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A NEW STATISTICAL PROCEDURE FOR TESTING THE
PRESENCE OF A SIGNIFICATIVE CORRELATION IN THE
RESIDUALS OF STABLE AUTOREGRESSIVE PROCESSES

FRÉDÉRIC PROÏA

Abstract. The purpose of this paper is to investigate the asymptotic behavior of
the Durbin-Watson statistic for the general stable p−order autoregressive process
when the driven noise is given by a first-order autoregressive process. We estab-
lish the almost sure convergence and the asymptotic normality for both the least
squares estimator of the unknown vector parameter of the autoregressive process
as well as for the serial correlation estimator associated with the driven noise. In
addition, the almost sure rates of convergence of our estimates are also provided.
Then, we prove the almost sure convergence and the asymptotic normality for
the Durbin-Watson statistic. Finally, we propose a new bilateral statistical proce-
dure for testing the presence of a significative first-order residual autocorrelation
and we also explain how our procedure performs better than the commonly used
Box-Pierce and Ljung-Box statistical tests for white noise applied to the stable
autoregressive process, even on small-sized samples.

1. INTRODUCTION

The Durbin-Watson statistic was originally introduced by the eponymous econo-
metricians Durbin and Watson [15], [16], [17] in the middle of last century, in order
to detect the presence of a significative first-order autocorrelation in the residuals
from a regression analysis. The statistical test worked pretty well in the indepen-
dent framework of linear regression models, as it was specifically investigated by
Tillman [33]. While the Durbin-Watson statistic started to become well-known in
Econometry by being commonly used in the case of linear regression models con-
taining lagged dependent random variables, Malinvaud [27] and Nerlove and Wallis
[28] observed that its widespread use in inappropriate situations were leading to in-
adequate conclusions. More precisely, they noticed that the Durbin-Watson statistic
was asymptotically biased in the dependent framework. To remedy this misuse, al-
ternative compromises were suggested. In particular, Durbin [13] proposed a set of
revisions of the original test, as the so-called t-test and h-test, and explained how
to use them focusing on the first-order autoregressive process. It inspired a lot of
works afterwards. More precisely, Maddala and Rao [26], Park [29] and then Inder
[22], [23] and Durbin [14] looked into the approximation of the critical values and
distributions under the null hypothesis, and showed by simulations that alternative
tests significantly outperformed the inappropriate one, even on small-sized samples.
Additional improvements were brought by King and Wu [24] and lately, Stocker [30]

Key words and phrases. Durbin-Watson statistic, Stable autoregressive process, Residual auto-
correlation, Statistical test for serial correlation.
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gave substantial contributions to the study of the asymptotic bias resulting from
the presence of lagged dependent random variables. In most cases, the first-order
autoregressive process was used as a reference for related research. This is the reason
why the recent work of Bercu and Pröıa [4] was focused on such a process in order
to give a new light on the distribution of the Durbin-Watson statistic under the
null hypothesis as well as under the alternative hypothesis. They provided a sharp
theoretical analysis rather than Monte-Carlo approximations, and they proposed a
statistical procedure derived from the Durbin-Watson statistic. They showed how,
from a theoretical and a practical point of view, this procedure outperforms the
commonly used Box-Pierce [7] and Ljung-Box [6] statistical tests, in the restrictive
case of the first-order autoregressive process, even on small-sized samples. They
also explained that such a procedure is asymptotically equivalent to the h-test of
Durbin [13] for testing the significance of the first-order serial correlation. This work
[4] had the ambition to bring the Durbin-Watson statistic back into light. It also
inspired Bitseki Penda, Djellout and Pröıa [5] who established moderate deviation
principles on the least squares estimators and the Durbin-Watson statistic for the
first-order autoregressive process where the driven noise is also given by a first-order
autoregressive process.

Our goal is to extend of the previous results of Bercu and Pröıa [4] to p−order
autoregressive processes, contributing moreover to the investigation on several open
questions left unanswered during four decades on the Durbin-Watson statistic [13],
[14], [28]. One will observe that the multivariate framework is much more difficult
to handle than the scalar case of [4]. We will focus our attention on the p−order
autoregressive process given, for all n ≥ 1, by

(1.1)

{
Xn = θ1Xn−1 + . . .+ θpXn−p + εn

εn = ρεn−1 + Vn

where the unknown parameter θ =
(
θ1 θ2 . . . θp

)′
is a nonzero vector such that

∥θ∥1 < 1, and the unknown parameter |ρ| < 1. Via an extensive use of the theory
of martingales [11], [20], we shall provide a sharp and rigorous analysis on the
asymptotic behavior of the least squares estimators of θ and ρ. The previous results
of convergence were first established in probability [27], [28], and more recently
almost surely [4] in the particular case where p = 1. We shall prove the almost sure
convergence as well as the asymptotic normality of the least squares estimators of
θ and ρ in the more general multivariate framework, together with the almost sure
rates of convergence of our estimates. We will deduce the almost sure convergence
and the asymptotic normality for the Durbin-Watson statistic. Therefore, we shall
be in the position to propose a new statistical procedure for testing the significance
of the first-order serial correlation in the residuals and to explain why, on the basis
of the empirical power, this test procedure outperforms Ljung-Box [6] and Box-
Pierce [7] portmanteau tests for stable autoregressive processes. We will also show
by simulation that it is equally powerful than the Breusch-Godfrey [8], [18] test and
the h-test [13] on large samples, and better than all of them on small samples.
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The paper is organized as follows. Section 2 is devoted to the estimation of the
autoregressive parameter. We establish the almost sure convergence of the least

squares vector estimator θ̂n to the limiting value

(1.2) θ∗ = α (Ip − θpρJp) β

where Ip is the identity matrix of order p, Jp is the exchange matrix of order p, and

where α and β will be calculated explicitly. The asymptotic normality of θ̂n as well
as the quadratic strong law and a set of results derived from the law of iterated
logarithm are provided. Section 3 deals with the estimation of the serial correlation
parameter. The almost sure convergence of the least squares estimator ρ̂n to

(1.3) ρ∗ = θpρθ
∗
p

where θ∗p stands for the p−th component of θ∗ is also established along with the
quadratic strong law, the law of iterated logarithm and the asymptotic normality.
It enables us to establish in Section 4 the almost sure convergence of the Durbin-

Watson statistic D̂n to

(1.4) D∗ = 2(1− ρ∗)

together with its asymptotic normality. Our sharp analysis on the asymptotic be-
havior of the Durbin-Watson statistic remains true whatever the values of the pa-
rameters θ and ρ as soon as ∥θ∥1 < 1 and |ρ| < 1, assumptions resulting from the
stability of the model. Consequently, we are able in Section 4 to propose a new
bilateral statistical test for the presence of a significative first-order residual auto-
correlation. In Section 5, we compare the empirical power of the test procedure
based on the Durbin-Watson statistic with the commonly used portmanteau tests of
Box-Pierce [7] and Ljung-Box [6], to corroborate the theoretical aspects and explain
the reasons why we provide a more powerful alternative for testing the significance
of the one-period lagged residuals coefficient, even on small-sized samples. The test
procedure is also compared with the Breusch-Godfrey [8], [18] test and the h-test of
Durbin [13]. Finally, the proofs related to linear algebra calculations are postponed
in Appendix A and all the technical proofs of Sections 2 and 3 are postponed in
Appendices B and C, respectively.

Remark 1.1. In the whole paper, for any matrix M , M ′ is the transpose of M . For
any square matrix M , tr(M), det(M), |||M |||1 and ρ(M) are the trace, the determi-
nant, the 1-norm and the spectral radius of M , respectively. In addition, λmin(M)
and λmax(M) denote the smallest and the largest eigenvalues of M , respectively. For
any vector v, ∥v∥ stands for the euclidean norm of v and ∥v∥1 is the 1-norm of v.

Remark 1.2. Before starting, we denote by Ip be the identity matrix of order p, Jp
the exchange matrix of order p and e the p−dimensional vector given by

Ip =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , Jp =


0 . . . 0 1
0 . . . 1 0
... . . .

...
...

1 . . . 0 0

 , e =


1
0
...
0

 .
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2. ON THE AUTOREGRESSIVE PARAMETER

Consider the p−order autoregressive process given by (1.1) where we shall sup-
pose, to make calculations lighter without loss of generality, that the square-integrable
initial values X0 = ε0 and X−1, X−2, . . . , X−p = 0. In all the sequel, we assume that
(Vn) is a sequence of square-integrable, independent and identically distributed ran-
dom variables with zero mean and variance σ2 > 0. Let us start by introducing
some notations. Let Φp

n stand for the lag vector of order p, given for all n ≥ 0, by

(2.1) Φp
n =

(
Xn Xn−1 . . . Xn−p+1

)′
.

Denote by Sn the positive definite matrix defined, for all n ≥ 0, as

(2.2) Sn =
n∑

k=0

Φp
kΦ

p
k
′ + S

where the symmetric and positive definite matrix S is added in order to avoid an
useless invertibility assumption. For the estimation of the unknown parameter θ, it
is natural to make use of the least squares estimator which minimizes

∇n(θ) =
n∑

k=1

(
Xk − θ′Φp

k−1

)2
.

A standard calculation leads, for all n ≥ 1, to

(2.3) θ̂n = (Sn−1)
−1

n∑
k=1

Φp
k−1Xk.

Our first result is related to the almost sure convergence of θ̂n to the limiting
value θ∗ = α (Ip − θpρJp) β, where

(2.4) α =
1

(1− θpρ)(1 + θpρ)
,

(2.5) β =
(
θ1 + ρ θ2 − θ1ρ . . . θp − θp−1ρ

)′
.

Theorem 2.1. We have the almost sure convergence

(2.6) lim
n→∞

θ̂n = θ∗ a.s.

Remark 2.1. In the particular case where ρ = 0, we obtain the strong consistency
of the least squares estimate in a stable autoregressive model, already proved e.g. in
[25], under the condition of stability ∥θ∥1 < 1.
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Let us now introduce the square matrix B of order p + 2, partially made of the
elements of β given by (2.5),

(2.7) B =



1 −β1 −β2 . . . . . . −βp−1 −βp θpρ
−β1 1− β2 −β3 . . . . . . −βp θpρ 0
−β2 −β1 − β3 1− β4 . . . . . . θpρ 0 0
...

...
...

...
...

...
...

...
...

...
...

...
−βp −βp−1 + θpρ −βp−2 . . . . . . −β1 1 0
θpρ −βp −βp−1 . . . . . . −β2 −β1 1


.

Under our stability conditions, we are able to establish the invertibility of B in
Lemma 2.1. The corollary that follows will be useful in the next section.

Lemma 2.1. Under the stability conditions ∥θ∥1 < 1 and |ρ| < 1, the matrix B
given by (2.7) is invertible.

Corollary 2.1. By virtue of Lemma 2.1, the submatrix C obtained by removing
from B its first row and first column is invertible.

From now on, Λ ∈ Rp+2 is the unique solution of the linear system BΛ = e, i.e.

(2.8) Λ = B−1e

where the vector e has already been defined in Remark 1.1, but in higher dimension.
Denote by λ0, . . . , λp+1 the elements of Λ and let ∆p be the Toeplitz matrix of order
p associated with the first p elements of Λ, that is

(2.9) ∆p =


λ0 λ1 λ2 . . . . . . λp−1

λ1 λ0 λ1 . . . . . . λp−2
...

...
...

...
...

...
...

...
λp−1 λp−2 λp−3 . . . . . . λ0

 .

Via the same lines, we are able to establish the invertibility of ∆p in Lemma 2.2.

Lemma 2.2. Under the stability conditions ∥θ∥1 < 1 and |ρ| < 1, for all p ≥ 1, the
matrix ∆p given by (2.9) is positive definite.

In light of foregoing, our next result deals with the asymptotic normality of θ̂n.

Theorem 2.2. Assume that (Vn) has a finite moment of order 4. Then, we have
the asymptotic normality

(2.10)
√
n
(
θ̂n − θ∗

) L−→ N (0,Σθ)

where the asymptotic covariance matrix is given by

(2.11) Σθ = α2 (Ip − θpρJp)∆
−1
p (Ip − θpρJp) .

Remark 2.2. The covariance matrix Σθ is invertible under the stability conditions.
Furthermore, due to the way it is constructed, Σθ is bisymmetric.
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After establishing the almost sure convergence of the estimator θ̂n and its asymp-
totic normality, we focus our attention on the almost sure rates of convergence.

Theorem 2.3. Assume that (Vn) has a finite moment of order 4. Then, we have
the quadratic strong law

(2.12) lim
n→∞

1

log n

n∑
k=1

(
θ̂k − θ∗

)(
θ̂k − θ∗

)′
= Σθ a.s.

where Σθ is given by (2.11). In addition, for all v ∈ Rp, we also have the law of
iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2

v′
(
θ̂n − θ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2

v′
(
θ̂n − θ∗

)
,

= (v′Σθv)
1/2

a.s.(2.13)

Consequently,

(2.14) lim sup
n→∞

(
n

2 log log n

)(
θ̂n − θ∗

)(
θ̂n − θ∗

)′
= Σθ a.s.

In particular,

(2.15) lim sup
n→∞

(
n

2 log log n

)∥∥θ̂n − θ∗
∥∥2 = tr(Σθ) a.s.

Remark 2.3. It clearly follows from (2.12) that

(2.16) lim
n→∞

1

log n

n∑
k=1

∥∥θ̂k − θ∗
∥∥2 = tr(Σθ) a.s.

Furthermore, from (2.15), we have the almost sure rate of convergence

(2.17)
∥∥θ̂n − θ∗

∥∥2 = O

(
log log n

n

)
a.s.

Proof. The proofs of Lemma 2.1 and Lemma 2.2 are given in Appendix A while
those of Theorems 2.1 to 2.3 may be found in Appendix B. �

To conclude this section, let us draw a parallel between the results of [4] and the
latter results for p = 1. In this particular case, β and α reduce to (θ + ρ) and
(1−θρ)−1(1+θρ)−1 respectively, and it is not hard to see that we obtain the almost
sure convergence of our estimate to

θ∗ =
θ + ρ

1 + θρ
.

In addition, a straightforward calculation leads to

Σθ =
(1− θ2)(1− θρ)(1− ρ2)

(1 + θρ)3
.

One can verify that these results correspond to Theorem 2.1 and Theorem 2.2 of [4].
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3. ON THE SERIAL CORRELATION PARAMETER

This section is devoted to the estimation of the serial correlation parameter ρ.
First of all, it is necessary to evaluate, at stage n, the residual set (ε̂n) resulting
from the biased estimation of θ. For all 1 ≤ k ≤ n, let

(3.1) ε̂k = Xk − θ̂ ′
nΦ

p
k−1.

The initial value ε̂0 may be arbitrarily chosen and we take ε̂0 = X0 for a matter of
simplification. Then, a natural way to estimate ρ is to make use of the least squares
estimator which minimizes

∇n(ρ) =
n∑

k=1

(
ε̂k − ρε̂k−1

)2
.

Hence, it clearly follows that, for all n ≥ 1,

(3.2) ρ̂n =

∑n
k=1 ε̂kε̂k−1∑n
k=1 ε̂

2
k−1

.

It is important to note that one deals here with a scalar problem, in contrast to the
study of the estimator of θ in Section 2. Our goal is to obtain the same asymptotic
properties for the estimator of ρ as those obtained for each component of the one of
θ. However, one shall realize that the results of this section are much more tricky
to establish than those of the previous one.

We first state the almost sure convergence of ρ̂n to the limiting value ρ∗ = θpρθ
∗
p .

Theorem 3.1. We have the almost sure convergence

(3.3) lim
n→∞

ρ̂n = ρ∗ a.s.

Our next result deals with the joint asymptotic normality of θ̂n and ρ̂n. For that
purpose, it is necessary to introduce some additional notations. Denote by P the
square matrix of order p+ 1 given by

(3.4) P =

(
PB 0
P ′
L φ

)
where

PB = α
(
Ip − θpρJp

)
∆−1

p ,

PL = Jp
(
Ip − θpρJp

)(
αθpρ∆

−1
p e+ θ∗p β

)
,

φ = −α−1θ∗p .

Furthermore, let us introduce the Toeplitz matrix ∆p+1 of order p + 1 which is the
extension of ∆p given by (2.9) to the next dimension,

(3.5) ∆p+1 =

(
∆p Jp Λ

1
p

Λ1
p
′
Jp λ0

)
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with Λ1
p =

(
λ1 λ2 . . . λp

)′
, and the positive semidefinite covariance matrix Γ of

order p+ 1, given by

(3.6) Γ = P∆p+1P
′.

Theorem 3.2. Assume that (Vn) has a finite moment of order 4. Then, we have
the joint asymptotic normality

(3.7)
√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

)
L−→ N (0,Γ).

In particular,

(3.8)
√
n
(
ρ̂n − ρ∗

) L−→ N (0, σ2
ρ)

where σ2
ρ = Γp+1, p+1 is the last diagonal element of Γ.

Remark 3.1. The covariance matrix Γ has the following explicit expression,

Γ =

(
Σθ θpρ JpΣθ e

θpρ e
′ΣθJp σ2

ρ

)
where

(3.9) σ2
ρ = P ′

L∆p PL − 2α−1θ∗pΛ
1
p
′
Jp PL +

(
α−1θ∗p

)2
λ0.

Remark 3.2. The covariance matrix Γ is invertible under the stability conditions
if and only if θ∗p ̸= 0 since, by a straightforward calculation,

det(Γ) = α2(p−1)
(
θ∗p
)2

det(∆p+1)

(
det(Ip − θpρJp)

det(∆p)

)2

,

according to Lemma 2.2 and noticing that (Ip − θpρJp) is strictly diagonally domi-
nant, thus invertible. As a result, the joint asymptotic normality given by (3.7) is
degenerate in any situation such that θ∗p = 0, that is

(3.10) θp − θp−1ρ = θpρ(θ1 + ρ).

Moreover, (3.8) holds on {θp − θp−1ρ ̸= θpρ(θ1 + ρ)} ∪ {θp ̸= 0, ρ ̸= 0}, otherwise the
asymptotic normality associated with ρ̂n is degenerate. In fact, a more restrictive
condition ensuring that (3.8) still holds may be {θp ̸= 0}, i.e. that one deals at least
with a p−order autoregressive process. This restriction seems natural in the context
of the study and can be compared to the assumption {θ ̸= 0} in [4]. Theorem 3.2 of
[4] ensures that the joint asymptotic normality is degenerate under {θ = −ρ}. One
can note that such an assumption is equivalent to (3.10) in the case of the p−order
process, since both of them mean that the last component of θ∗ has to be nonzero.
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The almost sure rates of convergence for ρ̂n are as follows.

Theorem 3.3. Assume that (Vn) has a finite moment of order 4. Then, we have
the quadratic strong law

(3.11) lim
n→∞

1

log n

n∑
k=1

(
ρ̂k − ρ∗

)2
= σ2

ρ a.s.

where σ2
ρ is given by (3.9). In addition, we also have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2 (
ρ̂n − ρ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
ρ̂n − ρ∗

)
,

= σρ a.s.(3.12)

Consequently,

(3.13) lim sup
n→∞

(
n

2 log log n

)(
ρ̂n − ρ∗

)2
= σ2

ρ a.s.

Remark 3.3. It clearly follows from (3.13) that we have the almost sure rate of
convergence

(3.14)
(
ρ̂n − ρ∗

)2
= O

(
log log n

n

)
a.s.

As before, let us also draw the parallel between the results of [4] and the latter re-
sults for p = 1. In this particular case, we immediately obtain ρ∗ = θρθ∗. Moreover,
an additionnal step of calculation shows that

σ2
ρ =

1− θρ

(1 + θρ)3
(
(θ + ρ)2(1 + θρ)2 + (θρ)2(1− θ2)(1− ρ2)

)
.

One can verify that these results correspond to Theorem 3.1 and Theorem 3.2 of [4].

Besides, the estimators θ̂n and ρ̂n are self-normalized. Consequently, the asymptotic
variances Σθ and σ2

ρ do not depend on the variance σ2 associated with the driven
noise (Vn). To be complete and provide an important statistical aspect, it seemed

advisable to suggest an estimator of the true variance σ2 of the model, based on θ̂n
and ρ̂n. For that purpose, consider, for all n ≥ 1, the estimator given by

(3.15) σ̂2
n =

(
1− ρ̂ 2

n θ̂−2
p, n

) 1

n

n∑
k=0

ε̂ 2
k

where θ̂p, n stands for the p−th component of θ̂n.

Theorem 3.4. We have the almost sure convergence

(3.16) lim
n→∞

σ̂2
n = σ2 a.s.

Proof. The proofs of Theorems 3.1 to 3.3 are given in Appendix C. The one of
Theorem 3.4 is left to the reader as it directly follows from that of Theorem 3.1. �
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4. ON THE DURBIN-WATSON STATISTIC

We shall now investigate the asymptotic behavior of the Durbin-Watson statistic
for the general autoregressive process [15], [16], [17], given, for all n ≥ 1, by

(4.1) D̂n =

∑n
k=1 (ε̂k − ε̂k−1)

2∑n
k=0 ε̂

2
k

.

As mentioned, the almost sure convergence and the asymptotic normality of the
Durbin-Watson statistic have previously been investigated in [4] in the particular
case where p = 1. It has enabled the authors to propose a new bilateral statisti-
cal test for the presence of a significative residual autocorrelation. They also ex-
plained how this statistical procedure outperformed the commonly used Ljung-Box
[6] and Box-Pierce [7] portmanteau tests for white noise in the case of the first-order
autoregressive process, and how it was asymptotically equivalent to the h-test of
Durbin [13], on a theoretical basis and on simulated data. They went even deeper
in the study, establishing the distribution of the statistic under the null hypothe-
sis “ρ = ρ0”, with |ρ0| < 1, as well as under the alternative hypothesis “ρ ̸= ρ0”,
and noticing the existence of a critical situation in the case where θ = −ρ. This
pathological case arises when the covariance matrix Γ given by (3.6) is singular, and
can be compared in the multivariate framework to the content of Remark 3.2. Our
goal is to obtain the same asymptotic results for all p ≥ 1 so as to build a new
statistical procedure for testing serial correlation in the residuals. In this paper, we
shall only focus our attention on the test “ρ = 0” against “ρ ̸= 0”, of increased
statistical interest. In the next section, we will explain how, from a theoretical and
a practical point of view, the procedure proposed in Theorem 4.4 is more powerful
than the portmanteau tests [6], [7], for testing the significance of the first-order serial
correlation of the driven noise in a p−order autoregressive process.

First, one can observe that D̂n and ρ̂n are asymptotically linked together by an

affine transformation. Consequently, the asymptotic behavior of D̂n directly follows

from the previous section. We start with the almost sure convergence of D̂n to the
limiting value D∗ = 2(1− ρ∗).

Theorem 4.1. We have the almost sure convergence

(4.2) lim
n→∞

D̂n = D∗ a.s.

Our next result deals with the asymptotic normality of D̂n. It will be the keystone
of a new bilateral statistical procedure deciding in particular, for a given significance
level, whether residuals have a significative first-order correlation or not. Denote

(4.3) σ2
D = 4σ2

ρ

where the variance σ2
ρ is given by (3.9).

Theorem 4.2. Assume that (Vn) has a finite moment of order 4. Then, we have
the asymptotic normality

(4.4)
√
n
(
D̂n −D∗

) L−→ N (0, σ2
D).
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Remark 4.1. We immediately deduce from (4.4) that

(4.5)
n

σ2
D

(
D̂n −D∗

)2 L−→ χ2

where χ2 has a Chi-square distribution with one degree of freedom.

Let us focus now on the almost sure rates of convergence of D̂n.

Theorem 4.3. Assume that (Vn) has a finite moment of order 4. Then, we have
the quadratic strong law

(4.6) lim
n→∞

1

log n

n∑
k=1

(
D̂k −D∗

)2
= σ2

D a.s.

where σ2
D is given by (4.3). In addition, we also have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2 (
D̂n −D∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
D̂n −D∗

)
,

= σD a.s.(4.7)

Consequently,

(4.8) lim sup
n→∞

(
n

2 log log n

)(
D̂n −D∗

)2
= σ2

D a.s.

Remark 4.2. It clearly follows from (4.8) that we have the almost sure rate of
convergence

(4.9)
(
D̂n −D∗

)2
= O

(
log log n

n

)
a.s.

We are now in the position to propose our new bilateral statistical test built on

the Durbin-Watson statistic D̂n. First of all, we shall not investigate the particular
case where θp = 0 since our procedure is of interest only for autoregressive processes
of order p. One wishes to test the presence of a significative serial correlation, setting

H0 : “ρ = 0” against H1 : “ρ ̸= 0”.

Theorem 4.4. Assume that (Vn) has a finite moment of order 4, θp ̸= 0 and θ∗p ̸= 0.
Then, under the null hypothesis H0 : “ρ = 0”,

(4.10)
n

4θ̂ 2
p, n

(
D̂n − 2

)2 L−→ χ2

where θ̂p, n stands for the p−th component of θ̂n, and where χ2 has a Chi-square
distribution with one degree of freedom. In addition, under the alternative hypothesis
H1 : “ρ ̸= 0”,

(4.11) lim
n→∞

n

4θ̂ 2
p, n

(
D̂n − 2

)2
= +∞ a.s.
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From a practical point of view, for a significance level a where 0 < a < 1, the
acceptance and rejection regions are given by A = [0, za] and R = ]za,+∞[ where
za stands for the (1− a)−quantile of the Chi-square distribution with one degree of
freedom. The null hypothesis H0 will not be rejected if the empirical value

n

4θ̂ 2
p, n

(
D̂n − 2

)2
≤ za,

and will be rejected otherwise.

Remark 4.3. In the particular case where θ∗p = 0, the test statistic do not respond
under H1 as described above. To avoid such situation, we suggest to make use

of Theorem 2.2 for testing beforehand whether θ̂p, n is significantly far from zero.
Besides, testing H0 : “ρ = 0” with θ∗p = 0 amounts to testing the significance of the
p−th coefficient of the model, not rejected under {θp ̸= 0}. Roughly speaking, under
{θp ̸= 0} ∩ {θ∗p = 0}, we obviously have ρ ̸= 0 and the use of Theorem 4.4 would be
irrelevant since H1 is certainly true.

Proof. The proofs of Theorems 4.1 to 4.3 are left to the reader as they follow es-
sentially the same lines as those given in Appendix C of [4]. Theorem 4.4 is an
immediate consequence of Theorem 4.2, noticing that σ2

ρ reduces to θ2p under H0

and using the same methodology as in the proof of Theorem 3.1. �

5. EMPIRICAL POWER AND COMPARISONS

Following the same methodology as in Section 5 of [4] and also being inspired by
the empirical work of Park [29], this section is devoted to the comparison of our sta-
tistical test procedure with the statistical tests commonly used in time series analysis
to detect the presence of a significative first-order correlation in the residuals. We
will distinguish two kinds of tests, depending on the fact that the serial dependence
has been included in the proposed model structure, or not. The first class includes
the alternative h-test of Durbin [13] and the procedure described in Theorem 4.4
whereas the second one includes the Box-Pierce [7] and Ljung-Box [6] portmanteau
tests as well as the Breusch-Godfrey [8], [18] procedure. It seems natural to imagine
that, with the aim of detecting a significative serial correlation in the residuals, the
first class will outperform the second one since more information is taken into ac-
count to build the test statistics, as it is explained and observed in Section 5 of [4].
In fact, the Breusch-Godfrey procedure is clearly better than the portmanteau tests
for the autoregressive modelling since the regression on the estimated residual set
(ε̂n) is not only fitted by least squares on its past, but also includes the regressors
of the original model, making a link between both structures. Our objective is to
show by simulations that our procedure is asymptotically equivalent to the h-test
and to the one of Breusch-Godfrey, and that it appears to be more powerful on
small-sized samples, for testing the significance of the first-order serial correlation in
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the residuals of a p−order autoregressive process. We shall assume in all the sequel
that θp ̸= 0 is a statistically significant parameter and we will test

H0 : “ρ = 0” against H1 : “ρ ̸= 0”.

For a given |ρ| < 1 and for each simulation, we compute the test statistics associated
with all of these 5 procedures and we test H0 against H1, at the 0.05 level of
significance. We repeat the experiment 1000 times and the frequency with which
H0 is rejected provides the empirical power of each test, i.e. an estimator of

P
(
rejecting H0 | H1 is true

)
.

We choose p = 3, θ =
(
0.1 −0.2 0.6

)′
and we take (Vn) independent with standard

N (0, 1) distribution since the variance σ2 has no influence on the Durbin-Watson
statistic. Finally, sample sizes n = 30 and n = 500 are used in order to evaluate
the empirical power on small-sized samples as well as asymptotically. The first 50
observations are discarded and the remaining ones are taken as a sample to minimize
the impact of the initial values.

n = 30
Values of ρ

−0.7 −0.5 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.5 0.7

Box-Pierce
0.01 0.01 0.01 0.01 0.01 - 0.01 0.02 0.02 0.04 0.06
(0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.98) (0.98) (0.96) (0.94)

Ljung-Box
0.01 0.01 0.01 0.01 0.01 - 0.02 0.03 0.03 0.05 0.07
(0.99) (0.99) (0.99) (0.99) (0.99) (0.99) (0.98) (0.97) (0.97) (0.95) (0.93)

Breusch-Godfrey
0.30 0.18 0.10 0.06 0.05 - 0.06 0.10 0.14 0.31 0.46
(0.70) (0.82) (0.90) (0.94) (0.95) (0.95) (0.94) (0.90) (0.86) (0.69) (0.54)

H-Test
0.13 0.13 0.13 0.13 0.14 - 0.18 0.21 0.25 0.32 0.35

(0.87) (0.87) (0.87) (0.87) (0.86) (0.85) (0.82) (0.79) (0.75) (0.69) (0.65)

Durbin-Watson
0.48 0.34 0.22 0.18 0.17 - 0.22 0.25 0.33 0.46 0.61
(0.52) (0.66) (0.79) (0.82) (0.83) (0.84) (0.78) (0.75) (0.67) (0.54) (0.39)

Tab. 5.1. Figures give the power of the tests for n = 30, the frequencies of H0 not rejected are in parentheses.

n = 500
Values of ρ

−0.7 −0.5 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.5 0.7

Box-Pierce
0.71 0.94 0.54 0.17 0.02 - 0.03 0.32 0.78 1.00 1.00
(0.29) (0.06) (0.47) (0.83) (0.98) (1.00) (0.97) (0.68) (0.22) (0.00) (0.00)

Ljung-Box
0.71 0.94 0.54 0.17 0.02 - 0.03 0.32 0.78 1.00 1.00

(0.29) (0.06) (0.46) (0.83) (0.98) (1.00) (0.97) (0.68) (0.22) (0.00) (0.00)

Breusch-Godfrey
1.00 1.00 0.98 0.75 0.25 - 0.28 0.75 0.98 1.00 1.00
(0.00) (0.00) (0.02) (0.25) (0.75) (0.95) (0.72) (0.26) (0.02) (0.00) (0.00)

H-Test
0.99 1.00 0.96 0.72 0.22 - 0.33 0.76 0.98 1.00 1.00
(0.01) (0.00) (0.04) (0.28) (0.78) (0.95) (0.67) (0.24) (0.02) (0.00) (0.00)

Durbin-Watson
1.00 1.00 0.96 0.71 0.22 - 0.32 0.76 0.98 1.00 1.00

(0.00) (0.00) (0.04) (0.29) (0.78) (0.96) (0.68) (0.24) (0.02) (0.00) (0.00)

Tab. 5.2. Figures give the power of the tests for n = 500, the frequencies of H0 not rejected are in parentheses.

The graphs below show the frequencies of H0 not rejected when ρ varies from −0.7
to 0.7, for n = 30 and then for n = 500. BP, LB, BG, HT and DW respectively
stand for Box-Pierce, Ljung-Box, Breusch-Godfrey, H-Test and Durbin-Watson.
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Fig. 5.1. Frequencies of H0 not rejected for sample size n = 30 and ρ varying from −0.7 to 0.7 on the abscissa.
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Fig. 5.2. Frequencies of H0 not rejected for sample size n = 500 and ρ varying from −0.7 to 0.7 on the abscissa.

On small-sized samples, Fig 5.1 shows that our procedure outperforms all tests by
always being more sensitive to the presence of correlation in the residuals, except
under H0 even if the 84% of non-rejection are quite satisfying. Indeed, the Box-
Pierce and Ljung-Box test statistics are invariably smaller than they should have
been in such a model, underestimating the alternative H1 hypothesis, as it is ex-
plained in [4]. Fig. 5.2 clearly shows the asymptotic equivalence between the h-test,
the Breusch-Godfrey test and our statistical procedure, as well as the superiority
over the commonly used portmanteau tests, except under H0 for the same reason.
In conclusion, we suggest to make use of the statistical procedure of Theorem 4.4
on small-sized samples, to test the significance of the first-order serial correlation in
the residuals, clearly more powerful. In addition, we note that this procedure is an
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alternative to the Breusch-Godfrey test on large samples, and has to be advised in-
stead of portmanteau tests in our particular framework. In order to keep this section
brief, we have chosen p = 3 and a particular value of θ. However, all conclusions
still remain the same when p and θ vary, as long as the stability condition ∥θ∥1 < 1
and the significance of θp ̸= 0 are satisfied. Nevertheless, one is supposed to have
checked beforehand that he was at least dealing with a p−order autoregressive pro-
cess. Moreover, our procedure is not much impacted by the critical situation and
no unexpected peak occurs, contrary to the portmanteau tests. To conclude, note
that when |θp| is close to 1, all tests are asymptotically equivalent.

Appendix A

ON SOME LINEAR ALGEBRA CALCULATIONS

A.1. Proof of Lemma 2.1.

We start with the proof of Lemma 2.1. Our goal is to show that the matrix B
given by (2.7) is invertible. Consider the decomposition B = B1 + ρB2, where

B1 =



1 −θ1 −θ2 . . . . . . −θp−1 −θp 0
−θ1 1− θ2 −θ3 . . . . . . −θp 0 0
−θ2 −θ1 − θ3 1− θ4 . . . . . . 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
−θp −θp−1 −θp−2 . . . . . . −θ1 1 0
0 −θp −θp−1 . . . . . . −θ2 −θ1 1


,

B2 =



0 −1 θ1 . . . . . . θp−2 θp−1 θp
−1 θ1 θ2 . . . . . . θp−1 θp 0
θ1 −1 + θ2 θ3 . . . . . . θp 0 0
...

...
...

...
...

...
...

...
...

...
...

...
θp−1 θp−2 + θp θp−3 . . . . . . −1 0 0
θp θp−1 θp−2 . . . . . . θ1 −1 0


.

It is trivial to see that |θi + θj| ≤ |θi| + |θj| for all 1 ≤ i, j ≤ p, and the same
goes for 1− |θi| ≤ |1− θi|. These inequalities immediately imply that B1 is strictly
diagonally dominant, and thus invertible by virtue of Levy-Desplanques’ theorem
6.1.10 of [21]. Hence, B = (Ip+2+ρB2B

−1
1 )B1 and the invertibility of B only depends

on the spectral radius of ρB2B
−1
1 , i.e. the supremum modulus of its eigenvalues. One
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can explicitly obtain, by a straightforward calculation, that

B2B
−1
1 =



−θ1 −1− θ2 θ1 − θ3 . . . θp−2 − θp θp−1 θp
−1 0 . . . . . . . . . . . . 0
0 −1 0 . . . . . . . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . 0 −1 0 0
0 . . . . . . . . . 0 −1 0


.

The sum of the first row of B2B
−1
1 is −1, involving de facto that −1 is an eigenvalue

of B2B
−1
1 associated with the (p + 2)−dimensional eigenvector

(
1 1 . . . 1

)′
. By

the same way, it is clear that 1 is an eigenvalue of B2B
−1
1 associated with the eigen-

vector
(
1 −1 . . . (−1)p+1

)′
. Let P (λ) = det(B2B

−1
1 −λIp+2) be the characteristic

polynomial of B2B
−1
1 . Then, P (λ) is recursively computable and explicitly given by

(A.1) P (λ) = (−λ)p+2 +

p+2∑
k=1

bk(−λ)p+2−k

where (bk) designates, for k ∈ {1, . . . , p+2}, the elements of the first line of B2B
−1
1 .

Since −1 and 1 are zeroes of P (λ), there exists a polynomial Q(λ) of degree p such
that P (λ) = (λ2 − 1)Q(λ), and a direct calculation shows that Q is given by

(A.2) Q(λ) = (−λ)p −
p∑

k=1

θk(−λ)p−k.

Furthermore, let R(λ) be the polynomial of degree p defined as

(A.3) R(λ) = λp −
p∑

k=1

|θk|λp−k,

and note that we clearly have R(|λ|) ≤ |Q(λ)|, for all λ ∈ C. Assume that λ0 ∈ C
is an eigenvalue of B2B

−1
1 such that |λ0| > 1. Then,

R(|λ0|) = |λ0|p −
p∑

k=1

|θk||λ0|p−k = |λ0|p
(
1−

p∑
k=1

|θk||λ0|−k

)
,

≥ |λ0|p
(
1−

p∑
k=1

|θk|

)
> 0

as soon as ∥θ∥1 < 1. Consequently, |Q(λ0)| > 0. This obviously contradicts the
hypothesis that λ0 is an eigenvalue of B2B

−1
1 . In conclusion, all the zeroes of Q(λ)

lie in the unit circle, implying ρ(B2B
−1
1 ) ≤ 1. Since 1 and −1 are eigenvalues of

B2B
−1
1 , we have precisely ρ(B2B

−1
1 ) = 1, and therefore ρ(ρB2B

−1
1 ) = |ρ| < 1. This

guarantees the invertibility of B under the stability conditions, achieving the proof
of Lemma 2.1. Finally, Corollary 2.1 immediately follows from Lemma 2.1. As a
matter of fact, since B is invertible, we have det(B) ̸= 0. Denote by b the first
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diagonal element of B−1. Since det(C) is the cofactor of the first diagonal element
of B, we have

(A.4) b =
det(C)

det(B)
.

However, it follows from (2.8) that b = λ0. We shall prove in the next subsection
that the matrix ∆p given by (2.9) is positive definite. It clearly implies that λ0 > 0
which means that b > 0, so det(C) ̸= 0, and the matrix C is invertible.

A.2. Proof of Lemma 2.2.

Let us start by proving that the spectral radius of the companion matrix associated
with model (1.1) is strictly less than 1. By virtue of the fundamental autoregressive
equation (B.8) detailed in the next section, the system (1.1) can be rewritten in the
vectorial form, for all n ≥ p+ 1,

(A.5) Φp+1
n = CAΦ

p+1
n−1 +Wn

where Φp+1
n stands for the extension of Φp

n given by (2.1) to the next dimension,

Wn =
(
Vn 0 . . . 0

)′
and where the companion matrix of order p+ 1

(A.6) CA =


θ1 + ρ θ2 − θ1ρ . . . θp − θp−1ρ −θpρ

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

Let PA(µ) = det(CA−µIp+1) be the characteristic polynomial of CA. Then, it follows
from Lemma 4.1.1 of [11] that

PA(µ) = (−1)p

(
µp+1 − (θ1 + ρ)µp −

p∑
k=2

(θk − θk−1ρ)µ
p+1−k + θpρ

)
,

= (−1)p (µ− ρ)

(
µp −

p∑
k=1

θkµ
p−k

)
= (−1)p(µ− ρ)P (µ)(A.7)

where the polynomial

P (µ) = µp −
p∑

k=1

θkµ
p−k.

Assume that µ0 ∈ C is an eigenvalue of CA such that |µ0| ≥ 1. Then, under the
stability condition |ρ| < 1, we obviously have µ0 ̸= ρ. Consequently, we obtain that
P (µ0) = 0 which implies, since µ0 ̸= 0, that

(A.8) 1−
p∑

k=1

θkµ
−k
0 = 0.



18 FRÉDÉRIC PROÏA

Nevertheless, ∣∣∣∣∣
p∑

k=1

θkµ
−k
0

∣∣∣∣∣ ≤
p∑

k=1

|θk||µ−k
0 | ≤

p∑
k=1

|θk| < 1

as soon as ∥θ∥1 < 1 which contradicts (A.8). Hence, ρ(CA) < 1 under the stability
conditions ∥θ∥1 < 1 and |ρ| < 1. Hereafter, let (Yn) be the stationary autoregressive
process satisfying, for all n ≥ p+ 1,

(A.9) Ψp+1
n = CAΨ

p+1
n−1 +Wn

where
Ψp+1

n =
(
Yn Yn−1 . . . Yn−p

)′
.

It follows from (A.9) that, for all n ≥ p+ 1,

Yn = (θ1 + ρ)Yn−1 +

p∑
k=2

(θk − θk−1ρ)Yn−k − θpρYn−p−1 + Vn.

By virtue of Theorem 4.4.2 of [9], the spectral density of the process (Yn) is given,
for all x in the torus T = [−π, π], by

(A.10) fY (x) =
σ2

2π|A(e−ix)| 2

where the polynomial A is defined, for all µ ̸= 0, as

(A.11) A(µ) = µp+1PA(µ
−1),

in which PA is the polynomial given in (A.7), and A(0) = (−1)p. In light of foregoing,
A has no zeroes on the unit circle. In addition, for all k ∈ Z, denote by

f̂k =

∫
T
fY (x)e

−ikx dx

the Fourier coefficient of order k associated with fY . It is well-known that, for all
p ≥ 1, the covariance matrix of the vector Ψp

n coincides with the Toeplitz matrix of
order p of the spectral density fY in (A.10). More precisely, for all p ≥ 1, we have

(A.12) Tp(fY ) =
(
f̂i−j

)
1≤ i, j≤ p

= ∆p

where ∆p is given by (2.9) and T stands for the Toeplitz operator. As a matter of
fact, since ρ(CA) < 1, we have

lim
n→∞

E
[
Φp

nΦ
p
n
′
]
= E

[
Ψp

pΨ
p ′
p

]
= ∆p.

Finally, we deduce from Proposition 4.5.3 of [9] or [19] that

(A.13) 2πmf ≤ λmin(Tp(fY )) ≤ λmax(Tp(fY )) ≤ 2πMf

where
mf = min

x∈T
fY (x) and Mf = max

x∈T
fY (x).

Therefore, as mf > 0, Tp(fY ) is positive definite, which clearly ensures that for all
p ≥ 1, ∆p is also positive definite. This achieves the proof of Lemma 2.2.
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Appendix B

PROOFS OF THE AUTOREGRESSIVE PARAMETER RESULTS

B.1. Preliminary Lemmas.

We start with some useful technical lemmas we shall make repeatedly use of. The
proof of Lemma B.1 may be found in the one of Corollary 1.3.21 in [11].

Lemma B.1. Assume that (Vn) is a sequence of independent and identically dis-
tributed random variables such that, for some a ≥ 1, E[|V1|a] is finite. Then,

(B.1) lim
n→∞

1

n

n∑
k=1

|Vk|a = E[|V1|a] a.s.

and

(B.2) sup
1≤k≤n

|Vk| = o(n1/a) a.s.

Lemma B.2. Assume that (Vn) is a sequence of independent and identically dis-
tributed random variables such that, for some a ≥ 1, E[|V1|a] is finite. If (Xn)
satisfies (1.1) with ∥θ∥1 < 1 and |ρ| < 1, then

(B.3)
n∑

k=0

|Xk|a = O(n) a.s.

and

(B.4) sup
0≤k≤n

|Xk| = o(n1/a) a.s.

Remark B.1. In the particular case where a = 4, we obtain that

n∑
k=0

X4
k = O(n) and sup

0≤k≤n
X2

k = o(
√
n) a.s.

Proof. The reader may find an approach following essentially the same lines in the
proof of Lemma A.2 in [4], merely considering the stability condition ∥θ∥1 < 1 in
lieu of |θ| < 1. �

Lemma B.3. Assume that the initial values X0, X1, . . . , Xp−1 with ε0 = X0 are
square-integrable and that (Vn) is a sequence of independent and identically dis-
tributed random variables with zero mean and variance σ2 > 0. Then, under the
stability conditions ∥θ∥1 < 1 and |ρ| < 1, we have the almost sure convergence

(B.5) lim
n→∞

Sn

n
= σ2∆p a.s.

where the matrix ∆p is given by (2.9).
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Proof. By adopting the same approach as the one used to prove Theorem 2.2 in [4],
it follows from the fundamental autoregressive equation (B.8), that will be detailed
in the next section, that for all 0 ≤ d ≤ p+ 1,

lim
n→∞

1

n

n∑
k=1

Xk−dVk = σ2δd a.s.

where δd stands for the Kronecker delta function equal to 1 when d = 0, and 0
otherwise. Denote by ℓd the limiting value which verifies, by virtue of Lemma B.2
together with Corollary 1.3.25 of [11],

lim
n→∞

1

n

n∑
k=1

Xk−dXk = ℓd a.s.

Finally, let also L ∈ Rp+2 and, for 0 ≤ d ≤ p + 1, Ld
p ∈ Rp be vectors of limiting

values such that,

L =
(
ℓ0 ℓ1 . . . ℓp+1

)′
and Ld

p =
(
ℓd ℓd−1 . . . ℓd−p+1

)′
.

From (B.8), an immediate development leads to
n∑

k=1

Xk−dXk = β′
n∑

k=1

Φp
k−1Xk−d − θpρ

n∑
k=1

Xk−p−1Xk−d +
n∑

k=1

Xk−dVk,

considering that X−1, X−2, . . . , X−p = 0. Consequently, we obtain a set of relations
between almost sure limits, for all 0 ≤ d ≤ p+ 1,

(B.6) ℓd = β′Ld−1
p − θpρℓd−p−1 + σ2δd

where ℓ−d = ℓd. Hereafter, if d varies from 0 to p+1, one can build a (p+2)×(p+2)
linear system of equations verifying

(B.7) BL = σ2e

where B is precisely given by (2.7). We know from Lemma 2.1 that under the
stability conditions, the matrix B is invertible. Therefore, it follows that

L = σ2B−1e,

meaning via (2.8) that L = σ2Λ, or else, for all 0 ≤ d ≤ p + 1, ℓd = σ2λd, which
completes the proof of Lemma B.3. �

B.2. Proof of Theorem 2.1.

We easily deduce from (1.1) that the process (Xn) satisfies the fundamental au-
toregressive equation given, for all n ≥ p+ 1, by

(B.8) Xn = β′Φp
n−1 − θpρXn−p−1 + Vn

where β is given by (2.5). On the basis of (B.8), consider the summation

(B.9)
n∑

k=1

Φp
k−1Xk =

n∑
k=1

Φp
k−1β

′Φp
k−1 − θpρ

n∑
k=1

Φp
k−1Xk−p−1 +

n∑
k=1

Φp
k−1Vk.
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First of all, an immediate calculation leads to

(B.10)
n∑

k=1

Φp
k−1β

′Φp
k−1 = (Sn−1 − S)β

where Sn−1 and S are given in (2.2). Let us focus now on the more intricate term
n∑

k=1

Φp
k−1Xk−p−1

in which we shall expand each element of Φp
k−1 according to (B.8). A direct calcu-

lation infers the equality, for all n ≥ p+ 1,

(B.11)
n∑

k=1

Φp
k−1Xk−p−1 = Sn−1Jpβ − θpρ

n∑
k=1

Φp
k−1Xk + Jp

n∑
k=1

Φp
k−1Vk + ξn

where Lemma B.2 ensures that the remainder term ξn is made of isolated terms such
that ∥ξn∥ = o(n) a.s. Let also Mn be the p−dimensional martingale

(B.12) Mn =
n∑

k=1

Φp
k−1Vk.

We deduce from (B.9) together with (B.10) and (B.11) that
n∑

k=1

Φp
k−1Xk = αSn−1(Ip − θpρJp)β + α(Ip − θpρJp)Mn + αξn

where α is given by (2.4). Thus, taking into account the expression of the estimator
(2.3), we get the main decomposition, for all n ≥ p+ 1,

(B.13) θ̂n = α(Ip − θpρJp)β + α(Sn−1)
−1(Ip − θpρJp)Mn + α(Sn−1)

−1ξn.

For all n ≥ 1, denote by Fn the σ−algebra of the events occurring up to stage
n, Fn = σ(X0, . . . , Xp, V1, . . . , Vn). The random sequence (Mn) given by (B.12) is
a locally square-integrable real vector martingale [11], [20], adapted to Fn, with
predictable quadratic variation given, for all n ≥ 1, by

⟨M⟩n =
n∑

k=1

E[(∆Mk)(∆Mk)
′|Fk−1],

= σ2

n∑
k=1

Φp
k−1Φ

p ′
k−1 = σ2(Sn−1 − S)(B.14)

where ∆Mk stands for the difference Mk −Mk−1. We know from Lemma B.3 that

(B.15) lim
n→∞

Sn

n
= σ2∆p a.s.

and ∆p is positive definite as a result of Lemma 2.2. Then, (B.15) implies that

(B.16) lim
n→∞

tr(Sn)

n
= σ2p λ0 a.s.
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where λ0 > 0. Moreover, since ∆p is positive definite, we also have that

(B.17) λmax(Sn) = O (λmin(Sn)) a.s.

Consequently, we deduce from (B.14), (B.16), (B.17) and the strong law of large
numbers for vector martingales given e.g. in Theorem 4.3.15 of [11], or [12] that,

(B.18) lim
n→∞

⟨M⟩−1
n Mn = 0 a.s.

and obviously,

(B.19) lim
n→∞

(Sn−1)
−1(Ip − θpρJp)Mn = 0 a.s.

As mentioned above, (Vn) having a finite moment of order 2 implies, via Lemma B.2
and (B.15), that

(B.20) lim
n→∞

(Sn−1)
−1ξn = 0 a.s.

Finally, (B.13) together with (B.19) and (B.20) achieve the proof of Theorem 2.1,

lim
n→∞

θ̂n = α(Ip − θpρJp)β a.s.

B.3. Proof of Theorem 2.2.

The main decomposition (B.13) enables us to write, for all n ≥ p+ 1,

(B.21)
√
n
(
θ̂n − θ∗

)
= α

√
n(Sn−1)

−1(Ip − θpρJp)Mn + α
√
n(Sn−1)

−1ξn.

On the one hand, we have from Lemma B.2 with a = 4 that ∥ξn∥ = o(
√
n) a.s.

assuming the existence of a finite moment of order 4 for (Vn). Hence, via (B.15),

(B.22) lim
n→∞

√
n(Sn−1)

−1ξn = 0 a.s.

On the other hand, we shall make use of the central limit theorem for vector mar-
tingales given e.g. by Corollary 2.1.10 of [11], to establish the asymptotic normality
of the first term in the right-hand side of (B.21). Foremost, it is necessary to prove
that the Lindeberg’s condition is satisfied. We have to prove that, for all ε > 0,

(B.23)
1

n

n∑
k=1

E
[
∥∆Mk∥2 I{∥∆Mk∥≥ε

√
n}|Fk−1

] P−→ 0

where ∆Mk = Mk −Mk−1 = Φp
k−1Vk. We have from Lemma B.2 with a = 4 that

(B.24)
n∑

k=1

∥Φp
k−1∥

4 = O(n) a.s.
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Moreover, for all ε > 0,

1

n

n∑
k=1

E
[
∥∆Mk∥2 I{∥∆Mk∥≥ε

√
n}|Fk−1

]
≤ 1

ε2n2

n∑
k=1

E
[
∥∆Mk∥4|Fk−1

]
,

≤ τ 4

ε2n2

n∑
k=1

∥Φp
k−1∥

4

where τ 4 stands for the moment of order 4 associated with (Vn). Consequently,
(B.24) ensures that

1

n

n∑
k=1

E
[
∥∆Mk∥2 I{∥∆Mk∥≥ε

√
n}|Fk−1

]
= O

(
n−1
)

a.s.

and the Lindeberg’s condition (B.23) is satisfied. We conclude from the central limit
theorem for vector martingales together with Lemma 2.2 and Lemma B.3 that

(B.25)
√
n⟨M⟩−1

n Mn
L−→ N

(
0, σ−4∆−1

p

)
where ∆p is given by (2.9), which leads to

(B.26) α
√
n(Sn−1)

−1 (Ip − θpρJp)Mn
L−→ N (0,Σθ) .

Finally, (B.21), (B.22) and (B.26) complete the proof of Theorem 2.2.

B.4. Proof of Theorem 2.3.

Let (Wn) be the sequence of standardization matrices defined as Wn =
√
nIp.

Consider the locally square-integrable real vector martingale (Mn) with predictable
quadratic variation ⟨M⟩n given by (B.14). Via Lemma B.3, we have the almost sure
convergence

(B.27) lim
n→∞

W−1
n ⟨M⟩nW−1

n = σ4∆p a.s.

where ∆p is given by (2.9). For all n ≥ 0, denote

(B.28) Tn =
n∑

k=1

X4
k

with T0 = 0. From Lemma B.2 with a = 4, we have that Tn = O(n) a.s. Thus,

+∞∑
n=1

X4
n

n2
=

+∞∑
n=1

Tn − Tn−1

n2
=

+∞∑
n=1

(
2n+ 1

n2(n+ 1)2

)
Tn,

= O

(
+∞∑
n=1

Tn

n3

)
= O

(
+∞∑
n=1

1

n2

)
< +∞ a.s.
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which immediately implies that

(B.29)
+∞∑
n=1

∥Φp
n−1∥4

n2
< +∞ a.s.

From (B.27) and (B.29), we can deduce that (Mn) satisfies the quadratic strong law
for vector martingales given e.g. by Theorem 2.1 of [10],

(B.30) lim
n→∞

1

log np

n∑
k=1

[
1− kp

(k + 1)p

]
W−1

k MkM
′
k W

−1
k = σ4∆p a.s.

Hereafter, it follows from (B.13) that, for all n ≥ p+ 1,(
θ̂n − θ∗

)(
θ̂n − θ∗

)′
= α2(Sn−1)

−1
[
KpMn + ξn

][
M ′

nKp + ξ′n

]
(Sn−1)

−1,

= α2(Sn−1)
−1KpMnM

′
nKp(Sn−1)

−1 + ζn(B.31)

where Kp = (Ip − θpρJp) and the remainder term

ζn = α2(Sn−1)
−1(ξnM

′
nKp +KpMnξ

′
n + ξnξ

′
n)(Sn−1)

−1.

However, we have from Lemma 2.2 and Lemma B.3 that

(B.32) lim
n→∞

n(Sn−1)
−1 = σ−2∆−1

p a.s.

As a result, (B.30), (B.32) and a set of additional steps of calculation lead to the
almost sure convergence

(B.33) lim
n→∞

1

log n

n∑
k=1

(Sk−1)
−1KpMkM

′
kKp(Sk−1)

−1 = Kp ∆
−1
p Kp a.s.

since Kp∆
−1
p = ∆−1

p Kp due to the bisymmetry of ∆−1
p . Assuming a finite moment

of order 4 for (Vn), one can easily be convinced that ζn is going to play a negligible
role compared to the first one in the right-hand side of (B.31). Indeed, we clearly
have that ∥Mn∥∥ξn∥ = o(n3/4

√
log n) a.s. It follows that

(B.34)
n∑

k=1

ζk = O(1) a.s.

Finally, (B.33) and (B.34) complete the proof of the first part of Theorem 2.3,

lim
n→∞

1

log n

n∑
k=1

(
θ̂k − θ∗

)(
θ̂k − θ∗

)′
= Σθ a.s.

since Σθ = α2Kp∆
−1
p Kp.

The law of iterated logarithm (2.13) is much more easy to handle. It is based on
the law of iterated logarithm for vector martingales given e.g. by Lemma C.2 in [1].



TESTING RESIDUALS FROM A STABLE AUTOREGRESSIVE PROCESS 25

Under the assumption (B.29) already verified, for any vector v ∈ Rp, we have

lim sup
n→∞

(
n

2 log log n

)1/2

v′(Sn−1)
−1Mn = − lim inf

n→∞

(
n

2 log log n

)1/2

v′(Sn−1)
−1Mn,

=
(
v′∆−1

p v
)1/2

a.s.(B.35)

Via (B.35) and the negligibility of ζn, we immediately get

lim sup
n→∞

(
n

2 log log n

)1/2

v′
(
θ̂n − θ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2

v′
(
θ̂n − θ∗

)
,

= α
(
v′Kp∆

−1
p Kp v

)1/2
a.s.(B.36)

Since (B.36) is true whatever the value of v ∈ Rp, we obtain a matrix formulation
of the law of iterated logarithm,

(B.37) lim sup
n→∞

(
n

2 log log n

)(
θ̂n − θ∗

)(
θ̂n − θ∗

)′
= Σθ a.s.

Passing through the trace in (B.37), we find that

(B.38) lim sup
n→∞

(
n

2 log log n

)∥∥θ̂n − θ∗
∥∥2 = tr(Σθ) a.s.

which completes the proof of Theorem 2.3.

Appendix C

PROOFS OF THE SERIAL CORRELATION PARAMETER RESULTS

C.1. Proof of Theorem 3.1.

Let us introduce some additional notations to make this technical proof more
understandable. Recall that, for all d ∈ {0, . . . , p + 1}, we have the almost sure
convergence

(C.1) lim
n→∞

1

n

n∑
k=1

Xk−dXk = σ2λd a.s.

Let Λ0
p , Λ

1
p and Λ2

p be a set of p−dimensional vectors of limiting values such that,
for d = {0, 1, 2},

(C.2) Λd
p =

(
λd λd+1 . . . λd+p−1

)′
,

and note that the almost sure convergence follows,

(C.3) lim
n→∞

1

n

n∑
k=1

Φp
k−dXk = σ2Λd

p a.s.
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For all n ≥ 1, denote by An the square matrix of order p defined as

(C.4) An =
n∑

k=1

Φp
kΦ

p ′
k−1.

Following a reasoning very similar to the proof of Theorem 2.1, it is possible to
obtain the decomposition, for all n ≥ p+ 1,

(C.5)
n∑

k=1

Φp
kXk = Anθ

∗ + α

n∑
k=1

Φp
kVk − θpραJp

n∑
k=1

Φp
k−2Vk + ηn

where the residual ηn is made of isolated terms such that ∥ηn∥ = o(n) a.s. As an
immediate consequence, we have the relation between the limiting values

(C.6) Λ0
p = Ap θ

∗ + αe

where the almost sure limiting matrix of σ−2An/n is given by

(C.7) Ap =


λ1 λ2 λ3 . . . . . . λp

λ0 λ1 λ2 . . . . . . λp−1
...

...
...

...
...

...
...

...
λp−2 λp−3 λp−4 . . . . . . λ1

 .

The reader may find more details about the way to establish these almost sure
convergences e.g. in the proof of Lemma B.3. Likewise, one proves that

(C.8) Λ2
p = A ′

p θ
∗ − αθpρJpe.

Finally, the very definition of the estimator θ̂n directly implies another relation,
involving the matrix ∆p given by (2.9),

(C.9) Λ1
p = ∆p θ

∗.

Relations (C.6), (C.8) and (C.9) will be useful thereafter. Let us now consider the
expression of ρ̂n given by (3.2). On the one hand, in light of foregoing,

lim
n→∞

1

n

n∑
k=1

ε̂kε̂k−1 = lim
n→∞

1

n

n∑
k=1

(
Xk − θ̂ ′

nΦ
p
k−1

)(
Xk−1 − θ̂ ′

nΦ
p
k−2

)
,

= σ2
(
λ1 −

(
Λ0

p
′
+ Λ2

p
′
)
θ∗ + θ∗ ′Ap θ

∗
)
,

= σ2
(
λ1 − Λ2

p
′
θ∗ − αθ∗1

)
a.s.(C.10)

On the other hand, similarly,

lim
n→∞

1

n

n∑
k=1

ε̂ 2
k−1 = lim

n→∞

1

n

n∑
k=1

(
Xk−1 − θ̂ ′

nΦ
p
k−2

)2
,

= σ2
(
λ0 − 2Λ1

p
′
θ∗ + θ∗ ′∆p θ

∗
)
,

= σ2
(
λ0 − Λ1

p
′
θ∗
)

a.s.(C.11)
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Via the set of relations (B.6), we find that λ0 = β′Λ1
p − θpρλp+1 + 1 for d = 0, and

λp+1 = β′JpΛ
1
p − θpρλ0 for d = p+ 1, in particular. Hence, with θ∗ = α(Ip − θpρJp)β,

λ1 − Λ2
p
′
θ∗ − αθ∗1 = λ1 − Λ2

p
′
θ∗ − αθ∗1(λ0 − β′Λ1

p + θpρλp+1),

= λ1 − Λ2
p
′
θ∗ − αθ∗1(λ0 − β′Λ1

p + θpρ(β
′JpΛ

1
p − θpρλ0)),

= λ1 − Λ2
p
′
θ∗ − θ∗1(λ0 − Λ1

p
′
θ∗),

= λ1 − Λ2
p
′
θ∗ − (θ1 + ρ)(λ0 − Λ1

p
′
θ∗) + θpρθ

∗
p (λ0 − Λ1

p
′
θ∗)(C.12)

since one has to note that θ∗1 = θ1 + ρ− θpρθ
∗
p . Via (C.9), λ1 = Λ0

p
′
θ∗. Thus,

λ1 − Λ2
p
′
θ∗ = θ∗ ′(Λ0

p − Λ2
p ),

= θ∗ ′A ′
p θ

∗ − θ∗ ′Ap θ
∗ + α(θ1 + ρ),

= α(θ1 + ρ)(λ0 − β′Λ1
p + θpρλp+1),

= (θ1 + ρ)(λ0 − Λ1
p
′
θ∗).(C.13)

To conclude, (C.12) together with (C.13) lead to

λ1 − Λ2
p
′
θ∗ − αθ∗1 = θpρθ

∗
p (λ0 − Λ1

p
′
θ∗)

which, via (C.10) and (C.11), achieves the proof of Theorem 3.1,

lim
n→∞

ρ̂n = θpρθ
∗
p a.s.

C.2. Proof of Theorem 3.2.

First of all, we have already seen from (B.13) that, for all n ≥ p+ 1,

(C.14) Sn−1

(
θ̂n − θ∗

)
= α(Ip − θpρJp)Mn + αξn

where Lemma B.2 involves ∥ξn∥ = o(
√
n) a.s., assuming a finite moment of order

4 for (Vn). Our goal is to find a similar decomposition for ρ̂n − ρ∗. For a better
readability, let us introduce two specific backward and forward difference operators
B and F , such that B(Xn) and F(Xn) operate on Xn to produce the following linear
combinations,

B(Xn) = Xn − ρ∗Xn−1 and F(Xn) = Xn−1 − ρ∗Xn.

The extension of B and F to the vectorial framework merely consists in operating
component by component. Denote by Fn the recurrent p−dimensional expression
that appears repeatedly in the decomposition, given, for all n ≥ 1, by

(C.15) Fn = Φp
nθ

∗ ′F(Φp
n)−

(
F(Φp

n−1) + B(Φp
n)
)
Xn.

From the residual estimation (3.1), the development of ρ̂n − ρ∗ reduces to

(C.16) Jn−1

(
ρ̂n − ρ∗

)
= Wn +

(
θ̂n − θ∗

)′
Hn
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where Hn is a p−dimensional vector and, for all n ≥ p+ 1,

Jn =
n∑

k=0

ε̂ 2
k ,(C.17)

Wn =
n∑

k=1

F(Xk)Xk + θ∗ ′
n∑

k=1

Fk + νn,(C.18)

Hn =
n∑

k=1

(
F(Φp

k)θ
∗ ′Φp

k + Fk

)
+

n∑
k=1

Φp
k

(
θ̂n − θ∗

)′
F(Φp

k) + µn,(C.19)

with ∥µn∥ = o(
√
n) a.s. and νn = o(

√
n) a.s. The reasoning develops in two stages.

At first, we shall prove that Wn reduces to a martingale, except for a residual term.
Then, using Theorem 2.2 and the central limit theorem for vector martingales, we
will be in the position to prove the joint asymptotic normality of our estimates.

Let C be the square submatrix of order p + 1 obtained by removing from B given
by (2.7) its first row and first column,

(C.20) C =



1− β2 −β3 . . . . . . −βp θpρ 0
−β1 − β3 1− β4 . . . . . . θpρ 0 0

...
...

...
...

...
...

...
...

...
...

−βp−1 + θpρ −βp−2 . . . . . . −β1 1 0
−βp −βp−1 . . . . . . −β2 −β1 1


.

By Corollary 2.1, we have already seen that the matrix C is invertible under the
stability conditions. Denote by Nn be the (p+ 1)−dimensional martingale

(C.21) Nn =
n∑

k=1

Φp+1
k−1Vk

where Φp+1
n stands for the extension of Φp

n to the next dimension. A straightforward
calculation based on (B.8) shows that the following linear system is satisfied,

C
n∑

k=1

Φp+1
k−1Xk = T

n∑
k=1

X2
k +Nn

in which T is defined as

(C.22) T =
(
β1 β2 . . . βp −θpρ

)′
.

As a result of the invertibility of C, we get the substantial equality, for all n ≥ p+1,

(C.23)
n∑

k=1

Φp+1
k−1Xk = C−1T

n∑
k=1

X2
k + C−1Nn.

A large manipulation of Wn given in (C.18) still based on the fundamental autore-
gressive form (B.8) shows, after further calculations, that there exists an isolated
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term νn such that νn = o(
√
n) a.s., and, for all n ≥ p+ 1,

Wn =
n∑

k=1

F(Xk)Xk − θ∗ ′
n∑

k=1

F(Φp
k−1)Xk − αθ∗ ′

n∑
k=1

(
Φp

k − θpρJpΦ
p
k−2

)
Vk

+ αρ∗θ∗ ′(Ip − θpρJp)
n∑

k=1

Φp
k−1Vk + νn,

leading, together with (C.23), to

(C.24) Wn =
(
G ′C−1T − ρ∗ − αθ∗1

) n∑
k=1

X2
k +G ′C−1Nn + Ln + νn

where, for all n ≥ p+ 1,

(C.25) Ln = αθ∗ ′

(
ρ∗(Ip − θpρJp)Mn −

n∑
k=1

(
Φp

k − θpρJpΦ
p
k−2

)
Vk

)
+ αθ∗1

n∑
k=1

XkVk,

and where the (p+ 1)−dimensional vector G is given by

(C.26) G = ρ∗ϑ∗ + αθ∗1T − δ∗

with ϑ∗ =
(
θ∗1 θ∗2 . . . θ∗p 0

)′
and δ∗ =

(
−1 θ∗1 . . . θ∗p−1 θ∗p

)′
. In terms of

almost sure limits, by using the same methodology as e.g. in the proof of Lemma
B.3, (C.23) directly implies

(C.27) λ0C
−1T = Λ1

p+1

where Λ1
p+1 =

(
λ1 λ2 . . . λp+1

)′
is the extension of Λ1

p in (C.2) to the next di-
mension. Hence, following the same lines as in the proof of Theorem 3.1,

λ0

(
G ′C−1T − ρ∗ − αθ∗1

)
= G ′Λ1

p+1 − λ0 (ρ
∗ + αθ∗1) ,

= ρ∗(Λ1
p
′
θ∗ − λ0) + αθ∗1(T

′Λ1
p+1 − λ0) + (λ1 − Λ2

p
′
θ∗),

= θ∗1(αΛ
1
p
′
(Ip − θpρJp)β − α(1− θpρ)(1 + θpρ)λ0)

+ρ∗(Λ1
p
′
θ∗ − λ0) + (λ1 − Λ2

p
′
θ∗),

= θ∗1(Λ
1
p
′
θ∗ − λ0) + ρ∗(Λ1

p
′
θ∗ − λ0) + (λ1 − Λ2

p
′
θ∗),

= −α(ρ∗ + θ∗1) + α(ρ∗ + θ∗1) = 0.

One can see from Lemma 2.2 that λ0 > 0. The latter development ensures that the
pathological term of (C.24) vanishes, as it should. Finally, Wn reduces to

(C.28) Wn = G ′C−1Nn + Ln + νn,

and one shall observe that G ′C−1Nn + Ln is a locally square-integrable real mar-
tingale [11], [20]. One is now able to combine (C.14) and (C.16), via (C.28), to
establish the decomposition, for all n ≥ p+ 1,

(C.29) Jn−1

(
ρ̂n − ρ∗

)
= G ′C−1Nn + Ln + αM ′

n(Ip − θpρJp)(Sn−1)
−1Hn + rn
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where the remainder term rn = αξ′n(Sn−1)
−1Hn + νn is such that rn = o(

√
n) a.s.

Taking tediously advantage of the (p+2)× (p+2) linear system of equations (B.6),
one shall observe that G ′C−1 = α

(
U ′
p up+1

)
with

Up =
(
1 + β2 β3 − β1 . . . βp − βp−2 −βp−1 − θpρ

)′
,

and up+1 = −α−1θ∗p − θpρθ
∗
1. The combination of (C.25) and (C.28) results in

(C.30) Wn = α (Up + (Ip − θpρJp)(ρ
∗θ∗ − τ ∗))′Mn − θ∗p

n∑
k=1

Xk−p−1Vk + νn

where τ ∗ =
(
θ∗2 θ∗3 . . . θ∗p 0

)′
. Consequently, it follows from (C.14) together with

(C.29) and (C.30) that

(C.31)
√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

)
=

1√
n
PnNn +Rn

where the square matrix Pn of order p+ 1 is given by

(C.32) Pn =

(
P

(1,1)
n 0

P
(2,1)
n P

(2,2)
n

)
with

P (1,1)
n = n(Sn−1)

−1α(Ip − θpρJp),

P (2,1)
n = n(Jn−1)

−1
(
α (Up + (Ip − θpρJp)(ρ

∗θ∗ − τ ∗))′ + αH ′
n(Sn−1)

−1(Ip − θpρJp)
)
,

P (2,2)
n = −n(Jn−1)

−1θ∗p ,

and where the (p+ 1)−dimensional remainder term

(C.33) Rn =
√
n

(
α(Sn−1)

−1ξn
(Jn−1)

−1rn

)
is such that ∥Rn∥ = o(1) a.s. Via some simplifications on Hn, (C.6), (C.8) and
(C.9), we obtain that

(C.34) lim
n→∞

Hn

n
= −α(Ip − θpρJp)e a.s.

Furthermore, it is not hard to see, via Lemma B.3, (C.11), (C.34) and some simpli-

fications on P
(2,1)
n , that

(C.35) lim
n→∞

Pn = σ−2P a.s.

where P is the limiting matrix precisely given by (3.4). The locally square-integrable
real vector martingale (Nn) introduced in (C.21) and adapted to Fn has a predictable
quadratic variation ⟨N⟩n such that

(C.36) lim
n→∞

⟨N⟩n
n

= σ4∆p+1 a.s.

where ∆p+1 is given by (3.5). This convergence can be achieved following e.g. the
same lines as in the proof of Lemma B.3. On top of that, we also immediately
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deduce from (B.24) that (Nn) satisfies the Lindeberg’s condition. We conclude from
the central limit theorem for martingales, given e.g. in Corollary 2.1.10 of [11], that

(C.37)
1√
n
Nn

L−→ N
(
0, σ4∆p+1

)
.

Whence, from (C.31), (C.33), (C.35), (C.37) and Slutsky’s lemma,

(C.38)
√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

)
L−→ N (0, P∆p+1P

′) .

This concludes the proof of Theorem 3.2 where, for readability purposes, we omitted
most of the calculations which the attentive reader might easily deduce.

C.3. Proof of Theorem 3.3.

In the proof of Theorem 3.2, we have established a particular relation that we shall
develop from now on, to achieve the proof of Theorem 3.3. Indeed, from (C.31), for
all n ≥ p+ 1,

(C.39) ρ̂n − ρ∗ = n−1π′
nNn + (Jn−1)

−1rn

where Nn and Jn−1 are given by (C.21) and (C.17), respectively, where rn is such
that rn = o(

√
n) a.s. and where πn of order p+ 1 is given from (C.32) by

(C.40) πn =
(
P

(2,1)
n P

(2,2)
n

)′
.

Denote by π the almost sure limit of πn, accordingly given by

(C.41) π = σ−2
(
P ′
L φ

)′
where PL and φ are defined in (3.4). Hence, (C.39) can be rewritten as

(C.42) ρ̂n − ρ∗ = n−1π′Nn + n−1 (πn − π)′ Nn + (Jn−1)
−1rn.

One can note that (π′Nn) is a locally square-integrable real martingale with pre-
dictable quadratic variation given, for all n ≥ 1, by

(C.43) ⟨π′N⟩n = σ2π′(Tn−1 − T )π

where the square matrix Tn of order p + 1 is the extension of Sn given by (2.2) to
the next dimension defined, for all n ≥ 1, as

(C.44) Tn =
n∑

k=1

Φp+1
k Φp+1

k

′
+ T,

and T is a symmetric positive definite matrix. In addition, (π′Nn) satisfies a non-
explosion condition summarized by

lim
n→∞

π′Φp+1
n Φp+1

n
′
π

π′Tnπ
= 0 a.s.
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by application of Lemma B.2 with a = 4. By virtue of the quadratic strong law for
martingales given e.g. by Theorem 3 of [2] or [3],

(C.45) lim
n→∞

1

log n

n∑
k=1

(
π′Nk

π′Tk−1π

)2

=
1

π′∆p+1π
a.s.

where ∆p+1 given by (3.5) is the almost sure limit of σ−2Tn/n. We refer the reader
to Lemma B.3 to have more details on the latter remark. Note that π′∆p+1π > 0
since ∆p+1 is a positive definite matrix, as a result of Lemma 2.2. The same goes
for π′Tnπ, for all n ≥ 1, assuming a suitable choice of T . Besides, the almost sure
convergence of πn to π, the finite moment of order 4 for (Vn) together with (C.45)
ensure that

n∑
k=1

(
(πk − π)′Nk

k
+

rk
Jk−1

)2

= O

(
n∑

k=1

(
(πk − π)′ Nk

)2
k2

+
n∑

k=1

r2k
J2
k−1

)
,

= O(1) + o

(
n∑

k=1

(π′Nk)
2

k2

)
,

= o(log n) a.s.(C.46)

since rn is made of isolated terms of order 2 and Jn = O(n) a.s. It follows that

lim
n→∞

1

log n

n∑
k=1

(
ρ̂k − ρ∗

)2
= lim

n→∞

1

log n

n∑
k=1

(
π′Nk

k

)2

,

= lim
n→∞

1

log n

n∑
k=1

(
π′Nk

π′Tk−1π

)2(
π′Tk−1π

k

)2

,

=
σ4(π′∆p+1π)

2

π′∆p+1π
= σ4π′∆p+1π a.s.

via (C.45) and (C.46), since the cross-term also plays a negligible role compared to
the leading one. The definition of π in (C.41) combined with the one of Γ in (3.6)
achieves the proof of the first part of Theorem 3.3.

Furthermore, it follows from the law of iterated logarithm for martingales [31],
[32], see also Corollary 6.4.25 of [11], that

lim sup
n→∞

(
⟨π′N⟩n

2 log log⟨π′N⟩n

)1/2
π′Nn

⟨π′N⟩n
= − lim inf

n→∞

(
⟨π′N⟩n

2 log log⟨π′N⟩n

)1/2
π′Nn

⟨π′N⟩n
,

= 1 a.s.

since we have via (B.29) that

(C.47)
+∞∑
k=1

(π′Φp
k−1)

4

k2
< +∞ a.s.

Recall that we have the almost sure convergence,

(C.48) lim
n→∞

⟨π′N⟩n
n

= σ4π′∆p+1π a.s.
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Therefore, we immediately obtain that

lim sup
n→∞

(
n

2 log log n

)1/2
π′Nn

⟨π′N⟩n
= − lim inf

n→∞

(
n

2 log log n

)1/2
π′Nn

⟨π′N⟩n
,

= σ−2(π′∆p+1π)
−1/2 a.s.(C.49)

As in the previous proof and by virtue of the same arguments, one can easily be
convinced that the remainder term in the right-hand side of (C.42) is negligible. It
follows from (C.42) together with (C.48) and (C.49) that,

lim sup
n→∞

(
n

2 log log n

)1/2 (
ρ̂n − ρ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
ρ̂n − ρ∗

)
,

= σ2(π′∆p+1π)
1/2 a.s.

which achieves the proof of Theorem 3.3.

Acknowledgments. The author thanks Bernard Bercu for all his advices and
suggestions during the preparation of this work.

References

[1] Bercu, B. Central limit theorem and law of iterated logarithm for least squares algorithms
in adaptive tracking. SIAM J. Control. Optim. 36 (1998), 910–928.

[2] Bercu, B. On the convergence of moments in the almost sure central limit theorem for
martingales with statistical applications. Stochastic Process. Appl. 11 (2004), 157–173.

[3] Bercu, B., Cénac, P., and Fayolle, G. On the almost sure central limit theorem for
vector martingales: convergence of moments and statistical applications. J. Appl. Probab. 46
(2009), 151–169.
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