
HAL Id: hal-00677712
https://hal.science/hal-00677712v3

Preprint submitted on 30 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LAST PASSAGE PERCOLATION AND TRAVELING
FRONTS

Francis Comets, Jeremy Quastel, Alejandro F. Ramirez

To cite this version:
Francis Comets, Jeremy Quastel, Alejandro F. Ramirez. LAST PASSAGE PERCOLATION AND
TRAVELING FRONTS. 2013. �hal-00677712v3�

https://hal.science/hal-00677712v3
https://hal.archives-ouvertes.fr


LAST PASSAGE PERCOLATION AND TRAVELING FRONTS

FRANCIS COMETS1,4, JEREMY QUASTEL2 AND ALEJANDRO F. RAMÍREZ3,4

Abstract. We consider a system of N particles with a stochastic dynamics introduced by
Brunet and Derrida [7]. The particles can be interpreted as last passage times in directed
percolation on {1, . . . , N} of mean-field type. The particles remain grouped and move like a
traveling front, subject to discretization and driven by a random noise. As N increases, we
obtain estimates for the speed of the front and its profile, for different laws of the driving noise.
As shown in [7], the model with Gumbel distributed jumps has a simple structure. We establish
that the scaling limit is a Lévy process in this case. We study other jump distributions. We
prove a result showing that the limit for large N is stable under small perturbations of the
Gumbel. In the opposite case of bounded jumps, a completely different behavior is found,
where finite-size corrections are extremely small.

1. Definition of the model

We consider the following stochastic process introduced by Brunet and Derrida [7]. It consists
in a fixed number N ≥ 1 of particles on the real line, initially at the positions X1(0), . . . , XN(0).
With {ξi,j(s) : 1 ≤ i, j ≤ N, s ≥ 1} an i.i.d. family of real random variables, the positions evolve
as

Xi(t + 1) = max
1≤j≤N

{

Xj(t) + ξi,j(t + 1)
}

. (1.1)

The components of the N -vector X(t) = (Xi(t), 1 ≤ i ≤ N) are not ordered. The vector
X(t) describes the location after the t-th step of a population under reproduction, mutation
and selection keeping the size constant. Given the current positions of the population, the
next positions are a N -sample of the maximum of the full set of previous ones evolved by an
independent step. It can be also viewed as long-range directed polymer in random medium
with N sites in the transverse direction,

Xi(t) = max
{

Xj0(0) +

t
∑

s=1

ξjs,js−1
(s); 1 ≤ js ≤ N ∀s = 0, . . . t− 1, jt = i

}

, (1.2)

as can be checked by induction (1 ≤ i ≤ N). The model is long-range since the maximum in
(1.1) ranges over all j’s. For comparison with a short-range model, taking the maximum over
j neighbor of i in Z in (1.1) would define the standard oriented last passage percolation model
with passage time ξ on edges in two dimensions.
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By the selection mechanism, the N particles remain grouped even when N → ∞, they are
essentially pulled by the leading ones, and the global motion is similar to a front propagation
in reaction-diffusion equations with traveling waves. Two ingredients of major interest are: (i)
the discretization effect of a finite N , (ii) the presence of a random noise in the evolution. Such
fronts are of interest, but poorly understood; see [26] for a survey from a physics perspective.

Traveling fronts appear in mean-field models for random growth. This was discovered by
Derrida and Spohn [13] for directed polymers in random medium on the tree, and then extended
to other problems [22, 23].

The present model was introduced by Brunet and Derrida in [7] to compute the corrections for
large but finite system size to some continuous limit equations in front propagation. Corrections
are due to finite size, quantization and stochastic effects. They predicted, for a large class of such
models where the front is pulled by the farmost particles [7, 8], that the motion and the particle
structure have universal features, depending on just a few parameters related to the upper
tails. Some of these predictions have been rigorously proved in specific contexts, such as the
corrections to the speed of the Branching Random Walk (BRW) under the effect of a selection
[4], of the solution to KPP equation with a small stochastic noise [24], or the genealogy of
branching Brownian motions with selection [3]. For the so-called N -BBM (branching Brownian
motion with killing of leftmost particles to keep the population size constant and equal to N)
the renormalized fluctuations for the position of the killing barrier converge to a Levy process
as N diverges [21].

We mention other related references. For a continuous-time model with mutation and selection
conserving the total mass, the empirical measure converges to a free boundary problem with a
convolution kernel [15]. Traveling waves are given by a Wiener-Hopf equation. For a different
model mimicking competition between infinitely many competitors, called Indy-500, quasi-
stationary probability measures for competing particles seen from the leading edge corresponds
to a superposition of Poisson processes [28]. For diffusions interacting through their rank, the
spacings are tight [27], and the self-normalized exponential converge to a Poisson-Dirichlet law
[10]. In [1], particles jump forward at a rate depending on their relative position with respect
to the center of mass, with a higher rate for the particle behind: convergence to a traveling
front is proved, which is given in some cases by the Gumbel distribution.

We now give a flavor of our results. The Gumbel law G(0, 1) has distribution function P(ξ ≤
x) = exp −e−x, x ∈ R. In [7] it is shown that an appropriate measure of the front location of
a state X ∈ R

N in this case is

Φ(X) = ln
∑

1≤j≤N

eXj ,

and that Φ(X(t)) is a random walk, a feature which simplifies the analysis. For an arbitrary
distribution of ξ, the speed of the front with N particles can be defined as the almost sure limit

vN = lim
t→∞

t−1Φ(X(t)) .

We emphasize that N is fixed in the previous formula, though it is sent to infinity in the next
result. Our first result is the scaling limit as the number N of particles diverges.

Theorem 1.1. Assume ξi,j(t) ∼ G(0, 1). Then, for all sequences mN → ∞ as N → ∞,

Φ(X([mNτ ]))− βNmNτ

mN/ lnN

law−→ S(τ)
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in the Skorohod topology with S(·) a totally asymmetric Cauchy process with Lévy exponent ψC

from (3.27), where
βN = ln bN +Nb−1

N lnmN ,

with ln bN = lnN + ln lnN − γ
lnN

+O( 1
ln2 N

), see (3.28).

Fluctuations of the front location are Cauchy distributed in the large N limit. Keeping N fixed,
the authors in [7] find that they are asymptotically Gaussian as t → ∞. We prove here that,
as N is sent to infinity, they are stable with index 1, a fact which has been overlooked in [7].
When large populations are considered, this is the relevant point of view. The Cauchy limit also
holds true in the boundary case when time is not speeded-up (mN = 1) and N → ∞. For most
growth models, finding the scaling limit is notoriously difficult. In the present model, it is not
difficult for the Gumbel distribution, but remains an open question for any other distribution.

We next consider the case when ξ is a perturbation of the Gumbel law. Define ε(x) ∈ [−∞, 1]
by

ε(x) = 1 + ex lnP(ξ ≤ x). (1.3)

Note that ε ≡ 0 is the case of ξ ∼ G(0, 1). The empirical distribution function (more precisely,
its complement to 1) of the N -particle system (1.1) is the random function

UN (t, x) = N−1

N
∑

i=1

1Xi(t)>x (1.4)

This is a non-increasing step function with jumps of size 1/N and limits UN (t,−∞) = 1,
UN (t,+∞) = 0. It has the shape of a front wave, propagating at mean speed vN , and it
combines two interesting aspects: randomness and discrete values. We will call it the front
profile, and we study in the next result its relevant part, around the front location.

Theorem 1.2. Assume that

lim
x→+∞

ε(x) = 0, and ε(x) ∈ [−δ−1, 1− δ], (1.5)

for all x and some δ > 0. Then, for all initial configurations X(0) ∈ R
N , all k ≥ 1, all

KN ⊂ {1, . . . , N} with cardinality k, and all t ≥ 2 we have
(

Xj(t)− Φ(X(t− 1)); j ∈ KN

)

law−→ G(0, 1)⊗k, N → ∞, (1.6)

with Φ from (3.20), and moreover,

UN

(

t,Φ(X(t−1)) + x
)

−→ u(x) = 1− e−e−x

(1.7)

uniformly in probability as N → ∞.

As is well known, it is rare to find rigorous perturbation results from exact computations for
such models. For example, the above mentioned, last passage oriented percolation model on the
planar lattice, is exactly sovable for exponential passage times [19] or geometric ones [2] on sites,
and the fluctuations asympotically have a Tracy-Widom distribution. However, no perturbative
result has been obtained after a decade. Even though our assumptions seem to be strong, it is
somewhat surprising that we can prove this result. The second condition is equivalent to the
following stochastic domination: there exist finite constants c < d (c = ln δ, d = ln(1 + δ−1))
such that

g + c ≤sto ξ ≤sto g + d, g ∼ G(0, 1). (1.8)

This condition is reminiscent of assumption (1.13) in [25] used to control the fluctuations of the
front location for KPP equation in random medium. By Theorem 1.2, as N → ∞, the front
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remains sharp and its profile, which is defined microscopically as the empirical distribution
function of particles, converges to the Gumbel distribution as N → ∞. Hence the Gumbel
distribution is not only stable, but it is also an attractor.

Finally, we study the finite-size corrections to the front speed in a case when the distribution
of ξ is quite different from the Gumbel law.

Theorem 1.3. Let b < a and p ∈ (0, 1), and assume that the ξi,j(t)’s are integrable and satisfy

P(ξ > a) = P(ξ ∈ (b, a)) = 0, P(ξ = a) = p, P(ξ ∈ (b− ε, b]) > 0 (1.9)

for all ε > 0. Then, as N → ∞,

vN = a− (a− b)(1 − p)N
2

2N + o
(

(1− p)N
2

2N
)

.

We note that in such a case, in the leading order terms of the expansion as N → ∞, the value
of the speed depends only on a few features of the distribution of ξ: the largest value a, its
probability mass p and the gap a− b with second largest one. All these involve the top of the
support of the distribution, the other details being irrelevant. Such a behavior is expected for
pulled fronts.

Though the mechanisms are different, we make a parallel between the model considered here,
and the BRW with selection, in order to discuss the Brunet-Derrida correction of the front speed
vN with respect to its asymptotic value. For definiteness, denote by η the displacement variable,
assume that η is a.s. bounded from above by a constant a, and assume the branching is constant
and equal to β > 1. The results of [4] are obtained for β × P(η = a) < 1 (Assumption A3
together with Lemma 5 (3) in [5]), resulting in a logarithmic correction: This case corresponds
to the Gumbel distribution for ξ in our model, e.g., to Theorems 1.1 and 1.2 . In contrast, the
assumptions of Theorem 1.3 yield a much smaller correction (of order exponential of negative
N2). This other case corresponds for large N to the assumption β×P(η = a) > 1 for the BRW
with selection, where the corrections are exponentially small [11], precisely given by ρN with
ρ < 1 the extinction probability of the supercritical Galton-Watson process of particles located
at site ta at time t. In our model, the branching number is N and ρ is itself exponentially
small, yielding the correct exponent of negative N2, but not the factor 2N .

The paper is organised as follows. Section 2 contains some standard facts for the model. Section
3 deals with the front location in the case of the Gumbel law for ξ. In Section 4, we study the
asymptotics as N → ∞ of the front profile (for Gumbel law and small perturbations), and their
relations to traveling waves and reaction-diffusion equation. In Sections 5 and 6, we expand
the speed in the case of integer valued, bounded from above, ξ’s, starting with the Bernoulli
case. Theorems 1.1 and 1.3 are proved in Sections 3.3 and 6.3 respectively.

2. Preliminaries for fixed N

For any fixed N , we show here the existence of large time asymptotics for the N -particles
system. It is convenient to shift the whole system by the position of the leading particle,
because we show that there exists an invariant measure for the shifted process.

The ordered process: We now consider the process X̃ = (X̃(t), t ∈ N) obtained by ordering
the components of X(t) at each time t, i.e., the set {X̃1(t), X̃2(t), . . . , X̃N(t)} coincides with

{X1(t), X2(t), . . . , XN(t)} and X̃1(t) ≥ X̃2(t) ≥ · · · ≥ X̃N(t). Then, X̃ is a Markov chain with
state space

∆N := {y ∈ R
N : y1 ≥ y2 ≥ . . . ≥ yN}.
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Given X̃(t), the vector X(t) is uniformly distributed on the N ! permutations of X̃(t). Hence,

it is sufficient to study X̃ instead of X . It is easy to see that the sequence X̃ has the same law
as Y = (Y (t), t ≥ 0), given by as a recursive sequence

Y (t+ 1) = ordered vector
(

max
1≤j≤N

{

Yj(t) + ξi,j(t+ 1)
}

, 1 ≤ i ≤ N
)

. (2.10)

Note that, when X(0) is not ordered, X̃(1) is not a.s. equal to Y (1) starting from Y (0) = X̃(0).
In this section we study the sequence Y , which is nicer than X̃ because of the recursion (2.10):
Denote by Tξ(t+1) the above mapping Y (t) 7→ Y (t+ 1) on ∆N , and observe first that

Y (t) = Tξ(t) . . . Tξ(2)Tξ(1)Y (0). (2.11)

For y, x ∈ ∆N , write y ≤ x if yi ≤ xi for all i ≤ N . The mapping Tξ(t) is monotone for the
partial order on ∆N , i.e., for the solutions Y, Y ′ of (2.10) starting from Y (0), Y ′(0) we have

Y (0) ≤ Y ′(0) =⇒ Y (t) ≤ Y ′(t),

and moreover, with 1 = (1, 1, . . . , 1), r ∈ R and y ∈ R
N ,

Tξ(t)(y + r1) = r1+ Tξ(t)(y). (2.12)

The process seen from the leading edge: For each x ∈ R
N , we consider its shift x0 by the

maximum,
x0i = xi − max

1≤j≤N
xj ,

and the corresponding processes X0, Y 0. We call X0, Y 0, the unordered process, respectively,
the ordered process, seen from the leading edge. Note that Tξ(t)(y

0) = Tξ(t)(y)− (maxj yj)1 by
(2.12), which yields

(

Tξ(t)(y
0)
)0

=
(

Tξ(t)(y)
)0

;

a similar relation holds for x’s instead of y’s. Then X0, Y 0 are Markov chains, with Y 0 taking
values in ∆0

N := {y ∈ ∆N : y1 = 0}, and we denote by νt the law of Y 0(t).

Proposition 2.1. There exists an unique invariant measure ν for the process Y 0 seen from the
leading edge, and we have

lim
t→∞

νt = ν. (2.13)

Furthermore, there exists a δN > 0 such that

||νt − ν||TV ≤ (1− δN)
t. (2.14)

Similar results hold for the unordered process X0, by the remark preceeding (2.10). Also, we
mention that the value of δN is not sharp.

Proof. Consider the random variable

τ = inf
{

t ≥ 1 : ξi,1(t) = max{ξi,j(t); j ≤ N} ∀i ≤ N
}

.

Then, τ is a stopping time for the filtration (Ft)t≥0, with Ft = σ{ξi,j(s); s ≤ t, i, j ≥ 1}. It is
geometrically distributed with parameter not smaller than

δN = (1/N)N . (2.15)

Denote by ⊕,⊖ the configuration vectors

⊕ = (0, 0, . . . , 0), ⊖ = (0,−∞, . . . ,−∞).
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They are extremal configurations in (the completion of) ∆0
N since ⊖ ≤ y ≤ ⊕ for all y ∈ ∆0

N .
Now, by definition of τ and (2.10),

Tξ(τ)⊕ = Tξ(τ)⊖ = Tξ(τ)y ∀y ∈ ∆0
N .

Hence, for all t ≥ τ and all y ∈ ∆N such that max1≤j≤N yj = max1≤j≤N Yj(0),

Y (t) = Tξ(t) . . . Tξ(2)Tξ(1)y.

We can construct a renewal structure. Define τ1 = τ , and recursively for k ≥ 0, τk+1 = τk+τ◦θτk
with θ the time-shift. This sequence is the success time sequence in a Bernoulli process, we
have 1 ≤ τ1 < τ2 < . . . < τk < . . . <∞ a.s. The following observation is plain but fundamental.

Lemma 2.1 (Renewal structure). The sequence

(Y 0(s); 0 ≤ s < τ1), (Y
0(τ1+s); 0 ≤ s < τ2−τ1), (Y 0(τ2+s); 0 ≤ s < τ3−τ2), . . .

is independent. Moreover, for all k ≥ 1, (Y 0(τk+s); s ≥ 0) has the same law as (Y 0(1+s); s ≥ 0)
starting from Y 0(0) = ⊕.

Proof. of Lemma 2.1. By the strong Markov property, the Markov chain Y 0 starts afresh from
the stopping times τ1 < τ2 < . . .. This proves the first statement, and we now turn to the
second one. Note that Tξ⊕ = Tη⊕ if, for all i, (ξi,j; j ≤ N) is a permutation of (ηi,j; j ≤ N).
Hence,

P
(

Y 0(1) ∈ · , τ1 = 1 |Y 0(0) = ⊕
)

= P
(

Y 0(1) ∈ · |Y 0(0) = ⊕
)

× P(τ1 = 1),

and so

P
(

Y 0(1) ∈ · |Y 0(0) = ⊕, τ1 = 1
)

= P
(

Y 0(1) ∈ · |Y 0(0) = ⊕
)

.

From the markovian structure and by induction it follows that

P
(

(Y 0(1+s); s ≥ 0) ∈ · |Y 0(0) = ⊕
)

= P
(

(Y 0(1+s); s ≥ 0) ∈ · |Y 0(0) = ⊕, τ1 = 1
)

= P
(

(Y 0(1+s); s ≥ 0) ∈ · |Y 0(0) = z, τ1 = 1
)

= P
(

(Y 0(1+s); s ≥ 0) ∈ · |τ1 = 1
)

= P
(

(Y 0(τ1+s); s ≥ 0) ∈ ·
)

,

for all z ∈ ∆0
N .

The lemma implies the proposition, with the law ν given for a measurable F : ∆0
N → R+ by

∫

Fdν =
1

E(τ2 − τ1)
E

∑

τ1≤t<τ2

F (Y 0(t))

=
1

E(τ1)

∑

t≥1

E
(

F (Y 0(t))1t<τ2 |τ1 = 1
)

. (2.16)

Remark 2.2. (i) The proposition shows that the particles remain grouped as t increases, i.e.,
the law of the distance between extreme particles is a tight sequence under the time evolution.
In Theorem 1.2 we will see that when the law of ξ is close to Gumbel, they remain grouped too
as N increases.
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(ii) The location of front at time t can be described by any numerical function Φ(Y (t)) or
Φ(Y (t− 1)) (or equivalently, any symmetric function of X(t) or X(t− 1)) which commutes to
space translations by constant vectors,

Φ(y + r1) = r + Φ(y) , (2.17)

and which is increasing for the partial order on R
N . Among such, we mention also the maximum

or the minimum value, the arithmetic mean, the median or any other order statistics, and the
choice in (3.20) below. For Proposition 2.1, we have taken the first choice – the location of the
rightmost particle – for simplicity. Some other choices may be more appropriate to describe the
front, by looking in the bulk of the system rather than at the leading edge. For fixed N all such
choices will however lead to the same value for the speed vN of the front, that we define below.

Note that for a function Φ which satisfies the commutation relation (2.17) we have the inequal-
ities

Φ(⊕) + min
i≤N

max
j≤N

{Yj(0) + ξi,j(1)} ≤ Φ(Y (1)) ≤ Φ(⊕) + max
i,j≤N

{Yj(0) + ξi,j(1)} .

Now, by equation (2.16) and by the fact that τ1 is stochastically smaller than a geometric
random variable with parameter (1/N)N we conclude that if ξ ∈ Lp, Y (0) ∈ Lp then Φ(Y (t)) ∈
Lp, and also

∫

|yN |pdν(y) <∞. The following corollary is a straightforward consequence of the
above.

Corollary 2.1 (Speed of the front). If ξ ∈ L1, the following limits

vN = lim
t→∞

t−1 max{Xi(t); 1 ≤ i ≤ N} = lim
t→∞

t−1 min{Xi(t); 1 ≤ i ≤ N}

exist a.s., and vN is given by

vN =

∫

∆0
N

dν(y) E max
1≤i,j≤N

{

yj + ξi,j(1)
}

.

Moreover, if ξ ∈ L2,

t−1/2
(

max{Xi(t); 1 ≤ i ≤ N} − vN t
)

converges in law as t→ ∞ to a Gaussian r.v. with variance σ2
N ∈ (0,∞).

We call vN the speed of the front of the N -particle system.

Proof. The equality of the two limits in the definition of vN follows from tightness in Remark
2.2, (i), and the existence is from the renewal structure. Similarly, we have

vN =

∫

∆0
N

(

EΦ(Tξy)− Φ(y)
)

dν(y)

for all Φ as in Remark 2.2, (ii), where ∆0
N is defined just before Proposition 2.1. The second

formula is obtained by taking Φ(y) = maxi≤N yi. The Gaussian limit is the Central Limit
Theorem for renewal processes.
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3. The Gumbel distribution

The Gumbel law G(a, λ) with scaling parameter λ > 0 and location parameter a ∈ R is defined
by its distribution function

P(ξ ≤ x) = exp
(

− e−λ(x−a)
)

, x ∈ R. (3.18)

This law is known to be a limit law in extreme value theory [20]. In [7], Brunet and Derrida
considered the standard case a = 0, λ = 1, to find a complete explicit solution to the model.
In this section, we assume that the sequence ξi,j is G(a, λ)-distributed, for some a, λ. Then,
ζ = λ(ξ − a) ∼ G(0, 1), while

exp(−ζ) is exponentially distributed with parameter 1, (3.19)

and exp(−e−ζ) is uniform on (0, 1). Conversely, if U is uniform on (0, 1) and E exponential of
parameter 1, then −λ ln ln(1/U) and ln E−λ are G(0, λ).

Here, the Gumbel distribution makes the model stationary for fixed N and allows exact com-
putations.

3.1. The Front as a random walk. In this section, we fix N ≥ 1, a ∈ R, λ > 0. We will
choose the function Φ : RN → R,

Φ(x) = λ−1 ln
N
∑

i=1

expλxi (3.20)

to describe the front location Φ(X(t)) at time t.

Theorem 3.1 ([7]). Assume the ξi,j’s are Gumbel G(a, λ)-distributed.
(i) Then, the sequence (Φ(X(t)); t ≥ 0) is a random walk, with increments

Υ = a + λ−1 ln

(

N
∑

i=1

E−1
i

)

(3.21)

where the Ei are i.i.d. exponential of parameter 1.
(ii) Then,

vN = a+ λ−1
E ln

(

N
∑

i=1

E−1
i

)

, σ2
N = λ−2Var

(

ln

N
∑

i=1

E−1
i

)

. (3.22)

(iii) The law ν from proposition 2.1 is the law of the shift V 0 ∈ ∆0
N of the ordered vector V

obtained from a N-sample from a Gumbel G(0, λ).

Proof. : Define Ft = σ(ξi,j(s), s ≤ t, i, j ≤ N), and Ei,j(t) = exp{−λ(ξi,j(t)− a)}. By (1.1),

Xi(t+ 1) = max
1≤j≤N

{

Xj(t) + a− λ−1 ln Ei,j(t + 1)
}

= a+ Φ(X(t))− λ−1 ln Ei(t+ 1), (3.23)

where
Ei(t + 1) = min

1≤j≤N

{

Ei,j(t+ 1)e−λXj(t)
}

eλΦ(X(t)), t ≥ 0.

Given Ft, each variable Ei(t+1) is exponentially distributed with parameter 1 by the standard
stability property of the exponential law under independent minimum, and moreover, the whole
vector (Ei(t + 1), i ≤ N) is conditionnally independent. Therefore, this vector is independent
of Ft, and finally,

(Ei(t), 1 ≤ i ≤ N, t ≥ 1) is independent and identically distributed
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with parameter 1, exponential law. Hence, the sequence

Υ(t) = a+ λ−1 ln

(

N
∑

i=1

Ei(t)−1

)

, t ≥ 1,

is i.i.d. with the same law as Υ. Now, by (3.23),

Φ(X(t)) = Φ(X(t− 1)) + Υ(t)

= Φ(X(0)) +
t
∑

s=1

Υ(s)

which shows that (Φ(X(t)); t ≥ 0) is a random walk. Thus, we obtain both (i) and (ii).

From (3.23), we see that the conditional law of X(t+1) given Ft is the law of a N -sample from
a Gumbel G(a+ Φ(X(t)), λ). Hence, ν is the law of the order statistics of a N -sample from a
Gumbel G(0, λ), shifted by the leading edge.

We end this section with a remark. Observe that the other max-stable laws (Weibull and
Frechet) do not yield exact computations for our model. Hence, the special role of the Gumbel
is not due to the stability of that law under taking the maximum of i.i.d. sample, but also to
its behavior under shifts.

3.2. Asymptotics for large N . In this section we study the asymptotics as N → ∞ with a
stable limit law. When a = 0 and λ = 1, Brunet and Derrida [7] obtain the expansions

vN = lnN + ln lnN +
ln lnN

lnN
+

1− γ

lnN
+ o(

1

lnN
), (3.24)

σ2
N =

π2

3 lnN
+ . . . , (3.25)

by Laplace method for an integral representation of the Laplace transform of Υ. We recover here
the first terms of the expansions from the stable limit law, in the streamline of our approach.

We start to determine the correct scaling for the jumps of the random walk. First, observe that
E−1 belongs to the domain of normal attraction of a stable law of index 1. Indeed, the tails
distribution is

P(E−1 > x) = 1− e−1/x ∼ x−1, x→ +∞.

Then, from e.g. Theorem 3.7.2 in [14],

S(N) :=

∑N
i=1 E−1

i − bN
N

law−→ S, (3.26)

where bN = NE(E−1; E−1 < N), and S is the totally asymmetric stable law of index α = 1,
with characteristic function given for u ∈ R by

EeiuS = exp

{
∫ ∞

1

(eiux − 1)
dx

x2
+

∫ 1

0

(eiux − 1− iux)
dx

x2

}

= exp

{

iCu− π

2
|u|
{

1 + i
2

π
sign(u) ln |u|

}

}

=: expΨC(u), (3.27)
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for some real constant C defined by the above equality. By integration by parts, one can check
that, as N → ∞,

bN = N

∫ ∞

1/N

e−y

y
dy = N

(

lnN − γ +
1

N
+O(

1

N2
)
)

, (3.28)

with γ = −
∫∞

0
e−x ln xdx the Euler constant. Then,

ln bN = lnN + ln lnN − γ

lnN
+O(

1

ln2N
)

We need to estimate

E ln
N
∑

i=1

E−1
i − ln bN = E ln

(

1 +
N

bN
S(N)

)

= E ln
(

1 +
N

bN
S
)

+O((
1

lnN
)1−δ), (3.29)

for all δ ∈ (0, 1]: indeed, since the moments of S(N) of order 1− δ/2 are bounded (Lemma 5.2.2
in [17]), the sequence ( bN

N
)1−δ

[

ln
(

1 + N
bN
S(N)

)

− ln
(

1 + N
bN
S
)]

is uniformly integrable, and it
converges to 0. A simple computation shows that

E ln(1 + εS) =
∫ ∞

1

ln(1 + εy)
dy

y2
(1 + o(1)) +O(ε) ∼ ε ln(ε−1)

as ε ց 0. With ε = N/bN , we recover the first 2 terms in the formula (3.24) for vN . (If we
could improve the error term in (3.29) to o(ln lnN/ lnN), we would get also the third term.)
With a similar computation, we estimate as N → ∞

σ2
N = Var

(

ln
(

1 +
N

bN
S(N)

)

)

∼ Var
(

ln
(

1 +
N

bN
S
)

)

∼ E ln2
(

1 +
N

bN
S
)

∼
∫ ∞

1

ln2(1 +
y

lnN
)
dy

y2

∼
∫ ∞

0

ln2(1 +
y

lnN
)
dy

y2

=
C0

lnN
,

with C0 =
∫∞

0
ln2(1 + y)dy

y2
= π2/3.

3.3. Scaling limit for large N . In this section, we let the parameters a, λ of the Gumbel
depend on N , and get stable law and process as scaling limits for the walk: In view of the
above, we assume in this subsection that ξi,j ∼ G(a, λ) where a = aN and λ = λN depend on
N ,

{

λN = N
bN

∼ 1
lnN

,

aN = −C − λ−1
N ln(bN) = −C − ln2N − (lnN)(ln lnN) + o(1),

(3.30)
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with the constant C from (3.27). Correspondingly, we write

X = X(N),ΥN(t) = aN + λ−1
N ln

(

N
∑

i=1

Ei(t)−1

)

.

Note that, with S(N) defined by the left-hand side of (3.26), we have by (3.21),

ΥN =
1

λN
ln
(

N
∑

i=1

E−1
i

)

− C − 1

λN
ln bN

=
1

λN
ln
(

1 +
N

bN
S(N)

)

− C

law−→ S0, (3.31)

as N → ∞, where the stable variable S0 = S − C has characteristic function

E exp iuS0 = expΨ0(u), Ψ0(u) = −π
2
|u| − iu ln |u|

from the particular choice of C. In words, with an appropriate renormalization as the system
size increases, the instantaneous jump of the front converges to a stable law. For all integer n
and independent copies S0,1, . . .S0,n of S0, we see that

S0,1 + . . .+ S0,n

n
− lnn

law
= S0

from the characteristic function. Consider the totally asymmetric Cauchy process (S0(τ); τ ≥
0), i.e. the independent increment process with characteristic function

E exp{iu(S0(τ)− S0(τ
′))} = exp{(τ − τ ′)Ψ0(u)}, u ∈ R, 0 < τ ′ < τ.

It is a Lévy process with Lévy measure x−2 on R+, it is not self-similar but it is stable in a
wide sense: for all τ > 0,

S0(τ)

τ
− ln τ

law
= S0(1)

with S0(1)
law
= S0. We refer to [6] for a nice account on Lévy processes.

We may speed up the time of the front propagation as well, say by a factor mN → ∞ when
N → ∞, to get a continuous time description. Then, we consider another scaling, and define
for τ > 0,

ϕN (τ) =
Φ(X(N)([mNτ ]))− Φ(X(N)(0))

mN

− τ lnmN

=

∑[mN τ ]
t=1 ΥN(t)

mN
− τ lnmN (3.32)

by theorem 3.1. Of course, this new centering can be viewed as an additional shift in the formula
(3.30) for aN . By (3.31), the characteristic function χN (u) := EeiuΥN = exp{Ψ0(u)(1 + o(1))},
where o(1) depends on u and tends to 0 as N → ∞. Then,

E exp

{

iu(

∑[mN τ ]
t=1 ΥN(t)

mN
− τ lnmN)

}

= (χN (u/mN))
[mN τ ] exp{−iu[mNτ ]

mN
lnmN}

→ exp τΨ0(u),
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as N → ∞, showing convergence at a fixed time τ . In fact, convergence holds at the process
level.

Theorem 3.2. As N → ∞, the process ϕN(·) converges in law in the Skorohod topology to the
totally asymmetric Cauchy process S0(·).
Proof. The process ϕN(·) itself has independent increments. The result follows from general
results on triangular arrays of independent variables in the domain of attraction of a stable
law, e.g. Theorems 2.1 and 3.2 in [18].

Proof of Theorem 1.1: Apply the previous Theorem 3.2 after making the substitution ζ =
λN (ξ − aN).

4. The front profile as a traveling wave

Recall the front profile

UN (t, x) = N−1

N
∑

i=1

1Xi(t)>x (4.33)

which is a wave-like, random step function, traveling at speed vN . One can write some kind
of Kolmogorov-Petrovsky-Piscunov equation with noise (and discrete time) governing its evo-
lution, see (7–10) in [7] and Proposition 4.1. Let F denote the distribution function of the ξ’s,
F (x) = P(ξi,j(t) ≤ x). Given Ft−1, the right-hand side is, up to the factor N−1, a binomial
variable with parameters N and

P(Xi(t) > x|Ft−1) = 1−
N
∏

j=1

P(Xj(t− 1) + ξi,j(t) ≤ x|Ft−1) (by (1.1))

= 1− exp−N
∫

R

lnF (x− y)UN(t− 1, dy). (4.34)

4.1. Gumbel case. Starting with the case of the Gumbel law F (x) = exp−e−λ(x−a), we
observe that (4.34) and (3.20) imply

P(Xi(t) ≤ x|Ft−1) = exp−eλ(x−a−Φ(X(t−1))),

that is (3.23). It means that X(t) − Φ(X(t − 1)) is independent of Ft−1, and that it is a N -
sample of the law G(a, λ). For the process at time t centered by the front location Φ(X(t−1)),
the product measure G(a, λ)⊗N is invariant. We summarize these observations:

Proposition 4.1 ([7]). Let ξi,j(t) ∼ G(a, λ) be given, and X defined by (1.1). Then, the
random variables Gi(t) defined by G(t) = (Gi(t); i ≤ N) and

X(t) = G(t) + Φ(X(t− 1))1, t ≥ 1, (4.35)

are i.i.d. with common law G(a, λ), and G(t) is independent of X(t − 1), X(t − 2), . . .. In
particular, (Gi(t); i ≤ N, t ≥ 1) is an i.i.d. sequence with law G(a, λ), independent of X(0) ∈
R

N . Moreover,

UN (t, x) =
1

N

N
∑

i=1

1{Gi(t) ≥ x− Φ(X(t− 1))}, t ≥ 1, x ∈ R. (4.36)
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Remark 4.2. (i) The recursion (4.36) is the reaction-diffusion equation satisfied by UN . This
equation is discrete and driven by a random noise (G(t); t ≥ 0).

(ii) Note that the centering is given by a function of the configuration at the previous time
t − 1. One could easily get an invariant measure with a centering depending on the current
configuration. For instance, consider

X(t)−max
j
Xj(t)

law
= g −max

j
gj,

with gj i.i.d. G(a, λ)-distributed, or replace the maximum value by another order statistics.
However our centering, allowing interesting properties like the representation (4.35), is the
most natural.

By the law of large numbers, as N → ∞, the centered front converges almost surely to a limit
front, given by the (complement of) the distribution function of G(a, λ), as we state now.

Proposition 4.3. For all t ≥ 1, the following holds:

(i) Convergence of the front profile: as N → ∞, conditionally on Ft−1, we have a.s.

UN

(

t, x+ Φ(X(t−1))
)

−→ u(x) = 1− exp(−e−λ(x−a)), uniformly in x ∈ R.

(ii) Fluctuations: as N → ∞,

lnN ×
{

UN

(

t, x+ (t−1)(ln bN + a) + Φ(X(0))
)

− u(x)
} law−→ u′(x)

λ

(

tS + t ln t + tC
)

as N → ∞, with S from (3.26) and C from (3.27).

We willl see in the proof that the front location alone is responsible for the fluctuations of the
profile. It dominates a smaller Gaussian fluctuation due to the sampling.

Proof. of Proposition 4.3. As mentioned above, the law of large numbers yields pointwise
convergence in the first claim. Since UN(t, ·) is non-inceasing, uniformity follows from Dini’s
theorem. We now prove the fluctuation result. By (3.21) and (3.26),

ZN := lnN ×
{

Φ(X(t))− Φ(X(0))− t ln bN
}

=
lnN

λ

t
∑

s=1

ln
(

1 +
N

bN
S(N)(s)

)

converges in law to the sum of t independent copies of S, which has itself the law of tS+t ln t+tC.
On the other hand, we have by (4.36),

UN

(

t + 1, x+ t ln bN + Φ(X(0))
)

=
1

N

N
∑

i=1

1{Gi(t+ 1) ≥ x+
1

lnN
ZN}.

By the central limit theorem for triangular arrays, for all sequences zN → 0, we see that,

N1/2
( 1

N

N
∑

i=1

1{Gi(t+ 1) ≥ x+ zN} − u(x+ zN )
) law−→ Z ∼ N (0, u(x)(1−u(x)))

as N → ∞. Being of order N−1/2, these fluctuations will vanish in front of the Cauchy ones,
which are of order (lnN)−1. In the left hand side, we Taylor expand u(x+ zN). Since G(t+1)
and ZN are independent, we obtain

lnN ×
{

UN

(

t + 1, x+ t ln bN + Φ(X(0))
)

− u(x)
}

− u′(x)ZN → 0
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in probability, which proves the result.

Remark: A limiting reaction-diffusion equation. It is natural to look for a reaction-diffusion
equation which has u as traveling wave (soliton). By differentiation, one checks that, for all
v ∈ R, u(t, x) = u(x− vt) (where u(x) = 1− exp{−e−λ(x−a)}) is a solution of

ut = uxx + A(u), (4.37)

with reaction term

A(u) = λ(1− u)
[

λ ln
1

1− u
+ (v − λ)

]

ln
1

1− u
.

Since A(0) = A(1) = 0, the values u = 0 and u = 1 are equilibria. For v ≥ λ, we have A(u) > 0
for all u ∈ (0, 1), hence these values are the unique equilibria u ∈ [0, 1], with u = 0 unstable
and u = 1 stable. For v ∈ [λ, 3λ), A is convex in the neighborhood of 0, so the equation is not
of KPP type [16, p.2].

4.2. Exponential tails: front profile and traveling wave. In this section we prove Theo-
rem 1.2. We consider the case of ξ with exponential upper tails, 1−F (x) = P(ξ > x) ∼ e−x as
x → +∞, that can be written as

lim
x→+∞

ε(x) = 0, with ε(x) = 1 + ex lnF (x). (4.38)

(By affine transformation, we also cover the case of tails P(ξ > x) ∼ eλ(x−a).) By definition,
ε(x) ∈ [−∞, 1].
We let N → ∞, keeping t fixed and we use Φ from (3.20) with λ = 1. To show that the
empirical distribution function (4.33) converges, after the proper shift, to that of the Gumbel
distribution with the same tails, we will use the stronger assumption that

lim
x→+∞

ε(x) = 0, and ε(x) ∈ [−δ−1, 1− δ], (4.39)

for all x with some δ > 0.

Proof. (Theorem 1.2) First of all, note that lnF (x) = −(1−ε(x))e−x. Letmi = eXi(t−1)−Φ(X(t−1)),
which add up to 1 by our choice of Φ, and let also εi = ε(x+ Φ(X(t− 1))−Xi(t− 1)).
We start with the case k = 1, KN = {j}. From (4.34),

lnP(Xj(t)− Φ(X(t− 1)) ≤ x|Ft−1)

=

N
∑

i=1

lnF
(

x+ Φ(X(t− 1))−Xi(t− 1)
)

= −
N
∑

i=1

e−x−Φ(X(t−1))+Xi(t−1)[1− ε(x+ Φ(X(t− 1))−Xi(t− 1))]

= −e−x

N
∑

i=1

mi[1− εi]

= −e−x

(

1−
∑

i∈I1

miεi −
∑

i∈I2

miεi

)

(4.40)
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with I1 = {i : Xi(t − 1) ≤ Φ(X(t − 1)) − A} and I2 the complement in {1, . . . N}, and some
real number A to be chosen later. By the first assumption in (4.39), we have

|
∑

i∈I1

miεi| ≤ sup{|ε(y)|; y > x+ A} × 1 → 0 as A→ ∞,

for fixed x. The second sum,

|
∑

i∈I2

miεi| ≤ ‖ε‖∞
∑

i∈I2

eXi(t−1)−Φ(X(t−1)),

will be bounded using the second assumption in (4.39). We can enlarge the probability space
and couple the ξi,j(s)’s with (gi,j(t − 1); i, j ≤ N), which are i.i.d. G(0, 1) independent of
(ξi,j(s); i, j ≤ N, s 6= t− 1), such that

gi,j(t− 1) + c ≤ ξi,j(t− 1) ≤ gi,j(t− 1) + d.

Define for i ≤ N ,
X̃i(t− 1) = max

j≤N
{Xj(t− 2) + gi,j(t− 1)}.

By the previous double inequality,

X̃i(t− 1) + c ≤ Xi(t− 1) ≤ X̃i(t− 1) + d,

and, since Φ is non-decreasing and such that Φ(y + r1) = Φ(y) + r, we have also

Φ(X(t− 1))− Φ(X(t− 2)) ≥ Φ(X̃(t− 1))− Φ(X(t− 2)) + c,

On the other hand, in analogy to the proof of Proposition 4.1 for the Gumbel case we know
that (X̃i(t− 1)− Φ(X(t− 2)); 1 ≤ i ≤ N) is a N -sample of the law G(0, 1). So,

Φ(X̃(t− 1))− Φ(X(t− 2)) = ln(bN ) + ln

(

1 +
N

bN
S(N)

)

= lnN + ln lnN + o(1)

in probability from (3.26), and

max{X̃i(t− 1); i ≤ N} − Φ(X(t− 2))− lnN converges in law

by the limit law for the maximum of i.i.d.r.v.’s with exponential tails [20, Sect. I.6]. Combining
these, we obtain, as N → ∞,

Φ(X(t− 1))−max{Xi(t− 1); i ≤ N} ≥ Φ(X̃(t− 1))− d−max{X̃i(t− 1); i ≤ N}+ c

→ +∞ in probability ,

which implies that the set I2 becomes empty for fixed A and increasing N . This shows that
∑

i∈I2
eXi(t−1)−Φ(X(t−1)) → 0 in probability (i.e., under P(·|Ft−2)) uniformly on X(t−2). Letting

N → ∞ and A→ +∞ in (4.40), we have

P(Xj(t)− Φ(X(t− 1)) ≤ x|Ft−2) → exp−e−x

as N → ∞ uniformly on X(t−2), which implies the first claim for k = 1. For k ≥ 2, recall that,
conditionally on Ft−1, the variables (Xi(t); i ≤ N) are independent. The previous arguments
apply, yielding (1.6).
Statement (1.7) for fixed x follows from this and the fact that Xi(t) are independent condi-
tionally on Ft−1. Convergence uniform for x in compacts follows from pointwise convergence of
monotone functions to a continuous limit (Dini’s theorem). Uniform convergence on R comes
from the additional property that these functions are bounded by 1.
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Remark 4.4. (i) From the stochastic comparison (1.8) of ξ and the Gumbel, we obviously have
vN = ln bN +O(1). We believe, but could not prove, that the error term is in fact o(1).
(ii) We believe, but could not prove, that the conclusions of Theorem 1.2 hold under the only
assumption that the function ε from (4.38) tends to 0 at +∞.

5. Front speed for the Bernoulli distribution

In this section we consider the case of a Bernoulli distribution for the ξ’s,

P(ξi,j(t) = 1) = p, P(ξi,j(t) = 0) = q = 1− p,

with p ∈ (0, 1). For all starting configuration, from the coupling argument in the proof of
proposition 2.1, we see that all N particles meet at a same location at a geometric time, and, at
all later times, they share the location of the leading one, or they lye at a unit distance behind
the leading one. We set Φ(x) = max{xj ; j ≤ N}, and we reduce the process X0 to a simpler
one given by considering

Z(t) = ♯
{

j : 1 ≤ j ≤ N,Xj(t) = 1 + max{Xi(t− 1); i ≤ N}
}

. (5.41)

Z(t) is equal to the number of leaders if the front has moved one step forward at time t, and
to 0 if the front stays at the same location. Here, we define the front location as the rightmost
occupied site Φ(X(t)) = max{Xj(t); j ≤ N}. Then, it is easy to see that Z is a Markov chain
on {0, 1, . . . , N} with transitions given by the binomial distributions

P
(

Z(t+ 1) = · |Z(t) = m
)

=

{

B
(

N, 1− qm
)

(·), m ≥ 1,
B
(

N, 1− qN
)

(·), m = 0.
(5.42)

Note that the chain has the same law on the finite set {1, 2, . . .} when starting from 0 or from
N . Clearly, vN → 1 as N → ∞. We prove that the convergence is extremely fast.

Theorem 5.1. In the Bernoulli case, we have

vN = 1− qN
2

2N + o(qN
2

2N) (5.43)

as N → ∞.

Proof. The visits at 0 of the chain Z are the times when the front fails to move one step. Thus,

Φ(X(t)) = Φ(X(0)) +
t
∑

s=1

1Z(s)6=0,

which implies by dividing by t and letting t→ ∞, that

vN = ν̄N (Z 6= 0) = 1− ν̄N (Z = 0),

where ν̄N denotes the invariant (ergodic) distribution of the chain Z. Let EN , PN refer to the
chain starting at N , and Tk = inf{t ≥ 1 : Z(t) = k} the time of first visit at k (0 ≤ k ≤ N).
By Kac’s lemma, we can express the invariant distribution, and get:

vN = 1− (E0T0)
−1 = 1− (ENT0)

−1. (5.44)

Let σ0 = 0, and σ1, σ2 . . . the successive passage times of Z at N , and N =
∑

i≥0 1σi<T0
the

number of visits at N before hitting 0. Note that N has a geometric law with expectation
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ENN = PN(T0 < TN )
−1. Then,

ENT0 = EN

[

∑

i≥1

(σi − σi−1)1σi<T0
+ (T0 − σN )

]

=
∑

i≥1

EN [(σi − σi−1)1σi<T0
] + EN(T0 − σN )

=
∑

i≥1

EN

[

1σi−1<T0
EN

(

σ11σ1<T0

)]

+ EN (T0|T0 < TN) (Markov property)

= EN [N ]×EN

(

σ11σ1<T0

)

+ EN(T0|T0 < TN )

=
1− PN(T0 < TN)

PN(T0 < TN)
× EN

(

TN |TN < T0
)

+ EN (T0|T0 < TN) (5.45)

We will prove a Lemma.

Lemma 5.1. We have

PN(T0 < TN) ∼ qN
2

2N , (5.46)

as N tends to ∞. Moreover,

lim
N→∞

EN (T0|T0 < TN) = 2, (5.47)

lim
N→∞

EN

(

TN |TN < T0
)

= 1. (5.48)

The lemma has a flavor of Markov chains with rare transitions considered in [9], except for
the state space which is getting here larger and larger in the asymptotics. With the lemma at
hand, we conclude that

ENT0 ∼ 1

PN(T0 < TN)

∼ 1

qN22N

as N tends to ∞. From (5.44), this implies the statement of the theorem.

Proof. of lemma 5.1. We start to prove the key relation (5.46). We decompose the event
{T0 < TN} according to the number ℓ of steps to reach 0 from state N ,

PN(T0 < TN ) =
∑

ℓ≥1

PN(T0 = ℓ < TN). (5.49)

We directly compute the contribution of ℓ = 1: By (5.41), we have

PN(T0 = 1 < TN) = qN
2

, (5.50)
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which is neglegible in front the right-hand side of (5.46). We compute now the contribution of
strategies in two steps:

PN(T0 = 2 < TN ) =

N−1
∑

k=1

PN(T0 = 2 < TN , Z(1) = k)

=
N−1
∑

k=1

(

N
k

)

(1− qN )kqN(N−k) ×
(

N
0

)

(1− qk)0qkN

= qN
2

N−1
∑

k=1

(

N
k

)

(1− qN)k

= qN
2[

(2− qN)N − 1− (1− qN)N
]

∼ qN
2

2N . (5.51)

For ℓ ≥ 2 we write, with the convention that k0 = N ,

PN(T0 = ℓ+ 1 < TN) =

N−1
∑

k1,...kℓ=1

PN(T0 = ℓ+ 1 < TN , Z(i) = ki, i = 1, . . . ℓ)

=
N−1
∑

k1,...kℓ=1

[

ℓ
∏

i=1

(

N
ki

)

(1− qki−1)kiqki−1(N−ki)
]

qkℓN (by (5.41))

≤
N−1
∑

k1,...kℓ=1

[

ℓ
∏

i=1

(

N
ki

)

qki−1(N−ki)
]

qkℓN

= qN
2

N−1
∑

k1,...kℓ=1

ℓ
∏

i=1

(

N
ki

)

qki(N−ki−1) (since k0 = N)

=: qN
2

aℓ, (5.52)

which serves as definition of aℓ = aℓ(N). For ε ∈ (0, 1), define also bℓ = bℓ(ε,N) by

bℓ =
∑

1≤k1,...kℓ≤N−1,kℓ>(1−ε)N

ℓ
∏

i=1

(

N
ki

)

qki(N−ki−1)

Then, by summing over kℓ,

aℓ =
∑

1≤k1,...kℓ−1≤N−1

[

ℓ−1
∏

i=1

(

N
ki

)

qki(N−ki−1)
]

[

(1 + qN−kℓ−1)N − 1− qN(N−kℓ−1)
]

≤
∑

1≤k1,...kℓ−1≤N−1

[

ℓ−1
∏

i=1

(

N
ki

)

qki(N−ki−1)
]

[

(1 + qN−kℓ−1)N − 1
]

=
∑

kℓ−1≤(1−ε)N

+
∑

kℓ−1>(1−ε)N

≤ γN aℓ−1 + (1 + q)Nbℓ−1, (5.53)

with

γN = γN(ε)
def.
=
(

1 + qNε
)N − 1 ∼ NqNε
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as N → ∞. We now bound bℓ in a similarly manner. First we note that, for any η such that
η > −ε ln(ε)− (1− ε) ln(1− ε) > 0, we have

∑

kℓ>(1−ε)N

(

N
kℓ

)

≤ expNη for large N.

Note also that we can make η small by choosing ε small. Then,

bℓ ≤
∑

1≤k1,...kℓ−1≤N−1

[

ℓ−1
∏

i=1

(

N
ki

)

qki(N−ki−1)

]

eNηq(1−ε)N(N−kℓ−1)

=
∑

kℓ−1≤(1−ε)N

+
∑

kℓ−1>(1−ε)N

≤ qε(1−ε)N2

eNηaℓ−1 + q(1−ε)NeNηbℓ−1. (5.54)

For vectors u, v, we write u ≤ v if the inequality holds coordinatewise. In view of (5.53) and
(5.54), we finally have

(

aℓ
bℓ

)

≤M

(

aℓ−1

bℓ−1

)

≤ . . . ≤M ℓ−2

(

a2
b2

)

, (5.55)

where the matrix M is positive and given by

M =

(

γN (1 + q)N

qε(1−ε)N2

eNη q(1−ε)NeNη

)

We easily check that, for ε and η small, M has positive, real eigenvalues, and the largest one
λ+ = λ+(N, ε, η) is such that λ+ ∼ γN as N → ∞. By (5.55),

aℓ ≤ λℓ−2
+

(

a2 + b2),

and since λ+ = λ+(N, ε, η) < 1 for large N ,
∑

ℓ≥2

aℓ ≤
a2 + b2
1− λ+

. (5.56)

Now, we estimate a2 = a2 and b2, both of which depend on N :

a2 =
∑

1≤k1,k2≤N−1

(

N
k1

)(

N
k2

)

qk2(N−k1)

≤
∑

1≤k1≤N−1

(

N
k1

)

[

(1 + qN−k1)N − 1
]

=
∑

k1≤(1−ε)N

+
∑

k1>(1−ε)N

≤ γN2
N + (1 + q)NeNη,

and

b2 ≤ q(1−ε)N
∑

1≤k1,k2≤N−1,k2>(1−ε)N

(

N
k1

)(

N
k2

)

≤ 2Nq(1−ε)NeNη.

From (5.56), we see that
∑

ℓ≥2

aℓ(N) = o(2N),

and, together with (5.52), (5.49), (5.50), (5.51), it implies (5.46).
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The limit (5.47) directly follows from the above estimates.

Finally, we turn to the proof of (5.48). Note that

PN(TN < T0) ≤ EN

(

TN1TN<T0

)

≤ EN

(

TN
)

=
(

1− (1− p)N
)N

+ EN

(

TN1TN>1

)

. (5.57)

We only need to show that the last term is exponentially small. For that, we use Markov
property at time 1,

EN

(

TN1TN>1

)

≤
[

1−
(

1− (1− p)N
)N](

1 + max
m

Em(TN)
)

,

where the first factor is exponentially small. To show that the second factor is bounded, one
can repeat the proof of part a) with p = 1 of the forthcoming Lemma 6.5.

6. The case of variables taking a countable number of values

In this section we consider the case of a random variable ξ taking the values Nk := {l ∈ Z : l ≤
k}, with k ∈ Z, so that

P(ξi,j(t) = l) = pl, (6.58)

for l ∈ Nk, with pl ≥ 0, pk ∈ (0, 1) and
∑

l∈Nk
pl = 1. As in the Bernoulli case we can reduce

the process X0 to a simpler one given by Z(t) := (Zl(t) : l ∈ Nk), where

Zl(t) = ♯
{

j : 1 ≤ j ≤ N,Xj(t) = max{Xi(t− 1); 1 ≤ i ≤ N}+ l
}

, (6.59)

for l ∈ Nk. Note that Zk(t) is equal to the number of leaders if the front has moved k steps
forward at time t, and to 0 if the front moved less than k steps. Z is a Markov chain on the set

Ωk :=

{

m ∈ {0, . . . , N}Nk :
∑

i∈Nk

mi = N

}

,

where mi are the coordinates of m. We now proceed to compute the transition probabilities of
the Markov chain Z. Assume that at some time t we have Zt = m = (mi : i ∈ Nk). For each
i ∈ Nk, this corresponds to mi particles at position i. Let us now move each particle to the
right adding independently a random variable with law ξ0,0. We will assume that mk ≥ 1. The
probability that at time t+ 1 there is some particle at position k is

sk(m) := 1−
(

k−1
∑

l=−∞

pl

)mk

.

Similarly, the probability that the rightmost particle at time t+ 1 is at position k − 1 is

sk−1(m) :=

(

k−1
∑

l=−∞

pl

)mk

−
(

k−1
∑

l=−∞

pl

)mk−1
(

k−2
∑

l=−∞

pl

)mk

.

In general, for r ∈ Nk, the probability that at time t+ 1 the rightmost particle is at position r
is

sr(m) :=

(

k−1
∑

l=−∞

pl

)mr+1

· · ·
(

r
∑

l=−∞

pl

)mk

−
(

k−1
∑

l=−∞

pl

)mr

· · ·
(

r
∑

l=−∞

pl

)mk−1
(

r−1
∑

l=−∞

pl

)mk

.
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Define now on Ωk the shift θm by (θm)i = mi−1 for i ∈ Nk. For r ∈ Nk, let s
(1)
r (m) := sr(θm)

and in general for j ≥ 1 let

s(j)r (m) := sr(θ
jm).

Define s(m) := (sr(m) : r ∈ Nk), for j ≥ 1, s(j)(m) := (s
(j)
r (m) : r ∈ Nk). Dropping the

dependence on m of sr, s
(j)
r , s and s(j) we can now write the transition probabilities of the

process Z(t) as

P
(

Z(t+ 1) = n|Z(t) = m
)

=























M
(

N ; s
)

(n), mk ≥ 1,
M
(

N ; s(1)
)

(n), mk−1 ≥ 1, mk = 0,
M
(

N ; s(2)
)

(n), mk−2 ≥ 1, mk = mk−1 = 0,
. . . . . .
M
(

N ; s(j)
)

(n), mk−j ≥ 1, mk = mk−1 = · · · = mk−j+1 = 0,

(6.60)

where for ui with
∑

i ui = 1, M
(

N ; u
)

denotes the multinomial distribution (with infinitely
many classes). Let us introduce the following notation

ri :=

k−i
∑

j=−∞

pj,

for integer i ≥ 1.

Assumption (R). We say that a random variable ξ distributed according to (6.58) satisfies
assumption (R) if

pk × pk−1 > 0

and

E(|ξ0,0|) <∞.

We can now state the main result of this section.

Theorem 6.1. Let ξ be distributed according to (6.58) and suppose that it satisfies assumption
(R). Then, we have that

vN = k − qN
2

k 2N + o(qN
2

k 2N), (6.61)

as N → ∞, where qk := 1− pk.

6.1. Proof of Theorem 6.1. To prove Theorem 6.1, we will follow a strategy similar to the
one used in the Bernoulli case. Let us first define for each m = (mi : i ∈ Nk) ∈ Ωk the function

φ = φ(m) := sup{i ∈ Nk : mi > 0}. (6.62)

As in the Bernoulli case, we denote by ν̄N the invariant (ergodic) distribution of the chain Z.

Lemma 6.1. Let ξ be distributed according to (6.58). Then, we have that

vN = k − ν̄N (φ ≤ k − 1)−
∞
∑

j=2

ν̄N(φ ≤ k − j). (6.63)
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Proof. Let Φ(x) = max{xi; i ≤ N}, and note that for every positive integer time t

Φ(X(t)) = Φ(X(0)) +

t
∑

i=1

φ(Z(i)).

Hence

vN =
∑

i∈Nk

iν̄N (φ = i) = k −
∞
∑

j=1

ν̄N(φ ≤ k − j). (6.64)

We will now show that the first two terms of the expression for the velocity (6.63) given in
Lemma 6.1, dominate the others.

Lemma 6.2. Let ξ be distributed according to (6.58). Then, for each i ≥ 2 we have that

ν̄N(φ ≤ k − i) ≤
(

ri
r1

)N

ν̄N (φ ≤ k − 1).

Proof. Let us fix m ∈ Ωk. Define κ := sup{i ∈ Nk : mi > 0}. Let us first note that

Pm(φ(Z(1)) ≤ k − 1) = rmκN
1 ,

while

Pm(φ(Z(1)) ≤ k − 2) = r
mκ−1N
1 rmκN

2 ≤
(

r2
r1

)mκN

Pm(φ(Z(1)) ≤ k − 1).

Hence

Pm(φ(Z(t)) ≤ k − 2) =
∑

m′∈Ωk

Pm(Z(t− 1) = m′, φ(Z(t)) ≤ k − 2)

=
∑

m′∈Ωk

Pm(Z(t− 1) = m′)Pm′(φ(Z(1)) ≤ k − 2)

≤
∑

m′∈Ωk

Pm(Z(t− 1) = m′)Pm′(φ(Z(1)) ≤ k − 1)

(

r2
r1

)m′
κN

≤
(

r2
r1

)N

Pm(φ(Z(t)) ≤ k − 1),

where in the last inequality we used the fact that by definition m′
κ′ ≥ 1. A similar reasoning

shows that in general, for i ≥ 2,

Pm(φ(Z(t)) ≤ k − i) ≤
(

ri
r1

)N

Pm(φ(Z(t)) ≤ k − 1).

Taking the limit when t→ ∞ and using Proposition 2.1, we conclude the proof.



LAST PASSAGE PERCOLATION AND TRAVELING FRONTS 23

Lemma 6.3. Let ξ be distributed according to (6.58) and suppose that assumption (R) is
satisfied. Then

∞
∑

i=2

(

ri
r1

)N

= O
(

(

r2
r1

)N
)

Proof. Note that by summation by parts, assumption (R) implies that

∞
∑

i=2

ri <∞.

Therefore,

∞
∑

i=2

(

ri
r1

)N

≤ 1

r1

(

r2
r1

)N−1 ∞
∑

i=2

ri = O
(

(

r2
r1

)N
)

.

Theorem 6.1 now follows from Lemmas 6.1, 6.2, 6.3 and the next proposition, whose proof we
defer to subsection 6.2.

Proposition 6.2. We have that

lim
N→∞

ν̄N(φ ≤ k − 1)

qN
2

k 2N
= 1.

6.2. Proof of Proposition 6.2. Let us introduce for each m ∈ Ωk the stopping time

Tm := inf{t ≥ 1 : Z(t) = m}.
Define now Ω0

k := {m ∈ Ωk : mk = 0}. Furthermore, we denote in this section ⊕ := (. . . , 0, N) ∈
Ωk. We now note that by Kac’s formula

ν̄N(Zk = 0) =
∑

n∈Ω0
k

ν̄N (Z = n) =
∑

n∈Ω0
k

1

En(Tn)
.

Hence we have to show that

lim
N→∞

∑

n∈Ω0
k

1
En(Tn)

qN
2

k 2N
= 1. (6.65)

We will prove (6.65) through the following three lemmas.

Lemma 6.4. Assume that ξ is distributed according to (6.58). Then, for every n ∈ Ω0
k we have

that

En(Tn) = E⊕(T⊕, T⊕ < Tn)
1

P⊕(Tn < T⊕)
+ E⊕(Tn|Tn < T⊕) + UN(n),

where 1− e−CN ≤ infn1,...,nk−1,0 |UN | ≤ supn1,...,nk−1,0
|UN | ≤ 2 + e−CN for some constant C > 0.

Lemma 6.5. Assume that ξ is distributed according to (6.58). Then, there is a constant C > 0
such that the following are satisfied.
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a) For p = 1 and p = 2, and for every N ≥ 2 we have that

sup
m∈Ωk

Em(T
p
⊕) ≤ 2p(1 + e−CN). (6.66)

b) For every N ≥ 2 we have that

sup
m∈Ω0

k

|E⊕(T⊕, T⊕ < Tm)− 1| ≤ e−CN .

To state the third lemma, we need to define the first hitting time of the set Ω0
k. We let

TA := inf
m∈Ω0

k

Tm.

Lemma 6.6. Assume that ξ is distributed according to (6.58). Then, there is a constant C > 0
such that

∑

n∈Ω0
k

P⊕(Tn < T⊕) = P⊕(TA < T⊕)
(

1 +O(e−CN)
)

.

Let us now see how Lemmas 6.4, 6.5 and 6.6 imply Proposition 6.2. We will see that in fact,
Proposition 6.2 will follow as a corollary of the corresponding result for the Bernoulli case with
q = qk. Note that Lemma 6.4 and part (b) of Lemma 6.5 imply that

P⊕(Tn < T⊕) ≥
1− e−CN

En(Tn)
, n ∈ Ω0

k.

Hence, summing up over n ∈ Ω0
k, by Lemma 6.6, we get that, for some C ′ > 0,

P⊕(TA < T⊕) ≥ (1− e−C′N)
∑

n∈Ω0
k

1

En(Tn)
. (6.67)

Now, note that P⊕(TA < T⊕) is equal to the probability to hit 0 before N , starting from N ,
for the chain Z defined through random variables with Bernoulli increments as in Section 5.
Hence, by (5.46) of Lemma 5.1 we conclude that for N large enough

(1 + e−CN)qN
2

k 2N ≥
∑

n∈Ω0
k

1

En(Tn)
. (6.68)

On the other hand, applying the Cauchy-Schwarz inequality to the expectation E⊕(·|Tn < T⊕)
in Lemma 6.4 and using Lemma 6.5, we obtain for each n ∈ Ω0

k that

E ≤ a1
P

+
a2√
P

+ a3,

where a1 := 1 + e−CN , a2 := 2(1 + e−CN ) and a3 := UN , E := En(Tn), P := P⊕(Tn < T⊕) and
we have used (6.66) of part (a) of Lemma 6.5 with p = 2. It follows that

1√
P

≥
√

a22 − 4a1(a3 − E)− a2
2a1

.

Hence,

a1
1

P
≥ E − a2

2a1

√

a22 − 4a1(a3 −E).
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Now, a22 − 4a1(a3 − E) ≤ 8(1 + E) for large N , so that

a1
1

P
≥ E

(

1− 4
1√
E

√

8

(

1

E
+ 1

)

)

.

Now, by inequality (6.68) we conclude that for N large enough 1
E
≤ qN

2

k 2N+1. Therefore,

1

En(Tn)
≥ (1− e−C′N )P⊕(Tn < T⊕).

Summing up over n ∈ Ω0
k, by Lemma 6.6 we get that

P⊕(TA < T⊕) ≤ (1 + e−C′N )
∑

n∈Ω0
k

1

En(Tn)
(6.69)

for some C ′ > 0. Finally, (5.46) of Lemma 5.1, together with inequalities (6.67) and (6.69),
imply inequality (6.65), which finishes the proof of Proposition 6.2.

6.2.1. Proof of Lemma 6.5. Part (a). We will first prove that there exists a constant C > 0
such that

sup
m∈Ωk

Pm(T⊕ > 2) ≤ e−CN . (6.70)

The strategy to prove this bound will be to show that with a high probability, after one step
there are at least pkN

2
leaders. This gives a high probability of then having N leaders in the

second step. Consider now the set Lk,N :=
{

m ∈ Ωk : mk ≥
[

pkN
2

]}

. We have

Pm(T⊕ ≤ 2) ≥ P

(

X ≥ pkN

2

)

inf
m∈Lk,N

Pm(T⊕ = 1), (6.71)

where X is a random variable with a binomial distribution of parameters pk and N . Now, by a
large deviation estimate, the first factor of (6.71) is bounded from below by 1− e−CN . On the
other hand, we have for m ∈ Lk,N ,

Pm(T⊕ = 1) ≥
(

1− (1− pk)
Npk/2

)N ≥ 1− e−CN ,

for some constant C > 0. This estimate combined with (6.71) proves inequality (6.70). Now,
by the Markov property, we get that, for all m ∈ Ωk,

Em(T⊕) = Em(T⊕1T⊕≤2) +
∑

n∈Ωk

Em(T⊕1T⊕>2,Z(2)=n)

≤ 2Pm(T⊕ ≤ 2) +
∑

n∈Ωk

Em

(

1T⊕>2,Z(2)=n[2 + En(T⊕)]
)

≤ 2Pm(T⊕ ≤ 2) +

(

2 + sup
n∈Ωk

En(T⊕)

)

Pm(T⊕ > 2),

where the supremum is finite, in fact smaller than δ−1
N with δN from (2.15). Bounding the first

term of the right-hand side of the above inequality by 2, taking the supremum over m ∈ Ωk

and applying the bound (6.70), we obtain (6.66) of (a) of Lemma 6.5 with p = 1. The proof of
(6.66) when p = 2 is analogous via an application of the case p = 1.

Part (b). Note that for every state m ∈ Ω0
k we have that
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E⊕(T⊕, T⊕ < TA) ≤ E⊕(T⊕, T⊕ < Tm) ≤ E⊕(T⊕).

Hence, it is enough to prove that

|E⊕(T⊕)− 1| ≤ e−CN , (6.72)

and that

|E⊕(T⊕, T⊕ < TA)− 1| ≤ e−CN . (6.73)

To prove (6.72) note that

E⊕(T⊕) =
(

1− (1− pk)
N
)N

+ E⊕(T⊕, T⊕ > 1). (6.74)

But by the Markov property,

E⊕(T⊕, T⊕ > 1) ≤
(

1−
(

1− (1− pk)
N
)N
)

(

1 + sup
m∈Ω0

k

Em(T⊕)

)

.

Note that

(

1− (1− pk)
N
)N ≥ exp

{

− N(1 − pk)
N

1 −N(1 − pk)N

}

≥ 1− N(1− pk)
N

1−N(1− pk)N
.

Using part (a) just proven of this Lemma, we conclude that

E⊕(T⊕, T⊕ > 1) ≤ e−CN . (6.75)

Substituting this back into (6.74) we obtain inequality (6.72). To prove inequality (6.73), as
before, observe that

E⊕(T⊕, T⊕ < TA) =
(

1− (1− pk)
N
)N

+ E⊕(T⊕, TA > T⊕ > 1). (6.76)

Noting that E⊕(T⊕, TA > T⊕ > 1) ≤ E⊕(T⊕, T⊕ > 1), we can use the estimate (6.75) to obtain
(6.73).

6.2.2. Proof of Lemma 6.4. We will use the following relation, which proof is similar to that of
(5.45) and will be not be repeated here: for every n ∈ Ω0

k,

E⊕(Tn) = E⊕(T⊕|T⊕ < Tn)
P⊕(T⊕ < Tn)

P⊕(Tn < T⊕)
+ E⊕(Tn|Tn < T⊕). (6.77)

Let us now derive Lemma 6.4. Let n ∈ Ω0
k and m ∈ Ωk. We first make the decomposition

Em(Tn) = (T )1 + (T )2, (6.78)

where

(T )1 := Em(Tn1T⊕<Tn
) and

(T )2 := Em(Tn1T⊕>Tn
).

We also denote by (T )2 the supremum of (T )2 over all possible n ∈ Ω0
k and m ∈ Ωk. Now,

(T )2 = (T )21 + (T )22, (6.79)

where
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(T )21 := Em(Tn1T⊕>Tn
1Zk(1)>CN ) and

(T )22 := Em(Tn1T⊕>Tn
1Zk(1)≤CN ).

Now note that for any constant C < pk, by the Markov property and a standard large deviation
estimate we have that

(T )22 = Pm(Tn = 1) +
∑

z1≤CN

Em(Tn1T⊕>Tn≥21Zk(1)=z1)

≤ Pm(Z(1) = n) +
(

1 + (T )2

)

Pm(Zk(1)≤CN,Z(1) 6= n)

≤
(

1 + (T )2

)

Pm(Zk(1)≤CN)

≤
(

1 + (T )2

)

e−cN , (6.80)

for some constant c > 0 depending on C, pk. On the other hand, by definition of the event
{T⊕ > Tn}, we have the first equality below:

(T )21 = Em(Tn1T⊕>Tn
1Zk(1)>CN1Zk(2)≤N−1)

≤
(

1− (1− (1− pk)
CN)N

)

(2 + (T )2)

≤ C ′N(1 − pk)
CN(2 + (T )2), (6.81)

for some C ′ > 0. We can now conclude from (6.79), (6.80) and (6.81), that there is a constant
C > 0 such that

(T )2 ≤ Ce−CN .

Let us now take m = n ∈ Ω0
k and examine the first term of the decomposition (6.78). Note

that by the strong Markov property,

(T )1 = E⊕(Tn) + En(T⊕1T⊕<Tn
). (6.82)

Now, by part (a) Lemma 6.5 with p = 1, we see that the second term in the above decomposition
is bounded above as follows,

En(T⊕) ≤ 2(1 + e−CN). (6.83)

Collecting our estimates, we get

EnTn = En(Tn;T⊕ < Tn) + En(Tn;Tn < T⊕)

= En(T⊕;T⊕ < Tn) + En(Tn − T⊕;T⊕ < Tn) + En(Tn;Tn < T⊕)

= En(T⊕;T⊕ < Tn) + Pn(T⊕ < Tn)×E⊕(Tn) + En(Tn;Tn < T⊕).

Here we bound the first term with (6.83), the last one by (T )2, and we can use (6.77) to obtain
the desired conclusion.

6.2.3. Proof of Lemma 6.6. First note that
∑

n∈Ω0
k

P⊕(Tn < T⊕) ≥ P⊕(TA < T⊕),
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and it suffices to prove an inequality in the converse direction. It is natural to introduce the
number NA of visits of the chain to the set Ω0

k before reaching the ⊕ state,

NA :=

T⊕
∑

t=1

1Z(t)∈Ω0
k
,

since we have, for all m ∈ Ωk, the relations

EmNA ≥
∑

n∈Ω0
k

Pm(Tn < T⊕) , Pm(NA ≥ 1) = Pm(TA < T⊕) . (6.84)

Then, by the strong Markov property,

E⊕(NA) = E⊕(NA1NA≥1)

=
∑

n∈Ω0
k

E⊕

(

1TA<T⊕,Z(TA)=nEn(1 +NA)
)

≤
(

1 + sup
n∈Ω0

k

En(NA)

)

P⊕(NA ≥ 1) . (6.85)

In view of (6.84), where the first term is smaller than the last one, it suffices to show that

sup
n∈Ω0

k

En(NA) = O(e−CN )

in order to conclude the proof of the Lemma. In this purpose, use the strong Markov property
to write

En(NA) = En

(

NA1T⊕=1

)

+ En

(

NA1T⊕≥2

)

= 0 +
∑

m∈Ω0
k

En

(

1TA<T⊕,Z(TA)=m(1 + EmNA)
)

≤
(

1 + sup
m∈Ωk

Em(NA)

)

Pn(TA < T⊕) . (6.86)

Observe also that, for all n ∈ Ωk,

Pn(TA < T⊕) ≤ Pn(TA = 1) + Pn(T⊕ > 2)

≤ (1− pk)
N + sup

n∈Ωk

Pn(T⊕ > 2)

≤ 2e−CN (6.87)

by (6.70). Now, the desired result follows from (6.86) and (6.87), provided that the supremum
in the former estimate is finite. To show this, note that supm Pm(T⊕ ≥ 2) ≤ (1 − pk)

N ,
which implies that T⊕ is stochastically dominated by a geometric variable with this parameter.
Therefore,

sup
m
Em(NA) ≤ sup

m
Em(T⊕) ≤ (1− pk)

−N ,

ending the proof.
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6.3. Proof of Theorem 1.3. Changing ξ into (ξ − a)/(a − b), we can restrict to the case

a = 0, b = −1. Then, for fixed ε > 0, we define i.i.d. sequences ξ̂i,j(t) and ξ̆i,j(t) by

ξ̂i,j(t) = −1{ξi,j(t)≤−1} , ξ̆i,j(t) = (1 + ε)
∑

ℓ≤−1

ℓ1{ξi,j(t)∈[ℓ(1+ε),(ℓ+1)(1+ε))} .

Clearly, these variables are integrable since ξ is. Since ξ̆i,j(t) ≤ ξi,j(t) ≤ ξ̂i,j(t), the correspond-
ing speeds are such that

v̆N ≤ vN ≤ v̂N .

From Theorem 6.1, both v̂N and (1 + ε)−1v̆N are −(1 − p)N
2

2N + o((1 − p)N
2

2N) as N → ∞,
which, in addition to the previous inequalities, yields

−(1 + ε) ≤ lim inf
N→∞

vN (1− p)−N2

2−N ≤ lim sup
N→∞

vN (1− p)−N2

2−N ≤ −1.

Letting ε ց 0, we obtain the desired claim.
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[6] J. Bertoin: Lévy processes. Cambridge Tracts in Math. 121. Cambridge Univ. Press, Cambridge, 1996
[7] E. Brunet and B. Derrida: Exactly soluble noisy traveling-wave equation appearing in the problem of
directed polymers in a random medium. Phys. Rev. E 70 (2004), 016106

[8] E. Brunet, B. Derrida, A. Mueller, S. Munier: Noisy traveling waves: effect of selection on genealogies.
Europhys. Lett. 76 (2006), no. 1, 1–7.

[9] O. Catoni, R. Cerf: The exit path of a Markov chain with rare transitions. ESAIM Probab. Statist. 1

(1995/97), 95–144
[10] S. Chatterjee, S. Pal: A phase transition behavior for Brownian motions interacting through their ranks.
Probab. Theory Related Fields 147 (2010) 123–159
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