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1 Introduction

Let F , G ∈ Z[x] be polynomials of degree ≤ d and logarithmic height ≤ h,
having at most N non zero coefficients. Assuming that al least one of F and
G does not vanish on roots of unity, Filaseta, Granville and Schinzel (see [3])
proved that there exists an algorithm which compute the great common divisor
of F and G in time Oh,N (log d).

This result relies heavily on a work of Bombieri and Zannier on the intersec-
tion of a subvariety of Gnm (as customary, we denote by Gm the multiplicative
group) of codimension ≥ 2 with subgroups of dimension 1, appeared for the first
time as an appendix of [6] by Zannier and later in [1].

Recently, in his P.h.D Thesis [4] the second Author relaxes the condition
above on roots of unity. He shows that there exists an algorithm which com-
pute in time Oh,N (log d) a polynomial P which divides gcd(F,G) and such that
P/ gcd(F,G) vanishes only at roots of unity. Hence the equation P = 0 has the
same set of solutions as the system of equations F = G = 0. In this respect,
it may not be out of place to recall that D. A. Plaisted [5] has shown that
computing the GCD of two sparse polynomials is a NP-hard problem.

In this article we are interested in multivariate generalizations of these prob-
lems. An arbitrary algebraic variety of codimension l cannot be written as an
intersection of l hypersurfaces. Nevertheless it can be described as a union of
complete intersections on non-empty open sets. Such a representation can be
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regarded as a generalization of the computation of the previous polynomial P
in the univariate case.

Assume now that V is defined by polynomials with integers coefficients each
of degree ≤ d, logarithmic height ≤ h and supported by at most N monomials
(this means that there exist N monomials such that each of these polynomials
is a linear combination of such monomials). We look for an algorithm which
computes such a representation in time quasi-linear in log d. It turn out that a
such type of result relies on a generalization of the already quoted theorem of
Bombieri and Zannier. This generalization is still an open conjecture of Zilber
(see section 2.4 for details).

A first result in this direction was proved again in his P.h.D Thesis [4] by the
second Author. Leroux’ algorithm covered the two dimensional case, working
with bivariate polynomials. Here we extend, in a non obvious way, Leroux’
algorithm to arbitrary multivariate polynomials.

We state below our main result in a simplified form. For a more precise
statement, see Theorem 3.4 in section 3.

Theorem 1.1 We assume Zilber’s conjecture. Let V ⊂ Gnm be a subvariety
defined over a number field K by at most N equations of degree ≤ d, height ≤ h
and supported by at most N monomials.

Then we can find a finite collection Γ whose elements are lists

(P1, . . . , PL, Q) with L ≤ n

of Laurent polynomials and such that

V =
⋃
Γ

Z(P1, . . . , PL)\Z(Q) . (1.1)

The polynomials in the lists of Γ have degree Oh,N (d), height Oh,N (1) and
they are defined over a cyclotomic extension of K of degree Oh,N (1). The collec-
tion Γ consists of Oh,N (1) elements and its computation take at most Oh,N (log d)
time.

Moreover, let X ⊆ V be an irreducible component of maximal dimension.
Then there exists a list (P1, . . . , PL, Q) in Γ such that

X ⊆ Z(P1, . . . , PL)\Z(Q)

and in addition Z(P1, . . . , PL)\Z(Q) has codimension L.

Aknowledgements. The authors are indebted with G. Rémond and U. Zan-
nier for useful discussions on the subject of Zilber’s conjecture.

2 Auxiliary results

2.1 Notations

We shall use the following notations.
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For a point α = (α1, . . . , αn) ∈ Gnm and an integral vector a = (a1, . . . , an) ∈
Zn, we set αa := αa11 · · ·αann . Let ϕ : Gnm → GNm be a morphism. Thus

ϕ(α) = (αa1 , . . . ,αaN )

for some a1, . . . ,aN ∈ Zn. We define the size of ϕ as the maximum of the
absolute values of these vectors.

Following Bombieri, Masser and Zannier we call torsion coset a translate of
a subtorus by a torsion point.

Let X be a subvariety of Gnm. Since the intersection of torsion cosets is again
a torsion coset, we can talk about the minimal torsion coset containing X. We
define the multiplicative rank of X as the dimension of this minimal torsion
coset and we denote it by rank(X).

Remark 2.1 Let ϕ : Gnm → GNm be a morphism and let X ⊆ Gnm be an irre-
ducible subvariety. Then

rank(ϕ(X))− dim(ϕ(X)) = rank(X)− dim(X) .

A point α has rank 0 if it is a torsion point; it has rank n if its coordinates
α1, . . . , αn are multiplicatively independent. In the terminology of [1], p.5, let
us denote by Hr the union of all algebraic subgroups of Gnm with dimension r.
Then α has rank r if and only if α ∈ Hr\Hr−1.

2.2 Zilber’s conjecture

As we have mentioned in the introduction, the result of Filaseta, Granville and
Schinzel ([3]) relies heavily on a theorem of Bombieri and Zannier. Let us recall
this statement, in one ([1], Theorem 4.1) of its equivalent forms:

Theorem 2.2 Let W be a subvariety of GNm of codimension ≥ 2. Then there
exists a finite collection UW of torsion cosets such that W ∩H1 is contained in
the union of the (W ∩ T ) ∩H1 for all T in UW .

A natural generalisation of this theorem is the following conjecture ([2], p.309)

Conjecture 2.3 Let W be a subvariety of GNm of codimension ≥ s. Then there
exists a finite collection UW of torsion cosets such that W ∩Hs is the union of
the (W ∩ T ) ∩Hs−1 for all T in UW .

It turn out that this last statement is equivalent to a conjecture of Zilber:

Conjecture 2.4 Let W be a subvariety of GNm . Then there exists a finite col-
lection UW of torsion cosets of GNm of codimension 1 with the following property.
Let T0 ⊂ GNm be a torsion coset and let Y be an irreducible component of W ∩T0

of dimension
dimY > dimW − codimT0 .

(such a component Y is called atypical in [2]). Then there exists T ∈ UW such
that Y ⊆W ∩ T .

For details on the equivalence between these two conjectures (and for more
conjectures), see the appendix of [2].
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2.3 Locally complete intersection stratification

Let W be a subvariety of GNm of codimension l. It is well known that W is (as a
set) a complete intersection on a non-empty open set. More precisely, we can
find polynomials F1, . . . , Fl and G such that

W\Z(G) = Z(F1, . . . , Fl)\Z(G)

and such that Z(G) does not contain any component of W of codimension l.
This implies that Z(F1, . . . , Fl)\Z(G) contains all the irreducible components
of W of codimension l and that W ∩Z(G) has codimension l+ 1. Proceeding in
this way we compute inductively a decomposition of W as a union of complete
intersections on non-empty open sets:

Definition 2.5 Let W be a subvariety of GNm defined over a field K. A locally
complete intersection stratification of W is a family

{(Fj,1, . . . , Fj,lj , Gj)}j=1,...,t

where Fj,i, Gj ∈ K[x±1
1 , . . . , x±1

N ] are such that:

• For j = 1, . . . t let lj be the codimension of W ∩ Z(G1, . . . , Gj−1). Then
codim(W ) = l1 < · · · < lt and Gt = 1;

• W ∩ Z(G1, . . . , Gj−1)\Z(Gj) = Z(Fj,1, . . . , Fj,lj )\Z(Gj), for j = 1, . . . t.

We remark that for a complete intersection W we obviously have t = 1.

In the rest of the paper, for any subvariety W of GNm we fix once and for all

a stratification {F (W )
j,1 , . . . , F

(W )
j,lj

, G
(W )
j }j=1,...,t of this kind.

3 Proof of the main result

3.1 Main algorithm

The following algorithm is the heart of the proof of theorem 3.4.

Lemma 3.1 Let K be a number field and let n, N , k be fixed non-negative
integers with k < N . There exists an algorithm which takes as input a triple
(W,η, ϕ), where

• η ∈ Gkm is a torsion point;

• W ⊂ GN−km is a subvariety defined over K(η) given together with a locally
complete intersection stratification (definition 2.5)

{F (W )
j,1 , . . . , F

(W )
j,lj

, G
(W )
j }j=1,...,t ;

• ϕ : Gnm → GNm a morphism.

and gives as its output a set (eventually empty) of triples (W1,η1, ϕ1), where

• η1 ∈ Gk+1
m is a torsion point;
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• W1 ⊂ GN−k−1
m is a subvariety defined over K(η1);

• ϕ1 : Gnm → GNm is a morphism.

In this algorithm, the cardinality of the output set, the torsion points η1 and
the subvarieties W1 depend only on W and η and not on ϕ. Moreover, the size
of ϕ1 is OW,η(d) and the computation time is OW,η(log d).

The output of the algorithm satisfies the following properties:

1) Let (W1,η1, ϕ1) be a triple in the output set. Then

ϕ−1
1 (W1 × {η1}) ⊆ ϕ−1(W × {η}) .

2) Let j with 1 ≤ j ≤ t and1 lj−1 ≤ n. Let W ′ := W ∩ Z(G
(W )
1 , . . . , G

(W )
j−1 )

and let X ⊆ ϕ−1(W ′ × {η}) be an irreducible variety such that

rank(X)− dim(X) < lj = codim(W ′) .

Let B the minimal torsion coset containing X. Then there exists a triple
(W1,η1, ϕ1) in the output set such that

ϕ−1(W ′ × {η}) ∩B ⊆ ϕ−1
1 (W1 × {η1}) .

In particular, X ⊆ ϕ−1
1 (W1 × {η1}).

Proof. The algorithm consists of two loops. The first one is indexed by j ∈
[1, t] with lj−1 ≤ n. For a such j we set

W ′ := W ∩ Z(G
(W )
1 , . . . , G

(W )
j−1 ) ,

The second loop is indexed by T in the collection UW ′ of codimension one torsion
cosets whose existence is ensured by Zilber’s conjecture 2.4. For a such T ∈ UW ′

of equation, say, xλ = ξ we choose an automorphism τ of GN−km of size OW (1)
such that τ(T ) = {xN = ξ}. Thus

τ(W ′ ∩ T ) = W ′′ × {ξ} .

where W ′′ ⊂ GN−k−1
m is a subvariety defined2 over K(η, ξ).

Let τ ′ be the automorphism of GNm = GN−km ×Gkm whose restriction to GN−km

is τ and which is the identity on Gkm. The algorithm gives as its output a set of
triples

(W1,η1, ϕ1) = (W ′′, {ξ} × {η}, τ ′ ◦ ϕ)

builded in such a way, for

1 ≤ j ≤ t with lj−1 ≤ n and T ∈ UW ′

varying.

1we agree that l0 = 1.
2A set of equations of W ′′ can be easily deduced from the given equations of W ′. Assume

that W ′ = Z(F1, . . . , Fl). Let ρ = τ−1 ◦ ι where ι : GN−k−1
m → GN−k

m is the inclusion

ι(x) = (x, 1). Then the variety W ′′ ⊂ GN−k−1
m is defined by the equations Fi ◦ ρ, i = 1, . . . , l.
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It is straightforward to justify the assertions concerning the cardinality of
the output set, the size of its elements and the computation time. .

We now prove that the output of this algorithm satisfies the desired two
properties. We prove 1). Let

(W1,η1, ϕ1) = (W ′′, {ξ} × {η}, τ ′ ◦ ϕ)

be a triple in the output set, builded choosing j ≤ t with lj−1 ≤ n and T ∈ UW ′ ,
as described above. Then

(τ ′ ◦ ϕ)−1(W ′′ × {ξ} × {η}) = ϕ−1(τ−1(W ′′ × {ξ})× {η})
= ϕ−1(W ′ ∩ T )× {η})
⊆ ϕ−1((W × {η})

We now prove 2). By assumption, ϕ(X) = X ′ × {η} with X ′ ⊆W ′. Let T0

be the projection on the first N − k coordinates of the minimal torsion coset
through ϕ(X). Thus dimT0 ≤ rank(ϕ(X)) and X ′ ⊆ W ′ ∩ T0. Let Y be the
irreducible component of W ′∩T0 through X ′. By remark 2.1 and by assumption,

rank(ϕ(X))− dim(ϕ(X)) = rank(X)− dim(X) < lj = codim(W ′) .

Thus

dimY ≥ dimX ′ = dimϕ(X) > rank(ϕ(X))− codim(W ′) ≥ dimT0 − codimW ′

= dimW ′ − codimT0 .

By Zilber’s conjecture 2.4 there exists a torsion coset T ∈ UW ′ of equation
xλ = ξ such thatX ′ ⊆ T . ThusX is contained in the torsion coset ϕ−1(T×{η}).
By minimality of B, we have B ⊆ ϕ−1(T × {η}).

Let τ be an automorphism of GN−km such that τ(T ) = {xN = ξ}. Let
τ(W ′ ∩T ) = W ′′×{ξ} with W ′′ ⊂ GN−k−1

m . Define τ ′ to be the automorphism
of GNm = GN−km ×Gkm whose restriction to GN−km is τ and which is the identity
on Gkm. Then there exists a choice of τ such that the triple

(W ′′, {ξ} × {η}, τ ′ ◦ ϕ)

constructed in such a way is one of the output triples of the algorithm. Since
B ⊆ ϕ−1(T × {η}), we have

(τ ′ ◦ ϕ)(ϕ−1(W ′ × {η}) ∩B) ⊆ τ ′((W ′ ∩ T )× {η})
= τ(W ′ ∩ T )× {η} = W ′′ × {ξ} × {η} .

Thus
ϕ−1(W ′ × {η}) ∩B ⊆ (τ ′ ◦ ϕ)−1(W ′′ × {ξ} × {η}) .

as required.

�
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Remark 3.2

i) In some cases the algorithm of lemma 3.1 can be considerably simplified.
Let (W,η, ϕ) be an input triple of this algorithm. Let π1 : GNm → GN−km be
the projections on the first N − k coordinates and assume that there exists a
codimension one torsion coset T of GN−km which does not depend on ϕ and such
that

Im (π1 ◦ ϕ) ⊆ T .

In this case we can perform the second loop of the algorithm of lemma 3.1 only
for this special T instead that for all T ∈ UW ′ . A straightforward inspection of
the proof show that assertion 2) of lemma 3.1 still holds.

ii) Moreover, if in assertion 2) of lemma 3.1 we are only interested in subva-
rieties X of rank n, then we can born ourself to the search of codimension one
torsion cosets T such that Im (π1 ◦ ϕ) ⊆ T . Indeed, let us assume that there
exists a torsion coset T ∈ UW ′ such that (π1 ◦ ϕ)(X) ⊆ T . Since rank(X) = n,
we have Im (π1 ◦ ϕ) ⊆ T .

Lemma 3.3 We assume Zilber’s conjecture. Let V ⊂ Gnm be a subvariety de-
fined over a number field K by at most N ≥ 2 equations of degree ≤ d, height
≤ h and supported by at most N monomials. Then, for k = 0, 1, . . . , N−1 there
exists a finite (possibly empty) set Λk of cardinality Oh,N (1) whose elements are
triples (W,η, ϕ), where

• η ∈ Gkm is a torsion point of order Oh,N (1);

• W ⊂ GN−km is a subvariety defined over K(η) and given together with a lo-

cally complete intersection stratification {(F (W )
j,1 , . . . , F

(W )
j,lj

, G
(W )
j )}j=1,...,t

of Laurent polynomials of height and degree Oh,N (1);

• ϕ : Gnm → GNm is a morphism of size Oh,N (d);

such that the following assertions hold.

1) For k = 0, . . . , N − 1 and for (W,η, ϕ) ∈ Λk we have ϕ−1(W ×{η}) ⊆ V .

2) Let X ⊆ V be an irreducible subvariety. Then there exist an index k and
(W,η, ϕ) ∈ Λk such that

X ⊆ ϕ−1
(
Z(F

(W )
j,1 , . . . , F

(W )
j,lj

)\Z(G
(W )
j )× {η}

)
for some j ∈ [1, t] such that lj ≤ rank(X)− dim(X).

Moreover, the sets Λ0, . . . ,ΛN can be computed in time Oh,N (log d).

Proof. We construct Λk inductively. Let Fi(x) =
∑N
j=1 fijx

λj be the equa-

tions defining V . We set Λ0 = {(W0, 1, ϕ0)} where W0 is defined in GNm by the

linear equations
∑N
j=1 fijyj and where ϕ0(x) = (xλ1 , . . . ,xλN ).

Let k ∈ {0, . . . , N − 2} and assume Λk already constructed. We choose
(W,η, ϕ) ∈ Λk. We apply the algorithm described in lemma 3.1 and we define
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Λk+1 as the set of the output of this algorithm.

The assertions concerning the cardinality of the sets Λk, the size of their
elements and the computation time, directly follow from the corresponding as-
sertions of lemma 3.1.

Similarly, statements 1) and 2) easily follow from statements 1) and 2) of
lemma 3.1. Let us check 1). By construction of Λ0 = {(W0, 1, ϕ0)} we have
ϕ0(V ) ⊆ W0. Let k be an index with 0 ≤ k ≤ N − 1 and let us assume that
1) is satisfied for all (W,η, ϕ) ∈ Λk. Let (W1,η1, ϕ1) ∈ Λk+1. Assertion 1) of
lemma 3.1 and the inductive hypothesis ensure that

ϕ−1
1 (W1 × {η1}) ⊆ ϕ−1(W × {η}) ⊆ V .

Let now prove that assertion 2) holds. Let S be the set of integers k ∈
[0, N − 1] such that there exists (W,η, ϕ) ∈ Λk satisfying

X ⊆ ϕ−1(W × {η}) .

Observe that this set is not empty, because 0 ∈ S. We define k as the largest
element of S. Let us assume, by contradiction, that assertion 2) does not hold.
Let us define j† = 0 if l1 > rank(X) − dim(X) and j† as the largest integer
∈ [1, t] such that lj ≤ rank(X)− dim(X) otherwise. By definition 2.5, we have

X 6⊆ ϕ−1(W ∩ Z(G
(W )
1 , . . . , G

(W )
j−1 )\Z(G

(W )
j )× {η}

for j = 1, . . . , j†. Since X ⊆ ϕ−1(W × {η}) and since X is irreductible, we see
by induction that

X ⊆ ϕ−1(W ∩ Z(G
(W )
1 , . . . , G

(W )

j†
)× {η}) .

This implies that G
(W )

j†−1
6= 1, thus j† + 1 ≤ t. By definition of j† we have

lj†+1 > rank(X)− dim(X) .

Then assertion 2) of lemma 3.1 (with j replaced by j† + 1) shows that there
exists (W1,η1, ϕ1) ∈ Λk+1 such that

X ⊆ ϕ−1
1 (W1 × {η1}) .

This contradicts the choice of k.

�

Theorem 3.4 We assume Zilber’s conjecture. Let V ⊂ Gnm be a subvariety
defined over a number field K by at most N equations of degree ≤ d, height ≤ h
and supported by at most N monomials. Then we can find a finite collection Γ
whose elements are lists

(P1, . . . , PL, Q) with L ≤ n
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of Laurent polynomials and such that

V =
⋃
Γ

Z(P1, . . . , PL)\Z(Q) . (3.1)

The polynomials in the lists of Γ have degree Oh,N (d), height Oh,N (1) and
they are defined over a cyclotomic extension of K of degree Oh,N (1). The collec-
tion Γ consists of Oh,N (1) elements and its computation take at most Oh,N (log d)
time.

Moreover, let X be an irreducible component of V . Then there exists a list
(P1, . . . , PL, Q) in Γ such that

X ⊆ Z(P1, . . . , PL)\Z(Q)

and

1) Among P1, . . . , PL there at least n − rank(X) binomial equations of the
shape xλh = ξh (λh ∈ Zn, ξh root of unity).

2) L ≤ codim(X).

3) If X is of maximal dimension dim(V ), then Z(P1, . . . , PL)\Z(Q) has codi-
mension L.

Proof. Let us first explain how to construct the set Γ. We apply lemma 3.3.
We choose an index k and we choose (W,η, ϕ) ∈ Λk with W of codimension
≤ n. The variety W is given (cf. note ??) with a locally complete intersection

stratification {F (W )
j,1 , . . . , F

(W )
j,lj

, G
(W )
j }j=1,...,t .

Let π1 : GNm → GN−km and π2 : GNm → Gkm be the projections on the first N−k
coordinates and on the last k coordinates respectively. Let B = (π2 ◦ϕ)−1(η) ⊆
Gnm. Thus B is a torsion coset of codimension, say, s ≤ n. We compute s
equations H1, . . . ,Hs of B of the desired shape xλ = ξ. For any index j ∈ [1, t]
such that lj ≤ n− s we set L := lj + s and we add to Γ the list

(P1, . . . , PL, Q) := (F
(W )
j,1 ◦ π1 ◦ϕ, . . . , F (W )

j,lj
◦ π1 ◦ϕ,H1, . . . ,Hs, G

(W )
j ◦ π1 ◦ϕ) .

By construction and by proposition 2.4 1),

Z(P1, . . . , PL)\Z(Q) = ϕ−1(Z(F
(W )
j,1 , . . . , F

(W )
j,lj

)\Z(G
(W )
j )× {η})

= ϕ−1(W ∩ Z(G
(W )
1 , . . . , G

(W )
j−1 )\Z(G

(W )
j )× {η})

⊆ ϕ−1(W × {η}) ⊆ V .

This shows that the union of the right hand side of (3.1) is contained in V .

We also remark that the elements of Γ have degree, height and field of
definition as predicted by theorem 3.4. Moreover, Γ has cardinality Oh,N (1)
and its computation can be made in time

Oh,N (M(d) log log d) .

This directly follow from lemma 3.3.
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Let now X be an irreducible component of V . By 2) of lemma 3.3, there
exists an index k and (W,η, ϕ) ∈ Λk such that

X ⊆ ϕ−1
(
Z(F

(W )
j,1 , . . . , F

(W )
j,lj

)\Z(G
(W )
j )× {η}

)
for some j ∈ [1, t] such that lj ≤ rank(X)− dim(X). Let (P1, . . . , PL, Q) be the
list in the output corresponding to (W,η, ϕ) and to j. By construction,

X ⊆ Z(P1, . . . , PL)\Z(Q) ⊆ V .

This shows that V is contained in the union of the right hand side of (3.1).
We finally show the last three assertions of the theorem. We have L = lj + s
with s the codimension of B = (π2 ◦ ϕ)−1(η). Since X ⊆ B, by definition of
multiplicative rank we have s ≤ n − rank(X). This shows assertion 1). By
remark 2.1,

L = lj + s ≤ rank(X)− dim(X) + s = rank(X)− dim(X) + s ≤ codim(X)

which shows assertion 2). In particular, if X has dimension dim(V ) then
Z(P1, . . . , PL)\Z(Q) has codimension L as claimed in assertion 3).

�

4 Appendix

In this appendix we highlight with two examples how the algorithms of lemma 3.1,
lemma 3.3 and theorem 3.4 work.

4.1 Example 1

Let V be the subvarieties of G2
m defined by the equations

f1 = x3d+1y3d + x2y + 5, f2 = x3d+2y3d + 5x+ 25, f3 = x+ x2y + 25y .

supported by the 5 monomials x3d+1y3d, x3d+2y3d, x2y, x, y. It is easy to see
that V consists of two points points (5ζ, 1/5) of rank 1 for ζ a third root of
unity. We now describe how our algorithms give this result.

We first construct the sets Λ0, Λ1, Λ2, Λ3, Λ4 following the method described
in the proof of lemma 3.3. In order to simplify the exposition, we denote by ι =
ιk the inclusion G4−k

m → G5−k
m given by ι(x) = (x, 1). Given an automorphism τ

of Gkm we also let τ ′ be the automorphism of GNm = GN−km ×Gkm whose restriction
to GN−km is τ and which is the identity on Gkm.

We set Λ0 = {(W0, 1, ϕ0)} where W0 is the complete intersection of G5
m

defined by the equations:

F1 = x1 + x3 + 5, F2 = x2 + 5x4 + 25, F3 = x4 + x3 + 25x5

and ϕ0 : G2
m → G5

m is given by

ϕ0(x, y) = (x3d+1y3d, x3d+2y3d, x2y, x, y) .

10



We now build on Λ1. We select the only element of Λ0 and we apply the
algorithm of lemma 3.1 with k = 0, W = W0 and ϕ = ϕ0. Since W is complete
intersection, the locally complete intersection stratification of W is trivial and
we have to choose j = 1 in the first loop of the algorithm. Thus W ′ = W .
Since Im ϕ ⊆ T = {x1x

−1
2 x4 = 1} and since this torsion coset is independent

from d, we can choose this T as the only torsion coset in the second loop of the
algorithm (see remark 3.2, 1)). Let τ : G5

m → G5
m be the automorphism given

by
τ(x) = (x2, x1x

−1
2 , x3, x5, x1x

−1
2 x4) .

Thus τ(T ) = {x5 = 1} as required. Then

τ(W ′ ∩ T ) = W ′′ × {1}

where W ′′ ⊂ G4
m is the complete intersection defined by the equations

F1 ◦ ρ = x1x2 + x3 + 5, F2 ◦ ρ = x1 + 5x−1
2 + 25, F3 ◦ ρ = x−1

2 + x3 + 25x4

(with ρ(x) = τ−1 ◦ ι(x) = (x1x2, x1, x3, x
−1
2 , x4)). We set Λ1 = {(W1, η1, ϕ1)}

with W1 = W ′′, η1 = {1} and

ϕ1(x, y) = (τ ◦ ϕ)(x, y) = (x3d+2y3d, x−1, x2y, y, 1)

The construction of Λ2 and Λ3 is similar. Let (W, {1}, ϕ) the only element
of Λ1. Since W is again complete intersection, the locally complete intersection
stratification of W is trivial and we have to choose j = 1 in the first loop of
algorithm 3.1. Thus W ′ = W . Again, we can choose only one torsion coset T =
{x2

2x3x
−1
4 = 1} in the second loop. We chose τ(x) = (x1, x

−2
2 x4, x2, x

2
2x3x

−1
4 ) as

one of the automorphisms of G4
m such that τ(T ) = {x4 = 1}. Then τ(W ′∩T ) =

W ′′×{1} where W ′′ ⊂ G3
m is the complete intersection defined by the equations

F1 ◦ ρ = x1x3 + x2 + 5, F2 ◦ ρ = x1 + 5x−1
3 + 25, F3 ◦ ρ = x−1

3 + x2 + 25x2x
2
3

(with ρ(x) = τ−1 ◦ ι(x) = (x1, x3, x2, x2x
2
3)). We set Λ2 = {(W1, η1, ϕ1)} with

W1 = W ′′, η1 = {1} and

ϕ1(x, y) = (τ ′ ◦ ϕ)(x, y) = (x3d+2y3d, x2y, x−1, 1, 1) .

Let (W, {1}, ϕ) this only element of Λ2. In the two loops of algorithm 3.1 we
choose j = 1 (thus W ′ = W ) and then T = {x1x

2
3 = 1}. We chose τ(x) =

(x1, x3, x1x
2
3) as one of the automorphisms of G3

m such that τ(T ) = {x3 = 1}.
Then τ(W ′ ∩ T ) = W ′′ × {1} where W ′′ ⊂ G3

m is the complete intersection
defined by the equations

F1 ◦ ρ = x−1
2 + x1 + 5, F2 ◦ ρ = x−2

2 + 5x−1
2 + 25

(with ρ(x) = (τ−1 ◦ ι)(x) = (x−2
2 , x1, x2)). Remark indeed that the equation

F3 ◦ ρ = x−1
2 + x1 + 25x1x

2
2 is in the ideal generated by the others. W ′′ is a

zero-dimensional variety consisting of the two points (5ζ, ζ/5) with ζ a third
root of unity. We set Λ3 = {(W1, η1, ϕ1)} with W1 = W ′′, η1 = {1} and

ϕ1(x, y) = (τ ′ ◦ ϕ)(x, y) = (x2y, x−1, (xy)3d, 1, 1) .
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We finally build on Λ4. Let (W, {1}, ϕ) the only element of Λ3. Since W is
again complete intersection, the locally complete intersection stratification of W
is trivial and we have to choose j = 1 and W ′ = W . We compute the collection
UW ′ of codimension one torsion cosets whose existence is ensured by Zilber
conjecture 2.4. Since dimW ′ = 0, we can choose for UW ′ the set consisting of
the two torsion cosets

Tζ = {x1x2 = ζ2},
torsion cosets through (5ζ, ζ/5) with ζ a third root of unity. We fix one if this
roots of unity. Let τ : G2

m → G2
m be the automorphism given by

τ(x1, x2) = (x1, x1x2)

which satisfies τ(Tζ) = {x2 = ζ} as required. Then

τ(W ′ ∩ T ) = W ′′ × {1}

where W ′′ζ = {5ζ} = Z(x1 − 5ζ) ⊂ Gm. We finally define Λ4 as the set of two
elements:

Λ4 = {(W ′′ζ , {(ζ2, 1, 1, 1)}, τ ′ ◦ ϕ)}

where (τ ′ ◦ ϕ)(x, y) = (x2y, xy, (xy)3d, 1, 1).

We now construct the set Γ following the method described in the proof
of theorem 3.4. We have to choose an index k and (W,η, ϕ) ∈ Λk with W of
codimension ≤ 2. By the construction above, we have only two possible choices,
both corresponding to k = 4:

(Wζ , {(ζ2, 1, 1, 1)}, ϕ)

with ζ a third root of unity, where Wζ = {5ζ} ⊂ Gm has equation

F = x1 − 5ζ = 0

and where ϕ : G2
m → G5

m is defined by ϕ(x, y) = (x2y, xy, (xy)3d, 1, 1). Let
π1 : GNm → G1

m and π2 : GNm → G4
m be the projections on the first coordinate

and on the last 4 coordinates respectively. Let

B = (π2 ◦ ϕ)−1({ζ2, 1, 1, 1}) = {(t, ζ2t−1), t ∈ Gm} .

Thus B is a torsion coset of codimension 1 of equation H1 = xy − ζ2. We also
compute F ◦ π1 ◦ ϕ = x2y − 5ζ. The set Γ consists of two elements:

Γ = {(x2y − 5ζ, xy − ζ2, 1}

with ζ a third root of unity.

4.2 Example 2

Let V be the subvarieties of G2
m defined by the equations

f1 = xdy2 − 5xdy − 2y + 10,

f2 = xd+1y − 2xdy − 2x+ 4,

f3 = xd+1y + xdy2 − 7xdy − 2x− 2y + 14 .
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These equations are supported by the 5 monomials xd+1y ,xdy2, xdy, y, x. It
is easy to see that V consists of the codimensional one component of equation
xdy − 2 and of the isolated point (2, 5). We describe how our algorithms give
this result.

We first construct the sets Λk, following the proof of lemma 3.3. We use the
same conventions concerning ι and τ ′ adopted in the previous example. We set
Λ0 = {(W0, 1, ϕ0)} where W0 is the complete intersection of G5

m defined by the
equations:

F1 = x2−5x3−2x4+10, F2 = x1−2x3−2x5+4, F3 = x1+x2−7x3−2x4−2x5+14

and ϕ0 : G2
m → G5

m is given by

ϕ0(x, y) = (xd+1y, xdy2, xdy, y, x) .

We now build on Λ1. We select the only element of Λ0 and we apply the
algorithm of lemma 3.1 with k = 0, W = W0 and ϕ = ϕ0. Since W is complete
intersection, the locally complete intersection stratification of W is trivial and
we have to choose j = 1 in the first loop of algorithm 3.1. Thus W ′ = W . By
remark 3.2, 1)), we can choose only one torsion coset T = {x2x

−1
3 x−1

4 = 1}
in the second loop. We chose τ(x) = (x1, x3, x4, x5, x2x

−1
3 x−1

4 ) as one of the
automorphisms of G5

m such that τ(T ) = {x5 = 1}. Thus

τ(W ′ ∩ T ) = W ′′ × {1}

where W ′′ ⊂ G4
m is the complete intersection defined by the equations

F1 ◦ ρ = x2x3 − 5x2 − 2x3 + 10,

F2 ◦ ρ = x1 − 2x2 − 2x4 + 4

(with ρ(x) = (τ−1 ◦ ι)(x) = (x1, x2x3, x2, x3, x4)). Remark indeed that the
equation F3 ◦ ρ = x1 + x2x3 − 7x2 − 2x3 − 2x4 + 14 is in the ideal generated by
the others. We set Λ1 = {(W1, η1, ϕ1)} with W1 = W ′′, η1 = {1} and

ϕ1(x, y) = (τ ◦ ϕ)(x, y) = (xd+1y, xdy, y, x, 1) .

The construction of Λ2 is similar. In the two loops of algorithm 3.1 we
choose j = 1 (thus W ′ = W ) and then T = {x1x

−1
2 x−1

4 = 1}. We chose
τ(x) = (x2, x3, x4, x1x

−1
2 x−1

4 ) as one of the automorphisms of G4
m such that

τ(T ) = {x4 = 1}. Then τ(W ′ ∩ T ) = W ′′ × {1} where W ′′ ⊂ G3
m is defined by

the equations

F1 ◦ ρ = x1x2 − 5x1 − 2x2 + 10,

F2 ◦ ρ = x1x3 − 2x1 − 2x3 + 4

(with ρ(x) = (τ−1 ◦ ι)(x) = (x1x3, x1, x2, x3)). The subvariety W ′′ consists of
two components, of codimension 1 and 2. Indeed, the two polynomials defining
it have x1 − 2 have a non trivial gcd, and it is easy to check that

W ′′ = Z(x1 − 2) ∪ Z(x2 − 5, x3 − 2) .
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Thus its locally complete intersection stratification has length two. We can
choose

F
(W ′′)
1,1 = x1 − 2, G

(W ′′)
1 = x3 − 2

and

F
(W ′′)
2,1 = x1x2−5x1−2x2+10 = (x1−2)(x2−5), F

(W ′′)
2,2 = x3−2, G

(W ′′)
2 = 1 .

We set Λ2 = {(W1, η1, ϕ1)} with W1 = W ′′, η1 = {1} and with ϕ1(x, y) =
(τ ′ ◦ ϕ)(x, y) = (xdy, y, x, 1, 1).

Let (W, {(1, 1)}, ϕ) the only element of Λ2. The first loop of algorithm 3.1
consists of two steps: j = 1 and j = 2, which we describe now. For j = 1
we set W ′ = W and it is easy to see that this variety does not have atypical
subvarieties. Thus we can choose UW ′ = ∅ and j = 1 gives no contribution to
the output. Let now consider the contribution of j = 2 to the output of the
algorithm 3.1. We have

W ′ = W ∩ Z(G
(W )
1 ) = Z((x1 − 2)(x2 − 5), x3 − 2) .

Let T be the codimension one torsion coset of equation x1x
−1
3 = 1. Then W ′

has only one maximal atypical subvariety, W ′ ∩ T = {(2, t, 2) | t ∈ Gm} and we
can choose UW ′ = {T}. Let τ : G3

m → G3
m be the automorphism given by τ(x) =

(x1, x2, x
−1
1 x4). Thus τ(T ) = {x3 = 1} as required and τ(W ′ ∩ T ) = W ′′ × {1}

where W ′′ ⊂ G2
m is the hypersurface Z(x1 − 2). We set Λ3 = {(W1, η1, ϕ1)}

with W1 = W ′′, η1 = {(1, 1, 1)} and

ϕ1(x, y) = (τ ′ ◦ ϕ)(xdy, y, 1, 1, 1) .

Since we can verify that the hypersurface Z(x1− 2) does not have atypical sub-
varieties, Λ4 = ∅ and the construction of lemma 3.3 end here.

We now construct the set Γ following the method described in the proof
of theorem 3.4. We have to choose an index k and (W,η, ϕ) ∈ Λk with W of
codimension ≤ 2. Thus k = 1, 2 or 3.

We first choose k = 1. Following the discussion above and the notations of
the proof of theorem 3.4, we have B := (π2 ◦ ϕ)−1(1) = G2

m of codimension
s = 0 and Λ1 contribute with one element to Γ:

P1 = xdy2 − 5xdy − 2y + 10 = (xdy − 2)(y − 5) ,

P2 = xd+1y − 2xdy − 2x+ 4 = (xdy − 2)(x− 2) ,

Q = 1 .

We now choose k = 2. We have again B := (π2 ◦ ϕ)−1(1, 1) = G2
m of

codimension s = 0 and Λ2 contribute with two elements to Γ:

P1 = xdy − 2, P2 = 0, Q = x− 2

and
P1 = (xdy − 2)(y − 5), P2 = x− 2, Q = 1 .

We finally choose k = 3. We have B := (π2 ◦ ϕ)−1(1, 1, 1) = Z(xd−1y − 1)
of codimension s = 1 and Λ3 contribute with one element to Γ:

P1 = xdy − 2, P2 = xd−1y − 1, Q = 1 .
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Thus theorem 3.4 represent V = Z(xdy − 2) ∪ {(2, 5)} as a union of four
pieces V1, V2,1, V2,2, V3:

V1 = Z((xdy − 2)(y − 5), (xdy − 2)(x− 2)) = Z(xdy − 2) ∪ {(2, 5)}
V2,1 = Z(xdy − 2)\Z(x− 2) ,

V2,2 = Z((xdy − 2)(y − 5), x− 2) = {(2, 5)} ∪ {(2, 2−d+1)} ,
V3 = Z(xdy − 2, xd−1y − 1) = {(2, 2−d+1)} .
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