. The Grid Observatory implementation, based on

grid service log files analysis and merging, is then described. The data extracted and

its exploitation for deriving a novel probabilistic model of the grid job latencies is

presented. Finally, a simple job resubmission strategy is optimized, based on the prob-

abilistic model proposed.

1.2 Related work

Building production quality grids is recognised as a challenging problem [5,10,11], es-

pecially as the grid “grow in scale, heterogeneity, and dynamism”. Large scale systems

are particularly prone to failures and interruption of services due to their distributed

nature and the large number of components they rely on. This work focusses on prob-

abilistic grid workload modeling and applies the resulting model to job submission

strategies tuning. It faces the problem of statistical data collection needed to instanti-

ate accurate models.

Focusing on jobs management, several studies on fault-tolerant scheduling methods

have been conducted, such as rescheduling [5,7,10] or short test runs-based scheduling

techniques that apply to quite long, restartable jobs [20]. Yet, few real production grid

workload traces and models are available today [7]. Some efforts have been invested

along these lines at a local scale, such as the study of the Auvergne regional part of

EGEE [16]. Extending such efforts at a large scale is hampered by the split of the

infrastructure in many administrative domains. To help resolving these difficulties, the

Grid Workloads Archive [12] is an initiative for global data publication and organiza-

tion is which proposes a workload data exchange format and associated analysis tools

in order to share real workload data from different grid environments. The Network

Weather Service[19] also proposes an architecture for managing large amounts of data

in order to make network-related predictions.

Earlier works [6] have set up a methodology for statistical workload modeling from

real data with the characteristics observed on Grids: heavy tailed distribution and rare

events. More recent works have proposed to model different parameters such as job

inter-arrival time, job delays, job size, batch queues waiting time and their correla-

tion on different platforms: the EGEE grid [3,8,17] or the Dutch DAS-2 multi-cluster

environment [13] for different periods of time, from one month to one year.

Grid workload models are exploited in many different contexts. Real workload

models are mandatory to test new algorithms at different stages of jobs life-cycle such

4 EGEE Grid Observatory, http://www.grid-observatory.org
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as submission (client side) or scheduling (middleware side). Authors of [8] have used

their data to compare two user-level scheduling algorithms. Workload models are also

used for platform analysis and comparison. For example, results on the EGEE Grid

have been compared with a real local cluster and an ideal cluster [3]. Finally, workload

models will also enable more realistic simulations when used in Grid simulator such as

SimGrid [2].

2 EGEE grid infrastructure

EGEE is an unprecedented large scale federation of computing centers, each operating

internal clusters in batch mode. EGEE today accounts for more than 140,000 CPU cores

distributed in more than 250 computing centers of various sizes. With more than 13,000

users authorized to access the infrastructure and more than 400,000 computing tasks

handled daily, EGEE experiences very variable load conditions and strong latencies in

user requests processing, mostly due to the middleware latency and the batch queuing

time of requests.

EGEE operates the gLite middleware5. gLite is a collection of interoperating ser-

vices that cover all functionality provided, including grid-wide security, information

collection, data management, workload management, logging and bookkeeping, etc.

A typical gLite deployment involves many hosts distributed over and communicating

through the WAN. The main services provided by gLite are: the security foundational

layer (based on GLOBUS Toolkit 2), the Information System collecting status in-

formation on the platform hierarchically, the Data Management System providing a

unified view of files distributed over many sites, and the Workload Management Sys-

tem (WMS) in charge of dispatching and monitoring computing tasks. Each of these

systems is a compound, distributed architecture in its own right.

EGEE is a multi-sciences grid and EGEE users and resource are grouped into

Virtual Organizations (VOs) which define both communities of users sharing a common

goal and an authorization delineation of the resources accessible to each user group.

2.1 EGEE Workload Management System

The EGEE WMS is seen from the user’s perspective as a two-levels batch system: the

User Interface (client) connects to a Workload Manager System (WMS). The WMS is

interfaced to the grid Information System to obtain indications on the grid sites status

and workload conditions. It queues user requests and dispatches them to one of the sites

connected. The sites receive grid jobs through a gateway known as Computing Element

(CE). Jobs are then handled through the sites’ local batch systems. To comprehend the

complexity of the system, a more complete view of the WMS architecture, extracted

from the WMS user guide [18] is depicted in figure 1.

When submitting a job, the client User Interface connects to the core Workload

Manager through a WMProxy Web Service interface or the Network Server. The Work-

load Manager queries the Resource Broker and its Information SuperMarket (repository

of resources information) to determine the target site that will handle the computation

task, taking into account the job specific requirements. It then finalizes the job submis-

sion through the Job Adapter and delegates the job processing to CondorC. The job

5 gLite middleware, http://www.glite.org
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Fig. 1 gLite Workload Management System architecture; source: WMS user guide.

evolution is monitored by the Log Monitor (LM) which intercepts interesting events

(affecting the job state machine) from the CondorC log file. Finally, the Logging and

Bookkeeping service (LB) logs job events information and keeps a state machine view

of the job life cycle. The user can later on query the LB to receive information on her

job evolution.

For load balancing and system scalability, the EGEE infrastructure operates around

a hundred of similar WMS. However, these WMSs largely share the same population

of connected CEs and, as they are not interconnected, do not perform across WMSs

load balancing. Instead, WMSs are indirectly updated of the overall workload condition

variations through information collected by the information supermarket. It is up to the

clients to select their WMS at submission time. The client User Interface implements a

simple round-robin WMS selection policy to assist users in their job submission process.

In the remainder we are particularly interested in the impact of the grid middleware

on the job execution time, i.e. the latency induced by the middleware operation, that

is not related to the job execution itself. This latency is a measure of the middleware

overhead. In case of faults (scheduling problems, middleware faults...) this latency will

arbitrarily increase and to prevent application blocking the job needs to be considered

lost after a long enough waiting time.

2.2 Jobs’ life cycle

The jobs’ life cycle is internally controlled through a state machine displayed in figure 2

[18] where states and possible transitions are presented.

The normal states assigned to a job are underlined in boxes with thick borders

(they correspond to the case of a job completed successfully):

SUBMITTED: the job was received by the WMS and the submission event is logged

in the LB.

WAITING: the job was accepted by WM, waiting to match a CE.

READY: the job is sent to its execution CE.
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Fig. 2 Jobs life cycle state machine; source: WMS user guide.

SCHEDULED: the job is queued in the CE batch manager

RUNNING: the job executes on a worker node of the target site

DONE (ok): the job completed successfully.

CLEARED: after outputs of a completed job have been retrieved by the user, the job

is cleared. In case of non completion of job, files are cleared by the system.

Other states may also be encountered:

ABORT: in any state, the middleware can abort the operation. An additional status

reason is usually returned.

DONE (failed): some errors may prevent correct job completion. An additional status

reason is usually returned.

DONE (cancelled): the job was cancelled by the user.

2.3 Grid observatory

The basis of our work on the WMS behavior modeling is the collection of statistical

information on job evolution on the live grid infrastructure. The relevant information

for performance modeling is the duration of jobs, including fine details on the interme-

diate times spent between transitions of the state diagram. This information collection

step is difficult in itself and the means of collecting relevant data will depend on the

targeted exploitation of the model. To deal with jobs resubmission on the client side,

information needs to be collected actively by the client or through a dedicated ser-

vice accessible from the client. Conversely, on the WMS server-side, quite extensive

monitoring information on the jobs handled by this server is available and could be

exploited.

In a previous work focussing on client-side submission strategies [14], we collected

such information via periodic probe jobs submissions and life-cycle tracking on the

infrastructure. Although this strategy is easy to implement (all that is needed is a user

interface connected to the infrastructure), it is both restrictive (the polls are specific
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short duration jobs, the jobs are limited to the resources accessible to the specific

user performing submission) and has limited accuracy (only a limited number of polls

can be simultaneously submitted to avoid disturbing normal operation, the traces are

collected by periodic polling and the period selected impacts the accuracy of results).

A more satisfying approach is to collect traces from regular jobs submitted on

the grid infrastructure during normal grid operation, thus assembling a complete and

accurate corpus of data. However, there are more difficulties in implementing this

approach than would be expected, including:

– traces are recorded by different inter-dependent services (WM, CondorC, LM,

LB...) that are tracing partly redundant and partly complementary information;

– traces are collected on many different sites (operating different WMSs) adminis-

trated independently: agreement to collect the data has to be negotiated with the

(many) different site administrators;

– different versions of the middleware services co-exist on the infrastructure and

traces are produced by slightly varying sources (including changes in states, labels,

spell fixing in messages returned, etc);

– traces are recorded on different computers which clocks are not always well syn-

chronized (although NTP should be installed on every grid host);

– traces collected are incomplete as parts of them can be lost (log files loss, disk

crashes, etc) and all job states are not always recorded (middleware latency and

faults cause some transition losses);

– as it will appear in the rest of this paper, the traces recorded often do not match

precisely the information documented in the existing guides (state name changes,

etc).

The most accurate source of traces available on the EGEE grid today is the Real

Time Monitor6 (RTM) [4] implemented at the Imperial College London for the need

of real time grid activity monitoring and visualization. The RTM gathers information

from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached

locally at a dedicated server at Imperial College London and made available for clients

to use in near real time.

The system consists of three main components: the RTM server, the enquirer and an

Apache Web server which is queried by clients. The RTM server queries the LB servers

at fixed time intervals, collecting job related information and storing this in a local

database. Job data stored in the RTM database is read by the enquirer every minute

and converted to an XML format which is stored on the Web Server. This decouples

the RTM server database from potentially many clients which could bottleneck the

database.

The RTM also provides job summary files for every job as text files (“Raw Data”).

These data are analysed off-line and fixed record length tuples are created on daily

basis, one file per LB server. These files are used for the analysis presented in this

paper.

An extended information about services offered by the RTM including detailed

description of the system architecture can be found in [4].

The systematic collection of grid traces for studying grid systems has been rec-

ognized as a key issue and significant effort has been recently invested in setting up

the EGEE Grid Observatory which aims to collect information and ease access to it

6 Real Time Monitor, http://gridportal.hep.ph.ic.ac.uk/rtm
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REGISTERED RAN DONE 64.1 %
REGISTERED ABORT 29.4 %
REGISTERED DONE 2.7 %
REGISTERED RAN ABORT 0.9 %

Table 1 Top 4 life cycle values with their frequencies

through a portal. The grid observatory has long term objectives of cleaning and har-

monizing the data. It currently provides access to first body of data collected in Paris

regional area (GRIF) and by the RTM.

3 Statistical data

The data considered in this study are RTM traces of the EGEE grid activity during the

period from September 2005 to June 2007. 33,419,946 job entries were collected, each

of them representing a complete job run. Among the information recorded in an entry

can be found: the job ID, the resources used (UI, RB, CE, WN), the VO used, the job

specific requirements, the job life cycle concatenated field and a complementary “final

reason” text detailing the reason for the final state reached. Different epoch times are

given, allowing the measurement of the duration of each step in the job life cycle:

epoch regjob ui: registration of a job on a User Interface

epoch accepted ns: job accepted by the network server

epoch matched wm: job matched to a target CE

epoch transfer jc: job accepted and being transferred to the CE

epoch accepted lm: job accepted by the CE

epoch running lm: job started running (logged by the LM)

epoch done lm: job completed (successfully or not)

epoch running lrms: job started running (logged by the LRMS)

epoch done lrms: job completed (successfully or not)

The last two couples of epoch data can be redundant: one is given by the LM while

the other is given by the local resource management system (LRMS) or batch system.

The LM data is less accurate than the LRMS, but the LRMS data does not exist for

all CEs.

The life cycle field holds information on the different states the job has encoun-

tered during its life cycle (see figure 2). It is composed of the concatenation of the

different state names, considering some minor variations in names (e.g. RAN corre-

sponds to a past RUNNING state; REGISTERED corresponds to a job registered on

the UI it has been SUBMITTED to). In the data considered in this paper, 50 different

values of the life cycle field have occurred with different frequencies. They corre-

spond to different situations: job successfully terminated and data retrieved (REGIS-

TERED RAN DONE CLEARED), job aborted (REGISTERED ABORT), etc. The

top 4 life cycle values with their frequencies are given in table 1. As all jobs encounter

the “CLEARED” status, we have omitted this status in the remainder of the paper.

To give more information on the reason for the final state of a job (especially in

case of error), the final reason field provides a user readable message. Unfortunately,

the set of possible values is larger, due not only to the diversity of cases that may
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RRD REGISTERED-RAN-DONE
RA REGISTERED-ABORT
RD REGISTERED-DONE
UA UNDEFINED-ABORT
Una UNDEFINED-na
RE REGISTERED-ENQUEUED
RRna REGISTERED-RAN-na
URD UNDEFINED-RAN-DONE
RRR REGISTERED-RUNNING-RAN
RT REGISTERED-TRANSFER

Table 2 Abbreviations for some type values.

occur but also to the different versions of middlewares, sometimes displaying differ-

ent messages for the same reason. Combined with the life cycle field, we counted

236 different cases. Some final reason fields were shortened to exclude non relevant

specific information such as particular file name or site name appearing in the message.

Before exploiting the data, some curation was needed for proper interpretation.

Specifically: data sources were selected when redundant information was available (LM

and LRMS traces redundancy); specific text final reason fields were truncated; and

rare events were neglected in order to reduce the number of cases to analyze (an

experimental justification is given in paragraph 5.3). As a result, table 3 details the 32

most frequent cases, representing 99.4% of the total data. This selection is a trade-off

between data completeness and number of cases to analyze. The last column of table 3

proposes a classification of the cases into 3 classes that are detailed below.

3.1 Successful jobs

The first class corresponds to jobs that have started running and either terminated

successfully or were canceled by the user. We consider that these jobs were possibly

successful even if the intervention of the user changed the final status or if some pro-

duced files were not retrieved or used. For these jobs, we denote by R the job latency,

i.e. the time between the epoch of registration on the UI and the epoch where the

job starts running. Due to some clock synchronization problems it may happen that

a latency value R is negative: such entries have been excluded from the study. Such

problems may also alter some positive values. However, these events are rare and the

synchronisation difference are small compared to the values considered.

As LRMS values are more accurate, we decided to keep only data where LRMS

values were available. The number of remaining traces is given for each case in table 3

inside the parenthesis after the R symbol. This class is composed of 18,991,905 entries.

Figure 3 displays the distribution of latency values for all successful cases from

table 3. We observe that all profiles are similar although the frequencies differ, and

the first class represents most of the data. Figure 4 displays the probability density

function (fR) of the latency on top and its cumulative density function (FR) on bottom.

These laws are known to be heavy tailed [9] meaning that the tail is not exponentially

bounded (see figure 5):

∀λ > 0, lim
t→∞

eλt(1− FR(t)) = +∞
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Fig. 3 Occurrences of latency values for different cases (see table 3) of successful jobs. The
figure below gives more details for low values. The first two cases (1 and 2) are plotted thicker
for an easier reading.
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case type and final reason occurrences % class
1 RRD Job terminated successfully 17,202,969 51.5% R (15,035,704)
2 RA Job RetryCount (0) hit 3,838,380 11.5% outlier
3 RA Cannot plan: BrokerHelper: no compa 3,422,319 10.2% F
4 RRD - 2,176,464 6.51% R (1,888,797)
5 RRD There were some warnings: some file 1916300 5.74% R (1,698,337)
6 RD Aborted by user 863,094 2.58% R (875,89)
7 RA Job RetryCount (3) hit 582,152 1.74% outlier
8 RA - 557,055 1.67% F
9 RA Job proxy is expired. 495,519 1.48% F

10 RA cannot retrieve previous matches fo 358,726 1.08% F
11 RRA Job proxy is expired. 267,890 0.80% F
12 Una - 235,458 0.70% R (10,632)
13 RRD Aborted by user 188,421 0.56% R (15,3479)
14 RA Job RetryCount (1) hit 165,231 0.49% outlier
15 UA Error during proxy renewal registra 149,095 0.45% F
16 RA Unable to receive 115,867 0.35% F
17 RE - 109,089 0.33% F
18 RA Cannot plan: BrokerHelper: Problems 89,553 0.27% F
19 UA Unable to receive 70,215 0.21% F
20 RA Job RetryCount (2) hit 63,595 0.19% outlier
21 RRna - 56,044 0.17% R (53,055)
22 RRD There were some warnings: some outp 49,046 0.15% R ( 38,656)
23 RD - 45,400 0.14% R (2,091)
24 URD Job terminated successfully 31,722 0.09% R (236)
25 RRA - 26,268 0.08% F
26 RRR - 22,983 0.07% R (19561)
27 RA Submission to condor failed. 22341 0.07% F
28 RA Job RetryCount (5) hit 22,260 0.07% outlier
29 RT Job successfully submitted to Globu 18,972 0.06% R (3,768)
30 RT unavailable 18,065 0.05% F
31 RA Job RetryCount (7) hit 17,328 0.05% outlier
32 RA hit job shallow retry count (0) 16,863 0.05% outlier

Table 3 The 32 most frequent cases of type and final reason field values are totalizing 99.4%
of the total data. Type values have been abbreviated for readability, using short names from
table 2. The last column distinguishes correctly running jobs with latency (R with number of
data entries remaining after cleaning), failed jobs (F) and outliers.

3.2 Failed jobs

The second class corresponds to jobs that have failed for different reasons, leading to

abortion by the WMS (no compatible resources, proxy error, BrokerHelper problem,

CondorC submission failure...). Most jobs are aborted after a delay, denoted by the

variable F , computed from the epoch of job registration until the done state epoch

corresponding to the abortion instant. The delay F is one of the subjects of this study.

Similarly to the previous class, some synchronization clock problems led to exclude

some data. Moreover, the terminal “done” status may not be reached in some cases,

as for example 15 and 19. We have decided to assume that the fault was immediately

reported to the system in these cases. This class is finally composed of 5,607,329 entries.

The different fault latency profiles (F ) for the different cases of table 3 labelled as

faults are displayed in figure 6. Contrarily to the study of successful jobs, we observe

that the profiles of the curves corresponding to each case conducting to fault are quite

different. The corresponding probability density function (pdf) and cumulative density
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Fig. 4 Probability density function (top) and cumulative density function (bottom) of the
latency in all the cases displayed in figure 3.

function (cdf) of F are plotted in figure 7. They correspond approximately to the profile

of case number 3 even if they have been computed on all failed jobs: case number 3 is

predominant (10.2% of entries compared to second larger, case number 11 with 1.67%

of entries).

3.3 Outliers

Jobs with type “REGISTERED-ABORT” and final reason “Job RetryCount (any num-

ber) hit” are jobs that have failed at least once at a site and been submitted to other

sites until the user defined maximum number of retries is reached at which point the

WMS gives up on the jobs. The WMS is aware of such failures either because it is

notified of the job failure or because the job times out.
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function of the latency. This illustrates that the distribution of latency is heavy tailed.

The final reason for a large part of these jobs is known after a very long delay (few

100000s seconds) when compared to other failed jobs. They correspond to jobs that

never return due to some middleware failure or network interruption (jobs may have

been sent to a CE that has been disconnected or crashed and the LB will never receive

notification of the completion). They are usually detected using a timeout value by the

WMS. This last class of jobs, labelled as outliers, contains 4,705,809 entries.

3.4 Summary

We denote as ρ the ratio of outliers and φ the ratio of faulty jobs. In the complete data

set considered, we measure the following ratios:

outliers : ρ = 16.1%

faults : φ = 19.1%

successful : 1− ρ− φ = 64.8%

Even if the ratio of jobs that have started running is the highest (64.8 %), the ratios

of outliers or failed jobs are high: they have to be taken into account when working on

such production grid.

When comparing the distribution of F to the one of R, we observe that, even if

faults are not always known immediately, they are usually identified in a shorter time

than the latency impacting most successful jobs. We will now study the impact of the

delay before faults detection on the total latency of a job, including resubmissions after

faults.
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Fig. 7 pdf (top) and cdf (bottom) of the latency for fault detection in all the cases examined
in figure 6.

4 Resubmission after fault

4.1 Probabilistic modeling

In the remainder, a capital letter X traditionally denotes a random variable with

probability function (pdf) fX and cumulative density function (cdf) FX . Let R denote

the latency of a successful job and F denote the failure detection time. Thus, FR and

fR denote the cdf and pdf of the latency R while FF and fF denote the cdf and pdf

of failure detection time.

Assuming that faulty jobs are resubmitted without delay, let L denote the job

latency taking into account the necessary resubmissions (without any limit on the

number of resubmissions). L depends on the distribution of the jobs failure time. With
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ρ the ratio of outliers and φ the ratio of failed jobs, the probability, for a job to succeed

is (1− ρ− φ).

A job encounters a latency L < t, t being fixed, if it is not an outlier and either:

– the job does not fail (probability (1 − ρ − φ)) and its latency R < t (probability

P (R < t) = FR(t)); or

– the job fails at t0 < t (probability φfF (t0)) and the job resubmitted encounters a

latency L < (t− t0)

The cumulative distribution of L is thus defined recursively by:

FL(t) = (1− ρ− φ)FR(t) + φ

∫ t

0
fF (t0).FL(t− t0)dt0

where the distributions of R and F are for instance numerically estimated from the

statistical data set described in the previous section. However, in this equation, the cdf

FL appears both in left and right sides. Moreover, its value at time t does appear in

both terms.

In order to compute the cdf FL, we discretize this equation with some considera-

tions:

– No successful job has a null latency: FR(0) = 0

– We introduce the second as the discretization step for the variable t. Indeed, in

practice we know that we cannot have a higher precision than the second for our

measurements. The discretization step is chosen accordingly.

– Some jobs are immediately known to fail (for example if the fault occurs on the

client side). We thus consider FF (0) 6= 0

Since no job has a null latency, this is also the case with resubmitted jobs: FL(0) =

0. Supposing now t > 1, we get:

FL(t) = (1− ρ− φ)FR(t) + φ

t−1∑
t0=0

fF (t0)FL(t− t0)

This equation is resolved differently in the cases t = 1 and t > 1. For t = 1, it simplifies

to:

FL(1) = (1− ρ− φ)FR(1) + φfF (0)FL(1)⇒ FL(1) =
1− ρ− φ

1− φfF (0)
FR(1)

For t > 1, we can write:

FL(t) = (1− ρ− φ)FR(t) + φfF (0)FL(t) + φ

t−1∑
t0=1

fF (t0)FL(t− t0)

leading to:

FL(t) =
1

1− φfF (0)

(1− ρ− φ)FR(t) + φ

t−1∑
t0=1

fF (t0)FL(t− t0)


On the right side of this equation, the terms in FL are in the form FL(u) with u ∈
[1 ; (t − 1)]. FL(t) can therefore be computed recursively. The complete formula is

given by equation 1:
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FL(0) = 0

FL(1) =
1− ρ− φ

1− φfF (0)
FR(1)

FL(t > 1) =
1

1− φfF (0)

[
(1− ρ− φ)FR(t) + φ

t−1∑
u=1

fF (t− u)FL(u)

] (1)

4.2 Exploitation of the grid traces

Figure 8 displays the cdfs of several variables. FR and FF have been estimated from

the grid traces data. Equation 1 enables us to compute FL, the cdf of successful jobs

including resubmission in case of failures. We clearly observe the impact of failures in

this latency L when compared to R. FL’s curve is lower: the probability of achieving

a given latency when faults occur is thus lower. In order to see more precisely the

impact of failures, we also plotted (1 − ρ)FR which corresponds to the outliers and

the successful jobs, ignoring failed jobs. This last curve is slightly above FL: while L

displays a probability of 50% for jobs to have a latency lower than 761 seconds, it

reduces to 719 seconds when ignoring failures (or the difference of probability is 1% for

the same latency value).

Having established the distribution properties of L, we will now focus on the ex-

ploitation of the data for implementing a realistic resubmission strategy that aims at

reducing the latency experienced by users.
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5 Resubmission strategy

5.1 Modeling

As seen in the previous section, the probability for a job to start execution before a

given instant t is given by FL(t). We consider the resubmission strategy developed in [9]

where a job is canceled and resubmitted if its latency R is higher than a given timeout

value t∞ which value needs to be optimized. The work presented in [9] was based on

probe jobs that neglected faults (they were excluded from the data) but some jobs did

not return and were labelled as outliers. We denote F̃R(t) the probability for a job to

face a latency lower than t. When neglecting faults, F̃R is related to the distribution

of latency FR and the ratio of outliers:

F̃R(t) = (1− ρ)FR(t)

We denote J the total latency including resubmissions after waiting periods of t∞.

From [9], we can express the expected total latency EJ , considering resubmissions at

t∞ as:

EJ (t∞) =
1

F̃R(t∞)

∫ t∞

0
(1− F̃R(u))du (2)

Thanks to the more complete workload data studied in this paper, we can refine

the model by taking the latency for fault detections into account. We thus consider the

following resubmission strategy: jobs for which the latency L, including resubmissions

due to failures, is greater than a timeout value t∞ are canceled and resubmitted.

Observing that FL(t) corresponds to the probability for a job to succeed with a latency

lower than t, we can replace, in equation 2, F̃R by FL:

EJ (t∞) =
1

FL(t∞)

∫ t∞

0
(1− FL(u))du (3)

Minimizing this equation leads to the estimation of the optimal timeout t∞ value.

5.2 Impact of taking into account faults in the model

The profile of the expectation of the total latency, including all resubmissions and

computed from equation 3 is plotted in figure 9. The curve reaches a minimum value

EJ = 584s for an optimal timeout value t∞ = 195s. The first part of the curve is

decreasing fast since underestimating the timeout value leads to cancel jobs that could

have started running shortly. The second part of the curve is increasing, corresponding

of a too long timeout value: jobs could have been canceled earlier.

Two more profiles are plotted for comparison. The first one is the case ignoring

the failures and corresponding to equation 2 with F̃R = (1 − ρ)FR. Ignoring failures

conducts to underestimate the total latency: we observe that this plot is under the

previous one in figure 9. In that case, the minimum is reached at t∞ = 191s, leading

to EJ = 529s which is under-evaluated.

The second comparison is performed with the assumption that failures can be

considered as outliers, thus leading to a total of 35% of outliers. In this case, EJ
reaches a minimum at t∞ = 185s, which is underestimated and conducts to minimal
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value EJ = 704s, highly overestimated. This is explained by the fact that failures

detection time is quite short (few seconds) and that waiting for t∞ instead of failure

detection time is penalising.

This experiment shows that taking into account a model of latency for faults to be

detection has an influence on the parameters for this particular resubmission strategy.

5.3 Number of cases to consider

In section 3, we have retained the 32 most frequent cases, displayed in table 3. Here,

results obtained with different numbers of most frequent cases are compared, in order

to measure the relevance of reducing the number of cases to be taken into account.

Figure 10 presents the variation of EJ with respect to the timeout value t∞ for different

numbers of most frequent cases. The optimal values of t∞ leading to minimal EJ values

are given in table 4. We observe that reducing the number of cases from 32 to 25 does

not impact the results of the resubmission strategy, showing that not taking care of all

possible cases (236 cases) does not impact the final result, since we are considering the

most frequent ones.

However, reducing the number to 17 or less cases impacts the final result. In table 4,

results concerning the model including faults and the previous model without including

faults are displayed. These results show that reducing the number of cases to less than

17 cases impacts with the same order of magnitude than not considering the faults

in the model. Our strategy considering faults in the model does have sense only if we

consider more than 17 cases.
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nb. of with faults (FL) without faults (F̃R)
cases opt. t∞ min. EJ opt. t∞ min. EJ

32 195s 584s 191s 529s
25 194s 584s 191s 529s
17 195s 577s 191s 524s
7 192s 558s 189s 530s
3 199s 606s 197s 570s

Table 4 Influence of the number of most frequent cases taken into account in the model on the
estimation of optimal timeout value (t∞) and minimal expectation of total latency including
resubmission (EJ ). Comparison of the results in two cases: with or without faults included in
the model.

5.4 Dynamic modeling and impact of grid workload conditions variation

Grid workload and faults occurrence are subject to significant variations through time.

To assess the model validity over time, and its usability in a live use on a production

infrastructure, we are considering the implementation of the model using probability

density functions, outliers and failure rates estimated over shorter periods (typically

one month). We also consider the error made when using the statistics of the month

before to optimize jobs resubmission during the current month.

The 32 most frequent cases shown in table 3 have been analysed monthly over all

the period of traces collection (September 2005 to June 2007). They represent from

89% to 98.6% of the data depending on the month considered, with a mean of 96%,

confirming the hypothesis that it is possible to consider only these cases. Figure 11

presents the occurrences of each case for the different months of the study.

Distributions of latency for normal jobs execution and latency for fault detection

have been computed for each month. Best timeout values and minimal expectation of

total latency are thus computed on a monthly basis. Table 5 shows the corresponding

results.
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The second and third columns of table 5 show, for each month, the best timeout

value (t∞L) leading to the minimal expectation of total latency (EJL) with our model

considering faults (FL). They vary significantly according to different load conditions

and errors: the optimal timeout varies from 153s to 237s. It is important to take into

account dynamic grid workload variations to optimize resubmission.

A practical use of the model introduced in this paper would require to estimate

the statistical parameters of the model over a period and use these estimates over the

next period. To study the performance of such a strategy, we have considered that we

compute the timeout value at the end of each month and use it for the next month. The

fourth column of table 5 shows the values of the expectation of total execution time

using the optimal timeout value from the previous month, while considering faults

(EJL). Relative differences with the optimal EJL values computed a posteriori are

reported in the fifth column. The estimates present a mean error of 0.4%.

Impact of the data splitting into monthly time periods is studied using the sixth

and seventh columns where EJL is computed using the best timeout computed on

the whole set of data (see paragraph 5.2). The mean difference is only slightly higher

(1.1%), showing that splitting the data into shorter time periods leads to a very small

increase in the performance (at a cost that is also very small). However, it also shows

that the impact of the time when the parameters of the strategy where computed is

small. This is important since parameters are necessarily computed prior to their use.

6 Conclusions and perspectives

Probabilistic modeling of the grid jobs latency makes it possible to capture the complex

behavior of grid workload management systems. The model proposed in this paper

relies on statistics collection of job execution traces in order to estimate the cumulative

density function of several parameters stochastically modeled. Compared to previous
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prev. month whole set
FL t∞L t∞L = 195s

month t∞L EJL EJL ∆% EJL ∆%
2005-09 153 223
2005-10 159 282 283 0.3 292 3.6
2005-11 175 347 352 1.3 350 0.8
2005-12 181 293 293 0.1 294 0.5
2006-01 179 389 389 0.0 392 0.7
2006-02 171 530 531 0.3 541 2.1
2006-03 169 689 690 0.0 706 2.4
2006-04 183 453 457 0.9 454 0.3
2006-05 170 525 527 0.3 533 1.5
2006-06 170 599 599 0.0 609 1.7
2006-07 194 520 528 1.5 520 0.0
2006-08 186 699 701 0.3 701 0.3
2006-09 181 622 622 0.1 624 0.4
2006-10 198 724 730 0.9 724 0.0
2006-11 200 907 907 0.0 908 0.1
2006-12 197 719 719 0.0 719 0.0
2007-01 200 697 697 0.1 698 0.1
2007-02 237 899 916 1.9 923 2.6
2007-03 218 550 554 0.7 559 1.7
2007-04 209 544 544 0.2 547 0.6
2007-05 219 640 641 0.2 650 1.7
2007-06 234 758 760 0.2 780 2.8
mean 0.4 1.1

Table 5 In this table, the data set has been split monthly. For each month, best timeout
(t∞L) and minimal expectation of total latency (EJL) have been computed using the model
including faults (FL). Then, a practical study has been done: the EJ value was computed
each month using the timeout computed the previous month or using the timeout computed
from the whole set of data (t∞L = 195s). The last line displays the mean relative error of
the computed EJ with respect to the optimal EJL. Updating regularly the parameter of the
model gives the best results.

works, the model has been enriched to take into account normal operations, outliers and

faults, which frequency is high on production grids and therefore significantly impacts

job execution time. The model is exploited to optimize a simple job resubmission

strategy that aims at optimizing applications performance using objective information.

The more jobs a grid application is composed with, the more it will be sensitive to such

fault recovery procedures.

This paper also emphasizes the practical difficulties encountered when collecting

and then exploiting traces on a large scale, heterogeneous production grid infrastruc-

ture. The set up of a Grid Observatory with well established procedures for traces

collection, harmonization and curation is critical for the success of such grid behav-

ioral analysis. It will allow to focus on modeling and experimentation without having to

consider heavy-weight technical problems in the context of each new study. In addition,

the Grid Observatory ensures dense data collection for accurate estimations without

disturbing the normal grid operation.

The work detailed here exploits a consistent, archived set of traces for a posteriori

analysis. It confirms that a production grid is prone to errors (faults and outliers).

Measurements show that latencies of faults detection are usually smaller than latencies

of running jobs. This observation was taken into account in the resubmission strategy

modeled in the paper, including failed jobs. The classification of the jobs into successful,
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failed and outliers has been done on a reduced set of type and final reason fields which

has proved to be precise enough, and stable along time. We have simulated a practical

use of these results by computing the model parameter (t∞) on the data of a time period

for exploiting it during the following time period. This has shown that updating this

model parameter reduces only slightly the total latency. This observation correlates

with other ones [14].

In practice, a job resubmission strategy could be implemented at two different levels

in the EGEE middleware: on the WMS server side to optimize the time-out value that

is currently in use within the system, and also on the client side to deal with errors that

are not handled and returned to the client. The server side implementation requires

modifications to the existing middleware. It could benefit from the monitoring informa-

tion collected by the WMS during normal operations to provide needed statistics. The

client side implementation can be wrapped above the existing client. Regardless of the

server side strategy, it is important as a client may be disconnected from a WMS server

to which it sent jobs due to network interruption of services or WMS overload, and it

needs to take decisions on the resubmission strategy to adopt in that case. The client

side implementation also requires statistics collection, that could be obtained from the

regular jobs monitored and monitored by the client. The accuracy of the measurements

then completely depends on the number of jobs managed. Alternatively, an external

service collecting and exposing grid activity statistics in real-time could be envisaged.

In the future, the Grid Observatory is expected to provide live information for

tackling the non-stationarity of the grid workload manager and enabling relevant esti-

mate of the grid running conditions. More elaborate submission strategies commonly

implemented on grids, such as multiple submissions of a same task, will be considered.

Such strategies are modeled in [15] but using a simplified model that does not take

faults into account, which is an important parameter as illustrated in section 5.2.
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