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Goodness-of-fit test for noisy directional data

Claire Lacour ∗ Thanh Mai Pham Ngoc †

November 15, 2013

Abstract

We consider spherical data Xi noised by a random rotation εi ∈ SO(3) so that only the sample
Zi = εiXi, i = 1, . . . , N is observed. We define a nonparametric test procedure to distinguish
H0 : ”the density f of Xi is the uniform density f0 on the sphere” and H1 : ”‖f − f0‖22 ≥ CψN
and f is in a Sobolev space with smoothness s”. For a noise density fε with smoothness index
ν, we show that an adaptive procedure (i.e. s is not assumed to be known) cannot have a faster
rate of separation than ψadN (s) = (N/

√
log log(N))−2s/(2s+2ν+1) and we provide a procedure which

reaches this rate. We also deal with the case of super smooth noise. We illustrate the theory by
implementing our test procedure for various kinds of noise on SO(3) and by comparing it to other
procedures. Applications to real data in astrophysics and paleomagnetism are provided.

Keywords : Adaptive testing, spherical deconvolution, minimax hypothesis testing, nonparametric
alternatives, spherical harmonics.
MSC 2010. Primary 62G10, secondary 62H11.

1 Introduction

We consider the spherical convolution model. We observe:

Zi = εiXi, i = 1, . . . , N (1)

where the εi are i.i.d. random variables of SO(3) the rotation group in R3 and the Xi’s are i.i.d.
random variables on S2, the unit sphere in R3. We suppose that Xi and εi are independent. We
also assume that the distributions of Zi and Xi are absolutely continuous with respect to the uniform
measure on S2 and we set fZ and f the densities of Zi and Xi respectively. The distribution of εi is
absolutely continuous with respect to the probability Haar measure on SO(3) and we will denote the
density of the εi’s by fε. Then we have

fZ = fε ∗ f,

where ∗ denotes the convolution product which is defined below in (5).
Roughly speaking, the spherical convolution model provides a setup where each genuine observa-

tion Xi is contaminated by a small random rotation. The aim of the present paper is to provide a
nonparametric adaptive minimax goodness-of-fit testing procedure on f from the noisy observations
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Zi. More precisely, let f0 being the uniform density on S2, we consider the problem of testing the null
hypothesis f = f0 with alternatives expressed in L2 norm over Sobolev classes. In this work, we only
deal with the case of the uniform density. The tools developed in the proofs are specific to the uniform
distribution and proved to be already quite technical. The cases of other fixed densities are beyond
the scope of the paper. Furthermore as explained below, testing the uniform distribution is already of
great interest in practice.

Spherical data arise in many areas of scientific experimentation and observation. As examples
of directional data from various fields, we instance in astrophysics the arrival directions of the Ultra
High Energy Cosmic rays (UHECR), from structural geology the facing directions of conically folded
planes, from paleomagnetism the measurements of magnetic remanence in rocks, from meteorology the
observed wind directions at a given place and from physical oceanography the measurements of current
ocean directions. In this work, we will particularly focus on the UHECR study and paleomagnetism
as some applications of our statistics procedure.

In astrophysics, for instance, a burning issue consists in understanding the behaviour of the so-called
Ultra High Energy Cosmic Rays (UHECR). These latter are cosmic rays with an extreme kinetic energy
(of the order of 1019 eV) and the rarest particles in the universe. The source of those most energetic
particles remains a mystery and the stake lies in finding out their origins and which process produces
them. Astrophysicists have at their disposal directional data which are measurements of the incoming
directions of the UHECR on Earth. Needless to say that finding out more about the law of probability
of those incoming directions is crucial to gain an insight into the mechanisms generating the UHECR.
Faÿ et al. (2012) recently developed isotropy goodness-of-fit tests based on the so-called needlets for the
non perturbated case. Their study is focused on the practical aspect with nice simulations connected
to realistic cosmic rays scenarios. But the difficulty lies in the fact that the observed UHECR do not
come necessarily from the genuine direction as specified by Faÿ et al. (2012). Their trajectories are
deflected by Galactic and intergalactic fields. As this deflection is inevitable in the measurements, it
is quite challenging and essential to take into account this uncertainty in the statistical modelling. A
first way to model the deflection in the incoming directions can be done thanks to the model (1) with
random rotations.

Concerning the hypotheses about the underlying probability of the incoming directions, several are
made. A uniform density would suggest that the UHECR are generated by cosmological effects, such
as the decay of relic particles from the Big Bang. On the contrary, if these UHECR are generated by
astrophysical phenomena (such as acceleration into Active Galactic Nuclei (AGN)), then we should
observe a density function which is highly non-uniform and tightly correlated with the the local distri-
bution of extragalactic supermassive black holes at the center of nearby galaxies (AGN). First results
seemed to favour a non-uniform density but as underlined by Faÿ et al. (2012), a more recent analysis
based on 69 observations of UHECR softens this conclusion of anisotropy. To this prospect, these
relevant considerations lead naturally to goodness-of-fit testing on the uniform density in the noisy
model (1).

Considering goodness-of-fit testing in the spherical convolution model not only finds its interest
in the above important applications, but it also fills a gap both in the noisy setup testing literature
and the spherical convolution one. Indeed, convolution models have been extensively studied in the
Euclidean setting (see for instance Fan (1991), Pensky and Vidakovic (1999), Comte et al. (2006),
Butucea and Tsybakov (2007), Kalifa et al. (2003), Meister (2009) and references therein), and more
recently in other geometric frameworks, like the hyperbolic plane (see Huckemann et al. (2010)) or the
sphere. However, so far, only estimation has been treated in the spherical setup. For the nonparametric
estimation problem, one is interested in recovering the underlying density f from noisy observations
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Zi. The pioneer works of Healy et al. (1998), Kim and Koo (2002), Kim et al. (2004) introduced a
minimax estimation procedure based on the Fourier basis of L2(S2). Recently, Kerkyacharian et al.
(2011) proposed an optimal and adaptive hard thresholding estimation procedure based on needlets.

Nonparametric goodness-of-fit testing has aroused a lot of interest. For minimax testing, we refer
to the work of Ingster (1993) which is the main reference in the field. Spokoiny (1996) first established
adaptive testing procedure based on wavelets over Besov bodies. Nonetheless, goodness-of-fit testing
has mainly focused on the case of direct observations. Indeed, very few works have been devoted to the
case of indirect observations. Let us cite the works of Bissantz et al. (2009) for the inverse regression
problem and Holzmann et al. (2007) for the multivariate convolution density model. Butucea (2007)
built minimax nonparametric goodness-of-fit testing for convolution models based on kernels methods
and Butucea et al. (2009) made a step forward by building an adaptive testing procedure in the noisy
setup.

We would also like to bring to the reader’s attention some interesting facts when encountering
testing problems with indirect observations. Indeed, there is a natural connection between the following
approaches : to test f = f0 or to test fε ∗ f = fε ∗ f0. This question has been the object of the recent
work of Laurent et al. (2011) and has been previously evoked by Butucea et al. (2009). In the case of
the convolution model on the real line, Laurent, Loubes and Marteau prove that if a test procedure is
minimax for testing problem : HD

0 : fε ∗ f = fε ∗ f0 versus HD
1 : fε ∗ (f − f0) ∈ FD where

FD = {g with smoothness s′ and ‖g‖2 ≥ C ′n−4s′/(4s′+1), with s′ = s+ ν},

then it is minimax for HI
0 : f = f0 versus HI

1 : f − f0 ∈ FI where

FI = {f with smoothness s and ‖f‖2 ≥ Cn−4s/(4s+4ν+1)}

but the reverse is not true (here n is the number of data and ν the smoothness index of the noise). This
interesting conclusion (that we can conjecture true in our context also) does not make it any the less
necessary to study the inverse problem here. Indeed, until the present work, the minimax rates were
not known in the context of noisy spherical data. Moreover, when dealing with adaptive procedures,
the link between the direct and inverse problems is not established yet.

In the present paper, the whole difficulty actually lies in the spherical geometry which complicates
every steps that one encounters on R. Indeed, the efficient test statistic of Butucea (2007) was built
upon a deconvolution kernel estimator of the quadratic functional

∫
(f − f0)2. It is well-known that

such an estimator is closely linked to the Fourier transform on R. There exist kernel methods to treat
density estimation for spherical data but only for direct observations (see Hall et al. (1987), and Bai
et al. (1988)). Here in the spherical convolution context, Fourier analysis has a different behaviour
and we resort to existing procedures to estimate the quadratic risk

∫
(f − f0)2. Those procedures

(see Kim and Koo (2002)) are based on Fourier series which come down to projections. Consequently,
the approach proves to be quite different than the one on the real line. The difficulty of testing in a
spherical deconvolution model can be seen in the following way. If you use an orthogonal basis (ψk)
to estimate the unknown function f , then using U-statistics requires that the “deconvolved“ basis φk
(s.t. ψk = fε ∗φk) is also (almost) orthogonal, which is delicate to realize. Thus one has to circumvent
new problems linked to estimation of the quadratic functional, Fourier series, spherical context and
convolution model setting. This explains why we choose to use spherical harmonics and their good
properties in terms of orthogonality.

In this work, we establish several results for both smooth and supersmooth noises. We exhibit the
optimal rates for non adaptive and adaptive cases. We would like to stress that, in general, adaptivity
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implies a small loss in the minimax rate. Here, it is actually the case and our adaptive lower bound
proves that this loss is the least possible. Furthermore we prove that our statistical procedure exactly
attains these optimal rates. To complete these theoretical results, we implemented simulations to
compare the performances of our procedure with other well-known directional testing procedures and
applied our method to real data in paleomagnetism and UHECR incoming directions.

The plan of the paper is as follows. In Section 2, we give a brief overview about harmonic analysis on
SO(3) and S2 which will be necessary throughout the paper. In Section 3 we define the test hypotheses
and the smoothness assumptions about the unknown density f and the noise εi. We also introduce the
adaptive goodness-of-fit testing procedure. In Sections 4 and 5 we compute lower and upper bounds
for testing rates for the ordinary smooth noise case. The super smooth noise case is treated in Section
6. Finally, we give a simulation study and applications on real data in Section 7. The proofs of the
results are detailed in Section 8.

2 Some preliminaries about harmonic analysis on SO(3) and S2

This part provides a brief overview of Fourier analysis on SO(3) and S2. Most of the material can be
found in expanded form in Healy et al. (1998), Kim and Koo (2002) Vilenkin (1968), Talman (1968),
Terras (1985) .

Let L2(SO(3)) denote the space of square integrable functions on SO(3), that is, the set of mea-
surable functions f on SO(3) for which

‖f‖2 =

(∫
SO(3)

|f(x)|2dx

) 1
2

<∞,

where dx is the Haar measure on SO(3).
Let Dl

mn for −l ≤ m, n ≤ l, l = 0, 1, . . . be the eigenfunctions of the Laplace Beltrami operator on
SO(3), hence,

√
2l + 1Dl

mn, −l ≤ m, n ≤ l, l = 0, 1, . . . is a complete orthonormal basis for L2(SO(3))
with respect to the probability Haar measure. Explicit formulae of the rotational harmonics Dl

mn in
terms of Euler angles exist but we do not need it here. Next, for f ∈ L2(SO(3)), we define the rotational
Fourier transform on SO(3) by the (2l + 1)× (2l + 1) matrices f?l with entries

f?lmn =

∫
SO(3)

f(g)Dl
mn(g)dg,

where dg is the probability Haar measure on SO(3). The rotational inversion can be obtained by

f(g) =
∑
l≥0

∑
−l≤m, n≤l

f?lmn(2l + 1)Dl
mn(g). (2)

(2) is to be understood in L2-sense although with additional smoothness conditions, it can hold point-
wise.

A parallel spherical Fourier analysis is available on S2. Any point on S2 can be represented by

ω = (cosφ sin θ, sinφ sin θ, cos θ)t,

with φ ∈ [0, 2π), θ ∈ [0, π). We also define the functions:

Y l
m(ω) = Y l

m(θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
P lm(cos θ)eimφ,
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for −l ≤ m ≤ l, l = 0, 1, . . ., φ ∈ [0, 2π), θ ∈ [0, π) and where P lm are the associated Legendre
functions. The functions Y l

m obey

Y l
−m(θ, φ) = (−1)mY l

m(θ, φ). (3)

Let L2(S2) denote the space of square integrable functions on S2, that is, the set of measurable
functions f on S2 for which

‖f‖2 =

(∫
S2
|f(x)|2dx

) 1
2

<∞,

where dx is the Lebesgue measure on the sphere S2. It is well-known that L2(S2) is a Hilbert space
with the inner product

〈f, g〉L2 =

∫
S2
f(x)g(x)dx, f, g ∈ L2(S2).

The set {Y l
m, −l ≤ m ≤ l, l = 0, 1, . . .} is forming an orthonormal basis of L2(S2), generally referred

to as the spherical harmonic basis. Again, as above, for f ∈ L2(S2), we define the spherical Fourier
transform on S2 by

f?lm =

∫
S2
f(x)Y l

m(x)dx. (4)

We think of (4) as the vector entries of the (2l + 1) vector

f?l = [f?lm ]−l≤m≤l, l = 0, 1, . . .

The spherical inversion can be obtained by

f(ω) =
∑
l≥0

∑
−l≤m≤l

f?lmY
l
m(ω).

The bases detailed above are important because they realize a singular value decomposition of the
convolution operator created by our model. In effect, we define for fε ∈ L2(SO(3)), f ∈ L2(S2) the
convolution by the following formula:

fε ∗ f(ω) =

∫
SO(3)

fε(u)f(u−1ω)du (5)

and we have for all −l ≤ m ≤ l, l = 0, 1, . . .,

(fε ∗ f)?lm =
l∑

n=−l
(f?lε )mnf

?l
n = (f?lε f

?l)m. (6)

We shall recall some basic facts which will be useful throughout the paper. Let Hl the vector
space spanned by {Y l

m = −l ≤ m ≤ l} for each l = 0, 1, . . . . Any element h ∈ Hl can be written as
h =

∑l
m=−l h

?l
mY

l
m and thanks to Parseval equality we have ‖h‖22 =

∑l
m=−l |h?lm|2. Now according to

(6) we have

f?lε : Hl → Hl defined by f?lε h =
l∑

m=−l

(
l∑

n=−l
(f?lε )mnh

?l
n

)
Y l
m.

We finally get the operator inequality

‖f?lε h‖2 ≤ ‖f?lε ‖op‖h‖2, where ‖f?lε ‖op = sup
h6=0,h∈Hl

‖f?lε h‖2
‖h‖2

.
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3 Model and assumptions

We would like to present our results in terms of Sobolev classes (see e.g. Healy et al. (1998) for a
definition on the sphere). On the space C∞(S2) of infinitely continuous differentiable functions on S2,
consider the so-called Sobolev norm ‖‖Ws of order s defined in the following way. For any function
f =

∑
lm f

?l
mY

l
m let

‖f‖2Ws
=
∑
l≥0

l∑
m=−l

(1 + l(l + 1))s|f?lm |2. (7)

We denote by Ws(S2) the vector space completion of C∞(S2) with respect to the Sobolev norm (7)
of order s. Note that for any probability density f , ‖f‖2Ws

≥ |f?00 |2 = (4π)−1. Then, for some fixed
constant R > 0, let Ws(S2, R) denote the smoothness class of densities f ∈Ws(S2) which satisfy

‖f‖2Ws
≤ 1

4π
+R2. (8)

For the uniform density of probability on the sphere namely f0 = (4π)−1
1S2 , we want to test the

hypothesis
H0 : f = f0,

from observations Z1, . . . , ZN given by model (1). We consider the alternative

H1(s,R, CψN ) : f ∈Ws(S2, R) and ‖f − f0‖22 ≥ CψN

where C is a constant and ψN is the testing rate.
We will say that the distribution of ε is ordinary smooth of order ν if the rotational Fourier

transform of fε satisfies the following assumption.

Assumption 1. For all l ≥ 0, the matrix f?lε is invertible and there exist positive constants d0, d1, ν
such that

‖f?lε−1‖op ≤ d−1
0 lν and ‖f?lε ‖op ≤ d1l

−ν ,

where we have denoted the matrix (f?lε )−1 by f?lε−1 .

Recall that we assume that fε is known, consequently d0 and ν are also considered known. Some
examples satisfying this assumption are given in Section 7.

In order to build a test statistic, as usual, we first have to construct an unbiased estimator of the
quadratic functional

∫
S2(f − f0)2 = ‖f − f0‖22. To do so, we remark that thanks to Parseval equality:

∫
S2

(f − f0)2 =
∑
l≥0

l∑
m=−l

|f?lm − f0
?l
m|2 =

∑
l≥1

l∑
m=−l

|f?lm |2,

the last equality coming from the fact that (f0)?lm 6= 0 only for (l,m) = (0, 0). Since f?l = f?lε−1f
?l
Z for

l = 0, 1, . . . , we can write under Assumption 1

f?lm =

l∑
n=−l

(f?lε−1)mn(f?lZ )n.
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A natural estimator of f?lm is given by

f̂?lm =
1

N

N∑
i=1

l∑
n=−l

(f?lε−1)mnY l
n(Zi).

If we denote by Φlm(x) =
∑l

n=−l(f
?l
ε−1)mnY l

n(x) then

f̂?lm =
1

N

N∑
i=1

Φlm(Zi).

Consequently, we can derive an unbiased estimator Tlm of |f?lm |2

Tlm =
2

N(N − 1)

∑
i1<i2

Φlm(Zi1)Φlm(Zi2),

and finally an estimator of ‖f − f0‖22

TL =

L∑
l=1

l∑
m=−l

2

N(N − 1)

∑
i1<i2

Φlm(Zi1)Φlm(Zi2).

We can now define a test procedure

∆ =

{
1 if |TL| > t2

0 otherwise

for a threshold t2 to be suitably chosen. The choice of L is crucial too, and this point will be solved in
Sections 5 & 6.

As one may have noticed, the noise smoothness hypothesis and hence the test procedure only rely
on the Fourier transform of the noise density fε. Consequently, we do not need the existence of the
density fε but only the existence of the characteristic function E(Dl

mn(ε)) of the variable ε.

4 Lower bound for testing rate

It is known that the rate of separation in the case of direct observations in dimension two is N−4s/4s+2

when one considers for the alternative functions belonging to Sobolev ellipsoid in dimension 2 (see
Ingster and Sapatinas (2009)). Let us see how it is modified by the presence of a noise with smoothness
ν.

Theorem 1. Let s ≥ 1 and ψN = N−2s/(2s+2ν+1). Let η ∈ (0, 1). If C ≤ KR2 where K is a constant
only depending on d0, d1, ν, s, η, then

lim inf
N→∞

inf
∆N

{
Pf0(∆N = 1) + sup

f∈H1(s,R,CψN )
Pf (∆N = 0)

}
≥ η

where the infimum is taken over all test procedures ∆N based on the observations Z1, . . . , ZN .
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This means that testing with a faster rate than ψN = N−2s/(2s+2ν+1) is impossible. If the distance
beetween f0 and the alternative is smaller than ψN = N−2s/(2s+2ν+1), the sum of the error of the two
kinds is close to 1. Nevertheless, it requires the knowledge of the smoothness index s. That is why we
want to build on a so-called adaptive test procedure which does not depend on s. But we prove in the
next statement that we have to face a phenomenon of “lack of adaptability” for our problem, i.e. it
is not possible to test adaptively with the same rate. Indeed, in the context where s is unknown and
belongs to some set S, there is not any universal test with small error for each s ∈ S. The price to pay
for adaptivity is an extra factor

√
log logN in the separation rate.

Theorem 2. For all s ≥ 1, let ψadN (s) = (N/
√

log log(N))−2s/(2s+2ν+1). Let S be a set such that
S ∩ [1,∞) contains an interval. If C ≤ KR2 where K is a constant only depending on d0, d1, ν,S, then,

lim inf
N→∞

inf
∆N

{
Pf0(∆N = 1) + sup

s∈S
sup

f∈H1(s,R,CψadN (s))

Pf (∆N = 0)

}
≥ 1

where the infimum is taken over all test procedures ∆N based on the observations Z1, . . . , ZN . Moreover
any rate faster than ψadN will also lead to a lower-bounded error.

5 Upper bound for testing rate

In order to construct an adaptive procedure of testing, we shall use the following exponential inequality.

Lemma 1. There exist K0,K1 such that, for all sequence uN ,

P0(|TL| > L2ν+1uN/N) ≤ K1 exp(−K0u
2
N )

provided that uNL−1, LN−2u8
N and LN−1u3

N are bounded.

Actually the term L2ν+1/N is the order of the variance of TL under H0. We denote dxe the smallest
integer larger than or equal to x.

Theorem 3. Assume s ≥ 1 and ψadN = (N/
√

log logN)−2s/(2s+2ν+1). We consider the set L =
{2j0 , . . . , 2jm} where j0 = dlog2(log logN)e, jm = dlog2(N(log logN)−3/2)e and the adaptive test statis-
tic

DN = 1{maxL∈L(|TL|/t2L)>
√

2/K0}

with t2L = L2ν+1
√

log logN/N. Then, if C >
√

2K−1
0 + ((4π)−1 +R2)22s,

lim
N→∞

{
Pf0(DN = 1) + sup

f∈H1(s,R,CψadN )

Pf (DN = 0)

}
= 0.

This result shows that our procedure achieves the minimax rate of testing, and the limiting distri-
bution of the asymptotically minimax test statistic is degenerate.

Note that the direct case (without noise) is included in this result, taking ε = Id, f?lε = Id, ν = 0.
In this case, the separation rate is (N/

√
log logN)−2s/(2s+1). To our knowledge, even in this simpler

case, this result was not established yet.
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6 Super smooth noise

In this section, we deal with the case of a super smooth noise. This kind of noise is of interest since it
includes the Gaussian distribution. We will say that the distribution of ε is super smooth of order ν if
the rotational Fourier transform of fε satisfies

Assumption 2. For all l ≥ 0, the matrix f?lε is invertible and there exist reals ν1 ≤ ν0, and positive
constants d0, d1, δ, β such that

‖f?lε−1‖op ≤ d−1
0 l−ν0 exp(lβ/δ) and ‖f?lε ‖op ≤ d1l

ν1 exp(−lβ/δ).

In this case, we present a similar test statistic but with a different threshold tL. Moreover it is
sufficient to consider only one L∗ instead of a maximum.

Theorem 4. Let ψN = (logN)−2s/β and K0 > 0. We consider L∗ =
⌊
(δ log(N)/8)1/β

⌋
and the test

statistic
DN = 1{|TL∗ |/t2L∗>K0}

with t2L = L−2ν0+1 exp(2Lβ/δ)/N. Then, if C > K0 + ((4π)−1 +R2)(δ/16)−2s/β,

lim
N→∞

{
Pf0(DN = 1) + sup

f∈H1(s,R,Cψn)
Pf (DN = 0)

}
= 0.

We observe that in this case the separation rate is very slow ψN = (logN)−2s/β . However, this
rate is reached without any knowledge on the smoothness of f . Moreover, we prove that this is the
optimal rate:

Theorem 5. Let s ≥ 1/2 and ψN = (logN)−2s/β. If C ≤ KR2 where K is a constant only depending
on d0, d1, ν0, β, δ, s, then

lim inf
N→∞

inf
∆N

{
Pf0(∆N = 1) + sup

f∈H1(s,R,CψN (s))
Pf (∆N = 0)

}
≥ 1

where the infimum is taken over all test procedures ∆N based on the observations Z1, . . . , ZN .

The deterioration of the rate in the case of a super smooth noise is a well-known phenomenon in
convolution models (see e.g. Fan (1991)).

7 Numerical illustrations

In this section, we highlight the numerical performances of our test procedure and compare them
with other well-known directional test procedures. We both deal with simulations and real data in
astrophysics and paleomagnetism.
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7.1 The testing procedures

We shall now explain the various directional testing procedures we consider in this numerical section.
Let us start with our adaptive testing procedure that will be denoted by SHT (as Spherical Har-

monics Test). The test is described in Theorems 3 and 4. For the quantile K0, we generate 1000
times N observations uniformly under H0. Then, we compute by 1000 Monte Carlo runs the 5% quan-
tile of the statistics maxL∈L(|TL|/t2L) defined in the theorems. In the ordinary smooth case, we use
jm = dlog2(N1/3(log logN)−3/2)e. Indeed, Theorem 3 is valid for a large class of jm (see the proofs)
and for the implementation we choose a small one for the sake of efficiency. We point out that our
numerical procedure is notably fast all the more so as we are in dimension 2. Furthermore, we do not
have any tuning parameter.

To compare our results, we have implemented two other procedures.
The first one is called the Nearest Neighbour test and was proposed by Quashnock and Lamb (1993).

It will be denoted NN in the sequel. For each observation Zi, one must compute the distance Yi to its
nearest neighbour. The Wilcoxon test statistic is

W =
√

12N

(
1

2
− 1

N

N∑
i=1

φ(Yi)

)
,

where φ(z) = 1 − [(1 + cos z)/2]N−1. The distribution of W is asymptotically standard Gaussian.
Notice that this test was designed for non-noisy data.

The second procedure was introduced by Beran (1968) and Giné (1975). The test statistic is

FN =
3N

2
− 4

Nπ

N−1∑
i=1

N∑
j=i+1

d(Zi, Zj) + sin(d(Zi, Zj))

where d(Zi, Zj) = arccos〈Zi, Zj〉 is the spherical distance between Zi and Zj , and the quantiles are
computed via simulations under H0. Again, this test was designed for non-noisy data.

In Faÿ et al. (2012), the authors implement two procedures called Multiple and PlugIn for the
noise free case. These procedures are both based on needlets which can be seen as the wavelets on
the sphere. The Multiple test is based on a family of linear estimators of the density fZ whereas the
PlugIn test considers a hard thresholding procedure on needlets.

7.2 Generating the noise

In our theoretical statements, we talked about ordinary and super smooth noises on the group SO(3),
but what does it mean in practice? In fact, there exist concrete examples of random matrices which
could be generated according to densities which meet those smoothness assumptions. We will partic-
ularly highlight two cases, the Rotational Laplace and the Gaussian densities on SO(3) (for further
details see Kim and Koo (2002)). To the best of our knowledge, they have never been implemented in
practice. The first one is an ordinary smooth density and the second one a super smooth one.

As explained in Section 3, the noise smoothness can be characterized by the decay of its rotational
Fourier transform. The Rotational Laplace distribution is the rotational analogue of the well-known
Euclidean Laplace distribution (known also as double exponential distribution). It has been discussed
in depth in Healy et al. (1998). Its expanded form in terms of rotational harmonics is the following

fε =
∑
l≥0

l∑
m=−l

(1 + σ2l(l + 1))−1(2l + 1)Dl
mm, (9)
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for some σ2 > 0 which is a variance parameter. Hence we have

(f?lε )mn = (1 + σ2l(l + 1))−1δmn,

for l = 0, 1, . . . and where δmn = 1 if m = n and is 0 otherwise. The Laplace distribution is ordinary
smooth with a smoothness index ν = 2.

Let us present now the Gaussian distribution. The distribution can be written as follows (see Kim
and Koo (2002))

fε =
∑
l≥0

l∑
m=−l

exp(−σ2l(l + 1)/2)(2l + 1)Dl
mm, (10)

for σ > 0. This is an example of a super smooth distribution with δ = 2/σ2 and β = 2 following the
terminology in Section 6.

We would also like to make a remark about how to generate random matrices according to the
Laplace or the Gaussian distribution. After rewriting carefully their density expressions in terms of
rotational harmonics given by (9) and (10), it turned out that fε(u) only depends on the angle of the
rotation u, say θ. Then the simulation of a rotation following fε amounts to pick at random an axis
and perform a rotation about this axis by an angle following the law fε(θ)(1− cos(θ))/π.

7.3 Alternatives

We have investigated the performances of the various testing procedures described above for two kind
of alternatives. These alternatives aim at describing different relevant scenarios in practice.

The first family of alternatives is non isotropic, unimodal with a Gaussian shape. More precisely,
it is a mixture of a Gaussian-like density with the uniform density f0. We will denote this alternative
by Ha

1 . The Ha
1 density has the following form

f(x) = (1− δ)f0 + δhγ(x),

where hγ(x) := Cγ exp(−d(x, x0)2/(2γ2)), d is the spherical distance, Cγ is a normalization constant
such that

∫
S2 f(x)dx = 1 and x0 is (π/2, 0) in spherical coordinates. In the sequel, we chose δ = 0.08

and γ = 5π/180 i.e. γ = 5o. Remark that with this choice of parameters, the dose of uniformness
injected in Ha

1 is high and complicates the detection of the alternative from the null hypothesis.
This density is particularly meaningful in the field of astrophysics since very often one seeks for some
departure from isotropy and some principal direction. As Faÿ et al. (2012) also considered Ha

1 , this
will permit us to compare the performances of our test to the Multiple and PlugIn procedures of Faÿ
et al. (2012). Figure 1 allows to visualize this alternative. The density is represented in spherical
coordinates as a surface z = f(θ, φ). To visualize points on the sphere, we use Hammer projection,
because of its equal-area property.

The second alternative that we consider and which is denoted by Hb
1 is the Watson distribution

(Watson (1965)). Its density is
f(θ, φ) = C exp(−2 cos2(θ))

with C such that
∫ 2π

0

∫ π
0 f(θ, φ) sin(θ)dθdφ = 1. This distribution has a girdle form, distributed around

the equator. This choice is motivated by two reasons : first, this gives an alternative very different from
Ha

1 , second, it plays a role in applications. For example, in the case of gamma-ray bursts (see Vedrenne
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Figure 1: a/ Representation of the Ha
1 density in spherical coordinates. b/ 100 random draws Xi from

Ha
1 distribution, c/ 100 random draws Zi from Ha

1 convolved with a Laplace noise with variance 0.1

and Atteia (2009)), many theories assumed that the sources of these flashes were located around the
galactic plane (then a girdle distribution), whereas other proposed that gamma-ray bursts come from
beyond the Milky Way (rather a uniform distribution). Figure 2 presents this alternative. Notice that
the presence of noise (Figure 2 c/) prevents from seeing the equatorial nature of the distribution.
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Figure 2: a/ Representation of the Watson density in spherical coordinates. b/ 100 random draws
Xi from Watson distribution, c/ 100 random draws Zi from Watson distribution convolved with a
Gaussian noise with variance 0.2

7.4 Simulations

For the two alternatives, we computed the test power for a prescribed level of 5%, for our test procedure
(denoted by SHT), for the nearest neighbour test (denoted by NN) and the Beran-Giné test (denoted
by BG). Tables 1-4 give the results in percent for different kind of noisy data : no noise, Laplace noise
with variance 0.05, 0.1, 0.2 and Gaussian noise with variance 0.05, 0.1, 0.2.

As expected, the increase of the size sample improves the power, whereas presence of noise reduces
it.

For the Ha
1 alternative, in absence of noise, our procedure perform better than the two others.

When adding some noise, our procedure has better results than the NN one but slightly worse than
the BG procedure. It is only possible to compare our results with those of Faÿ et al. (2012) (see
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Noise type No noise Laplace Gaussian
variance 0.05 0.1 0.2 0.05 0.1 0.2
SHT 53 18 13 10 13 8 8
NN 19 10 10 8 9 7 7
BG 30 19 18 10 18 12 11

Multiple (J=3) 62
PlugIn (J=3) 63

Table 1: Test powers for N = 100 and Ha
1

Noise type No noise Laplace Gaussian
variance 0.05 0.1 0.2 0.05 0.1 0.2
SHT 95 45 35 19 20 19 12
NN 26 11 11 8 11 8 9
BG 61 43 38 24 41 30 20

Table 2: Test powers for N = 250 and Ha
1

Noise type No noise Laplace Gaussian
variance 0.05 0.1 0.2 0.05 0.1 0.2
SHT 100 98 83 49 45 31 21
NN 64 34 19 10 30 17 10
BG 93 48 27 15 32 19 10

Table 3: Test powers for N = 100 and Hb
1

Noise type No noise Laplace Gaussian
variance 0.05 0.1 0.2 0.05 0.1 0.2
SHT 100 100 100 95 73 86 51
NN 91 52 34 16 46 26 10
BG 100 99 89 41 99 71 15

Table 4: Test powers for N = 250 and Hb
1

their Figure 7) for the noise free case and for N = 100 observations. Their Multiple and PlugIn
procedures for a resolution level equal to 3 performs better than the three other procedures presented
here. Nonetheless, it is important to notice that our procedure SHT is entirely data-driven and has no
tuning parameter, contrary to the one of Faÿ et al. (2012). In addition, Faÿ et al. (2012) has not dealt
with the noise scenario and their procedures are rather complicated and lengthy for practical purposes.

When the alternative is the Watson distribution, our procedure performs pretty well and is clearly
better than the others. Indeed the test powers for our procedure are often twice higher.

We also computed the ROC curves for the three methods for different noise and numbers of obser-
vations settings. Let us recall that the Receiver Operating Characteristic curves allow to illustrate the
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performance of a test by plotting the true positive rate vs. the false positive rate, at various threshold
settings. Roughly speaking, greater the area under the ROC curve, better the test.
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Figure 3: ROC Curves for the three methods and for the alternative Ha
1 : a/ No noise and N = 100.

b/ Laplace noise with variance 0.1 and N = 100.
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Figure 4: ROC Curves for the three methods and for the alternative Hb
1: a/ No noise and N = 100.

b/ Laplace noise with variance 0.1 and N = 100.

We precise that on Figure 4a the solid line corresponding to the performance of our procedure SHT
is mixed up with the axes passing through the points (0, 0), (0, 1) and (1, 1).

7.5 Real data: Paleomagnetism

Some minerals in rocks have the particular property of conserving the direction of magnetic field when
they cool down. This allows geologists to retrieve the direction of the Earth’s magnetic field in the
past ages, and this also provides information about the past location of tectonic plates. Since these
records of magnetic field are directions, it is about spherical data. According to the accuracy of the
measuring devices, the measurements can be more or less noisy. To illustrate our method, we use the
data given by Fisher et al. (1987): these are 52 measurements of magnetic remanence from specimens
of red beds from the Bowen Basin (Queensland, Australia), after thermal demagnetisation to 670◦C.
Demagnetization is a process which is used in order to eliminate unwanted magnetic fields. For our
illustration, the advantage of this data set is that the possible anisotropy is not visible to the naked
eye, contrary to a lot of data sets in paleomagnetism, see Figure 5.
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Figure 5: Representation of the 52 measurements of magnetic remanence (Hammer projection)

The obtained p-values for this sample are given in Table 5, assuming different kinds of possible
noise. Whatever the possible noise we consider, there is no a statistical evidence of anisotropy, which
indicates that the demagnetization process succeeded.

Noise type No noise Laplace Gaussian
variance 0.05 0.1 0.2 0.05 0.1 0.2
p-value 0.90 0.81 0.79 0 .77 0.73 0.63 0.74

Table 5: p-values for the magnetism data.

7.6 Real data: UHECR

To apply our procedure to UHECR data of observatory Pierre Auger (The Pierre AUGER Collaboration
(2010)), we need to take into account the observatory exposure. Indeed, only cosmic rays with zenith
angle of arrival less that 60◦ can be observed. Then, a coverage function over the years of observation
can be computed from geometrical considerations and it is displayed in Figure 6.
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Figure 6: a/ Representation of the 69 arrival directions of highest energy cosmic rays (Pierre Auger
data) b/ Coverage function g0 for the Pierre Auger observatory (the darker the more observed, white
area non-observed)

In addition to the noise due to extragalactic magnetic fields, a selection is done depending on
whether the ray is in the observation area. Denoting the coverage density by g0, the observations
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are now V1, . . . , VN where the density of V is proportional to g0 times fZ : fV = cg0fZ , with c
such that fV is a density. The relevant test is then f = f0 ⇔ fV = g0. Although we do not
extend our theorems to this case, we nevetherless implement an extended method. Our initial test
procedure is based on the estimation of (fZ)∗ln by N−1

∑
i Y

l
n(Zi). Then it is sufficient to apply

the same procedure but with estimator N−1
∑N

i=1(Y l
n/(cg0))(Vi). Indeed this quantity approximates∫

fV Y l
n/(cg0) =

∫
fZY l

n = (fZ)∗ln . Using this method, we obtain the p-values given in Table 6, assuming
different kind of possible noise.

Noise type No noise Laplace Gaussian
variance 0.05 0.1 0.2 0.05 0.1 0.2

p 0.003 0.014 0.034 0.092 0.016 0.001 0.076

Table 6: p-values for the Pierre Auger data.

Then our method confirms what was already noticed by astrophycisists: there seems to be some
kind of anisotropy in the UHECR phenomenon.

8 Proofs

8.1 Proof of Theorem 1

As usual in the proofs of lower bounds (see for instance Ingster (1997), Tsybakov (2009)), we build a
set of functions quite far from f0 in terms of the L2 norm, but whose distance between the resulting
models is small. More precisely, let γ = γ(N) and L = L(N), respectively a scale factor and an even
resolution level to be specified later. For all l < L and m ∈ {−l, . . . , l}, we define ϕlm the function
such that

fε ∗ ϕlm = Y l
m.

Here Y l
m denotes the real form of the spherical harmonic, that we denote as the complex form for the

sake of simplicity. Using the real form ensures that ϕlm is real. The existence of such a function is
ensured by the assumption of invertibility of matrices f?lε and we can write ϕlm =

∑l
n=−l(f

?l
ε−1)nmY

l
n.

Now, for θlm, l < L, m ∈ {−l, . . . , l}, independent random variables with distribution P(θlm = ±γ) =
1/2, we introduce

fθ = f0 +
L−1∑
l=L/2

l∑
m=−l

θlmϕlm.

In the sequel we show that, for good choices of γ and L,

• fθ belongs to Ws(S2, R),

• fθ is a density function,

• ‖fθ − f0‖2 ≥ CψN ,

• χ2(Pθ,Pf0) ≤ (1− η)2 for N large enough.
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For a definition of the χ2 divergence, see Section 2.4 in Tsybakov (2009).
Then, for any test T ,

Pf0(T = 1) + Pθ(T = 0) ≥
∫

min(dPθ, dPf0) ≥ 1−
√
χ2(dPθ, dPf0) ≥ 1− (1− η) (11)

using Lemma 2.1 (Scheffé’s theorem) and inequality (2.27) in Section 2.4 in Tsybakov (2009). Thus,
for N large enough,

Pf0(T = 1) + sup
f∈H1(s,R,CψN )

Pf (T = 0) ≥ η

and the result is proved.

•Belonging to the Sobolev space:
We compute

∑
l≥0

l∑
n=−l

(1 + l(l + 1))s| < fθ, Y
l
n > |2 = | < fθ, Y

0
0 > |2 +

L−1∑
l=L/2

l∑
n=−l

(1 + l(l + 1))s| < fθ, Y
l
n > |2

≤ | < f0, Y
0

0 > |2 +

L−1∑
l=L/2

(1 + l(l + 1))s
l∑

n=−l

∣∣∣∣∣
l∑

m=−l
θlm(f?lε−1)nm

∣∣∣∣∣
2

≤ 1

4π
+

L−1∑
l=L/2

(1 + l(l + 1))s‖f?lε−1‖2op
l∑

m=−l
|θlm|2

≤ 1

4π
+ d−2

0 γ2
L−1∑
l=L/2

(1 + l(l + 1))sl2ν(2l + 1)

≤ 1

4π
+ C1(d0, s, ν)γ2L2s+2ν+2.

Hence, belonging to the Sobolev ball imposes that

γ2L2(s+ν+1) ≤ R2

C1(d0, s, ν)
.

Then it is sufficient to choose γ2 = c1L
−2(ν+s+1) with c1 ≤ R2/C1(d0, s, ν).

•Density:
Since, for l > 0,

1√
4π

∫
ϕlm = (ϕlm)?00 = 0

we obtain
∫
fθ = 1. Let us now show that fθ ≥ 0. We first use the Cauchy-Schwarz inequality

|fθ(x)− f0(x)|2 ≤
L−1∑
l=L/2

l∑
n=−l

|〈fθ − f0, Y
l
n〉|2

L−1∑
l=L/2

l∑
n=−l

|Y l
n(x)|2
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Next, since spherical harmonics have the property
∑l

n=−l |Y l
n|2 ≤ (2l + 1)/(4π),

|fθ(x)− f0(x)|2 ≤
L−1∑
l=L/2

l∑
n=−l

∣∣∣∣∣
l∑

m=−l
θlm(f?lε−1)nm

∣∣∣∣∣
2 L−1∑
l=L/2

2l + 1

4π

≤ 3

8π

L−1∑
l=L/2

‖f?lε−1‖2op
l∑

m=−l
|θlm|2L2

≤ 9d−2
0

8π
γ2

L−1∑
l=L/2

l2ν+1L2 ≤ C2
2γ

2L2ν+4

with C2
2 = 9d−2

0 /(8π(2ν + 2)). Thus, replacing γ by its value,

fθ ≥ f0 − ‖fθ − f0‖∞ ≥
1

4π
− C2γL

ν+2 ≥ 1

4π
− C2

√
c1L

1−s.

Now, since s ≥ 1, fθ is a density as soon as

1

4π
− C2

√
c1 ≥ 0⇔ c1 ≤

ν + 1

9πd−2
0

.

•Separation rate:
We denote pθ = fε ∗ fθ = f0 +

∑L−1
l=L/2

∑l
m=−l θlmY

l
m. Then

‖pθ − f0‖2 = ‖fε ∗ (fθ − f0)‖2 =
L−1∑
l=L/2

l∑
m=−l

|(f?lε (fθ − f0)?l)m|2

≤
L−1∑
l=L/2

‖f?lε ‖2op
l∑

m=−l
|(fθ − f0)?lm|2 ≤ d2

1(L/2)−2ν‖fθ − f0‖2.

Moreover

‖pθ − f0‖2 =
L−1∑
l=L/2

l∑
m=−l

|θlm|2 = γ2
L−1∑
l=L/2

(2l + 1) ≥ Cγ2L2.

Finally ‖fθ − f0‖2 ≥ C3(d1, ν)γ2L2ν+2 = C3(d1, ν)c1L
−2s. Now we choose

L = 2
⌊
N1/(2s+2ν+1)

⌋
where bxc denotes the largest integer which is smaller than or equal to x. Thus ‖fθ − f0‖2 ≥
C3(d1, ν)c12−2sψN ≥ CψN as soon as C ≤ C3(d1, ν)c12−2s.

•Chi-square divergence:
We denote µ the measure defined by dµ(θ) =

∏
l≥0,|m|≤l(δ1 + δ−1)/2. We want to show that

Ef0

((
dPµ
dPf0

− 1

)2
)
≤ (1− η)2

18



where
dPµ
dPf0

=

∫ N∏
i=1

pθ(Zi)

p0(Zi)
µ(dθ) = Eµ

N∏
i=1

4πpθ(Zi).

First, note that Ef0(4πpθ(Z1)) = 1 +
∑

l≥0,|m|≤l 4πθlm
∫
Y l
m = 1. Then, using Fubini and the indepen-

dence of the Zi, Ef0(
dPµ
dPf0

) = Eµ
∏n
i=1 Ef0(4πpθ(Zi)) = 1. So it is sufficient to prove that

Ef0

((
dPµ
dPf0

)2
)
≤ 1 + (1− η)2.

Using Fubini,

1

(4π)2N
Ef0

((
dPµ
dPf0

)2
)

= Ef0

(
Eµ×µ

N∏
i=1

pθ(Zi)

N∏
i=1

pθ′(Zi)

)
= Ef0

(
Eµ×µ

N∏
i=1

pθ(Zi)pθ′(Zi)

)

= Eµ×µ

(
Ef0

N∏
i=1

pθ(Zi)pθ′(Zi)

)

where d(µ× µ)((θ, θ′)) = dµ(θ)dµ(θ′). Now, the Zi being independent, we write

Ef0

(
N∏
i=1

pθ(Zi)pθ′(Zi)

)
=

N∏
i=1

Ef0(pθ(Zi)pθ′(Zi)) =

(∫
pθpθ′

1

4π

)N
. (12)

Using the definition of pθ and the orthogonality of the Y l
m, we obtain∫

pθpθ′ =
1

4π
+

L−1∑
l=L/2

l∑
m=−l

θlmθ
′
lm. (13)

Combining (12) and (13), and then inequality 1 + a ≤ ea, gives

Ef0

(
N∏
i=1

pθ(Zi)pθ′(Zi)

)
=

 1

(4π)2
+

1

4π

L−1∑
l=L/2

l∑
m=−l

θlmθ
′
lm

N

≤ 1

(4π)2N
exp(N4π

L−1∑
l=L/2

l∑
m=−l

θlmθ
′
lm)

≤ 1

(4π)2N

L−1∏
l=L/2

l∏
m=−l

exp(N4πθlmθ
′
lm)

so that

Ef0

((
dPµ
dPf0

)2
)
≤ Eµ×µ

L−1∏
l=L/2

l∏
m=−l

exp(N4πθlmθ
′
lm).
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Using the distribution of (θ, θ′), we obtain

Ef0

((
dPµ
dPf0

)2
)
≤

L−1∏
l=L/2

l∏
m=−l

1

2
exp(Nγ24π) +

1

2
exp(−Nγ24π) ≤

L−1∏
l=L/2

l∏
m=−l

cosh(Nγ24π).

Now, using cosh(2x) = 1 + 2 sinh2(x) and inequality 1 + a ≤ ea,

Ef0

((
dPµ
dPf0

)2
)
≤

L−1∏
l=L/2

l∏
m=−l

(1 + 2 sinh2(Nγ22π)) ≤
L−1∏
l=L/2

l∏
m=−l

exp(2 sinh2(Nγ22π))

≤ exp(2
L−1∑
l=L/2

l∑
m=−l

sinh2(Nγ22π)).

Since Nγ2 → 0 and sinh(x) = x+ o(x), there exists C4 > 0 such that, for N large enough,

sinh2(Nγ22π) ≤ C4N
2γ4.

Then
L−1∑
l=L/2

l∑
m=−l

sinh2(Nγ22π) ≤ C4N
2γ4

L−1∑
l=L/2

l∑
m=−l

1 ≤ C5N
2γ4L2.

That yields, for N large enough,

Ef0

((
dPµ
dPf0

)2
)
≤ exp(2C5N

2γ4L2) ≤ exp(2C5c
2
1N

2L−4s−4ν−2).

But remember that N2 < ((L+ 1)/2)4s+4ν+2 so that Ef0
((

dPµ
dPf0

)2
)
≤ exp(C6(s, ν)c2

1) ≤ 1 + (1− η)2

for a good choice of c1.

8.2 Proof of Theorem 2

We follow the same proof as the one of Theorem 1 but this time with a random L (cf. Ingster
(1997)). We choose [s∗, s

∗] as an interval included in S ∩ [1,∞). Let c0 = 2 log(2)(2ν + 2s∗ + 1)2 and
kN = bc−1

0 (s∗ − s∗) logNc. Then it is possible to choose kN elements of S: s1 < · · · < skN such that
sj+1 − sj ≥ c0/ logN . Now we set, for 1 ≤ j ≤ kN ,

Jj =

⌊
log(N/

√
log logN)

(log 2)(2ν + 2sj + 1)

⌋
which verifies J1 > · · · > JkN > 1 for N large enough. This choice ensures that 2Jj(2ν+2sj+1) is of order
N/
√

log logN . We also define γ2
j = c12−2Jj(ν+sj+1). We consider hypothesis functions

fθ = f0 +
∑
L

L−1∑
l=L/2

l∑
m=−l

θLlmϕlm
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and we take a prior of the form µ = kN
−1∑kN

j=1 µj . Then θ is randomly chosen such that µj(θLlm =

±γj) = 1/2 if L = 2Jj , 2Jj−1 ≤ l < 2Jj , −l ≤ m ≤ l and µj(θLlm = 0) = 1 otherwise. This means that
L is fixed equal to 2Jj with probability 1/kN and random densities with respect to the measures µj
have the following form

fθ = f0 +
L−1∑
l=L/2

l∑
m=−l

θlmϕlm

where µj(θlm = ±γj) = 1/2.
Given the proof of Theorem 1, we easily verify that µj-a.s. fθ ∈ H1(sj , R, CψadN (sj)) if c1 is chosen

small enough. Now, since sups∈S supf∈H1(s,R,CψadN (s)) Pf (∆N = 0) ≥ Pµ(∆N = 0) and according to
(11), it is sufficient to bound the χ2-divergence. So we will show that, for all 0 < η < 1,

lim sup
N

Ef0

((
dPµ
dPf0

)2
)
≤ 1 + (1− η)2

which comes back to

lim sup
N

1

k2
N

kN∑
p,q=1

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤ 1 + (1− η)2.

Using Fubini’s Theorem and independence of the Zi’s,

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
= Eµp×µq

(
Ef0

N∏
i=1

pθ(Zi)pθ′(Zi)

)
= Eµp×µq

((∫
4πpθpθ′

)N)
.

Denoting al(L1, L2) = 4π1L1/2≤l<L1
1L2/2≤l<L2

we can write∫
4πpθpθ′ = 1 +

∑
L1,L2,l,m

θLlmθ
′
Llmal(L1, L2)

where the sum is over L1 ≥ 0, L2 ≥ 0, l ≥ 0, |m| ≤ l. Thus

(
4π

∫
pθpθ′

)N
≤ exp

N ∑
L1L2lm

θLlmθ
′
Llmal(L1, L2)

 ≤ ∏
L1L2lm

exp(NθLlmθ
′
Llmal(L1, L2)).

Using the distribution of (θ, θ′), we obtain

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤

∏
l≥0,|m|≤l

1

2
exp(Nγpγqal(2

Jp , 2Jq)) +
1

2
exp(−Nγpγqal(2Jp , 2Jq))

≤
∏

l≥0,|m|≤l

cosh(Nγpγqal(2
Jp , 2Jq)).

Now, using cosh(2x) = 1 + 2 sinh2(x), inequality 1 + a ≤ ea and sinh(x) = x+ o(x)

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤ exp(2

∑
l≥0,|m|≤l

sinh2(Nγpγqal(2
Jp , 2Jq)/2)) ≤ exp(C1N

2γ2
pγ

2
q

∑
l≥0,|m|≤l

|al(2Jp , 2Jq)|2).
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We observe that al(2Jp , 2Jq) = 0 as soon as Jp 6= Jq. That yields

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤ exp(C2N

2γ4
p22Jp1p=q).

Then

1

k2
N

kN∑
p,q=1

Ef0
(
dPµp
dPf0

dPµq
dPf0

)
≤ 1

k2
N

kN∑
p=1

exp(C2N
2γ4
p22Jp) +

1

k2
N

∑
p 6=q

1

≤ 1

k2
N

kN∑
p=1

exp(C2c
2
1N

22−2Jp(2ν+2sp+1)) + 1− 1

kN

≤ 1

kN
exp(C2c

2
124ν+4s∗+2 log logN) + 1 ≤ (logN)C3(ν,s∗)c21

kN
+ 1

which is bounded by 1+(1−η)2 for N large enough if we choose c1 small enough (smaller than 1/
√
C3).

Since the bound is true for all 0 < η < 1 and c1 is chosen independently of η, this gives the result.

8.3 Proof of Lemma 1

We recall the result from Giné et al. (2000).

Lemma 2. Let u denote a bounded canonical kernel, completely degenerate of the i.i.d. variables
Z1, . . . , ZN . There exist universal constants K1,K2 > 0 such that, for all x > 0,

P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
u(Zi1 , Zi2)

∣∣∣∣∣∣ ≥ x
 ≤ K1 exp

(
−K2 min

(
x2

C2
,
x

D
,
x2/3

B2/3
,
x1/2

A1/2

))
where A,B,C,D are defined by

A = ‖u‖∞, B2 = N‖E(|u|2(Z, .)‖∞, C2 = N2E[|u|2(Z1, Z2)]

and
D = N sup

{∣∣E[u(Z1, Z2)u1(Z1)u2(Z2)]
∣∣,E[u2

1(Z)] ≤ 1,E[u2
2(Z)] ≤ 1

}
.

We apply this Lemma to the kernel

u(x, y) =
L∑
l=1

l∑
m=−l

Φlm(x)Φlm(y).

which is degenerate for Zi under H0. As one may have noticed, we stated the lemma above with a
kernel u taking complex values. Normally, the result of Giné et al. (2000) was stated for real valued
kernel. But their result can be extended to complex valued kernel by simply separating the real and
imaginary parts as shown below. Indeed if we denote uR and uI the real and imaginary part of u it
follows that

P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
u(Zi1 , Zi2)

∣∣∣∣∣∣ ≥ x
 = P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
uR(Zi1 , Zi2)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
uI(Zi1 , Zi2)

∣∣∣∣∣∣
2

≥ x2


≤ P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
uR(Zi1 , Zi2)

∣∣∣∣∣∣
2

≥ x2

2

+ P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
uI(Zi1 , Zi2)

∣∣∣∣∣∣
2

≥ x2

2

 .
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Hence, it amounts to a real valued problem. We only deal with the real part since exactly the same
arguments remain true for the imaginary part. Let us show now that the bounds A,B,C,D of Lemma 2

hold for the real part P
(∣∣∣∑1≤i1 6=i2≤N uR(Zi1 , Zi2)

∣∣∣2 ≥ x2/2

)
. Because u2

R + u2
I = |u|2, we have

uR ≤ |uR| ≤ |u|. Then

‖uR‖∞ ≤ ‖u‖∞ ≤ A

N‖E((uR)2(Z, .))‖∞ ≤ N‖E(|u|2(Z, .))‖∞ ≤ B2

N2E[(uR)2(Z1, Z2)] ≤ N2E[|u|2(Z1, Z2)] ≤ C2.

As for the last term D, since u1 and u2 are real valued

|E(u(Z1, Z2)u1(Z1)u2(Z2))|2 = |E(uR(Z1, Z2)u1(Z1)u2(Z2))|2 + |E(uI(Z1, Z2)u1(Z1)u2(Z2))|2

it entails that

N sup {E(uR(Z1, Z2)u1(Z1)u2(Z2))} ≤ N sup {|E(u(Z1, Z2)u1(Z1)u2(Z2))|} ≤ D

which concludes the justification our lemma.

Let us compute now the four bounds, A,B,C,D.

. Computation of A
Denoting by Y l(x) the vector (Y l

m(x))−l≤m≤l and using algebraic properties of the spherical harmonics,

l∑
m=−l

|Φlm(x)|2 =

l∑
m=−l

|(f?lε−1Y
l(x))m|2 ≤ ‖f?lε−1‖2op

l∑
m=−l

|Y l
m(x)|2 ≤ d−2

0 l2ν
2l + 1

4π
. (14)

We deduce that for all x, y ∈ S2,

|u(x, y)| ≤
L∑
l=1

(
l∑

m=−l
|Φlm(x)|2

l∑
m=−l

|Φlm(y)|2
)1/2

≤
L∑
l=1

π−1d−2
0 l2ν+1

so that A ≤ (π−1d−2
0 /(2ν + 2))(L+ 1)2ν+2.

. Computation of C
We state the following Lemma, which allows to control the order of the variance of the test statistic.

Lemma 3. Under Assumption 1, denoting c3 = 3d−4
0 24ν+2/(4ν + 2)

L∑
l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

|Ef0(Φl1m1(Z)Φl2m2(Z))|2 ≤ c3L
4ν+2

and
L∑

l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

|Ef0(Φl1m1(Z)Φl2m2(Z))|2 ≤ c3L
4ν+2.
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Proof. Under H0, the Zi are uniformly distributed on the sphere. Then

Ef0(Φl1m1(Z)Φl2m2(Z)) =

∫
Φl1m1(z)Φl2m2(z)dz

=

l1∑
n1=−l1

l2∑
n2=−l2

(f?l1
ε−1)m1n1(f?l2

ε−1)m2n2

∫
Y l1
n1(z)Y l2

n2
(z)dz

=

l1∑
n=−l1

(f?l1
ε−1)m1,n(f?l1

ε−1)m2,n1l1=l2 .

But, for any matrices A = (amn)−l≤m≤l,−l≤n≤l, B = (bmn)−l≤m≤l,−l≤n≤l

l∑
m1=−l

|
l∑

n=−l
am1nbm2n|2 ≤ ‖A‖2op

l∑
n=−l

|bm2n|2 ≤ ‖A‖2op‖BT ‖2op = ‖A‖2op‖B‖2op

Then
l1∑

m1=−l1

l2∑
m2=−l2

|Ef0(Φl1m1(Z)Φl2m2(Z))|2 ≤ ‖f?l1
ε−1‖4op(2l1 + 1)1l1=l2 (15)

and
L∑

l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

|Ef0(Φl1m1(Z)Φl2m2(Z))|2 ≤
L∑

l1=1

‖f?l1
ε−1‖4op(2l1 + 1)

≤ 3d−4
0

L∑
l1=1

l4ν+1
1 ≤ 3d−4

0

4ν + 2
(L+ 1)4ν+2.

For the second term, we can write, using (3)

Ef0(Φl1m1(Z)Φl2m2(Z)) =

l1∑
n=−l1

(f?l1
ε−1)m1,n(f?l1

ε−1)m2,−n(−1)n1l1=l2 .

Then it is sufficient to apply the same method with matrix B such that bmn = (−1)n(f?l1
ε−1)m,−n =

(−1)nam,−n. The conclusion results from equality ‖B‖op = ‖A‖op. �

Lemma 3 gives C2 ≤ 3d−4
0 /(4ν + 2)N2(L+ 1)4ν+2.

. Computation of B
Let x ∈ S2 . We can write

Ef0 [|u(Z, x)|2] =
∑
l1,l2

∑
m1,m2

Ef0 [Φl1m1(Z)Φl2m2(Z)]Φl2m2(x)Φl1m1(x)

where the sum is over 1 ≤ l1, l2 ≤ L, |m1| ≤ l, |m2| ≤ l. But we have seen previously than
Ef0 [Φl1m1(Z)Φl2m2(Z)] vanishes when l1 6= l2. Then, using Cauchy-Schwarz inequality, we compute

Ef0 [|u(Z, x)|2] ≤
L∑
l=1

 ∑
−l≤m1,m2≤l

|Ef0 [Φlm1(Z)Φlm2(Z)]|2
∑

−l≤m1,m2≤l
|Φlm1(x)Φlm2(x)|2

1/2

.

24



Now, we use previous computations (15) and (14) to state

Ef0 [u2(Z, x)] ≤
L∑
l=1

(
‖f?l1
ε−1‖4op(2l + 1)

)1/2
l∑

m=−l
|Φlm(x)|2

≤
L∑
l=1

(
3d−4

0 l4ν+1
)1/2

d−2
0 l2ν

2l + 1

4π

≤
L∑
l=1

√
3

π
d−4

0 l4ν+3/2 ≤
√

3d−4
0

π(4ν + 5/2)
(L+ 1)4ν+5/2.

Thus B2 ≤
√

3π−1d−4
0 /(4ν + 5/2)N(L+ 1)4ν+5/2.

. Computation of D
Let us first compute Ef0(Φlm(Z1)u1(Z1)) under H0. We denote by U l1 the vector of the Fourier
coefficients of u1 with harmonic order l: U l1 = (< u1, Y

l
n >)−l≤n≤l.

Ef0(Φlm(Z1)u1(Z1)) =

∫
Φlm(x)u1(x)dx =

l∑
n=−l

(f?lε−1)mn

∫
Y l
n(x)u1(x)dx

=
l∑

n=−l
(f?lε−1)mn < u1, Y

l
n >= (f?lε−1U

l
1)m.

Then
l∑

m=−l
|Ef0(Φlm(Z1)u1(Z1))|2 = ‖f?lε−1U

l
1‖2 ≤ d−2

0 l2ν‖U l1‖2.

But, using Parseval’s equality∑
l≥0

‖U l1‖2 =
∑
l≥0

l∑
n=−l

| < u1, Y
l
n > |2 =

∫
u2

1(x)dx

so that, under H0,
∑

l ‖U l1‖2 ≤ Ef0(u2
1(Z1)). In the same way we can prove

l∑
m=−l

|Ef0(Φlm(Z2)u2(Z2))|2 ≤ d−2
0 l2ν‖U l2‖2

with
∑

l ‖U l2‖2 ≤ Ef0(u2
2(Z1)). Then, using repeatedly Cauchy-Schwarz inequality,

Ef0(u(Z1, Z2)u1(Z1)u2(Z2)) =

L∑
l=1

l∑
m=−l

Ef0(Φlm(Z1)u1(Z1))Ef0(Φlm(Z2)u2(Z2))

≤
L∑
l=1

(
l∑

m=−l
|Ef0(Φlm(Z1)u1(Z1))|2

l∑
m=−l

|Ef0(Φlm(Z2)u2(Z2))|2
)1/2

≤
L∑
l=1

d−2
0 l2ν‖U l1‖‖U l2‖ ≤ d−2

0 L2ν

(
L∑
l=1

‖U l1‖2
L∑
l=1

‖U l2‖2
)1/2

≤ d−2
0 L2νE1/2

f0
(u2

1(Z1))E1/2
f0

(u2
2(Z2)).
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Thus D ≤ d−2
0 NL2ν .

Conclusion
Now, using Lemma 2 with x = N(N − 1)t/2, we obtain

P (|TL| ≥ t) ≤ K1 exp

(
−K3 min

(
N2t2

L4ν+2
,
Nt

L2ν
,

Nt2/3

L4ν/3+5/6
,
Nt1/2

Lν+1

))
where K3 only depends on d0 and ν. Then

P
(
|TL| ≥ L2ν+1uN/N

)
≤ K1 exp

(
−K3 min

(
u2
N , uNL,N

1/3u
2/3
N L−1/6, N1/2u

1/2
N L−1/2

))
≤ K1 exp(−K0u

2
N )

provided that uN = O(L), L = O(N2u−8
N ) and L = O(Nu−3

N ).

8.4 Proof of Theorem 3

As in Butucea and Tribouley (2006), we first use Lemma 1:

Pf0(DN = 1) ≤
∑
L∈L

Pf0
(
|TL| >

√
2K−1

0 t2L

)
≤
∑
L∈L

Pf0
(
|TL| > L2ν+1

√
2K−1

0 log logN/N

)
≤

∑
L∈L

K1 exp(−K0(2K−1
0 log logN)) = K1

∑
L∈L

exp(−2 log logN)

≤ K2|L|(log(N))−2 = O(log(N)−1) = o(1)

since |L| = O(log(N)).
Now let f ∈ H1(s,R, CψN ). Then

Pf (DN = 0) = Pf
(
∀L ∈ L, |TL| ≤

√
2K−1

0 t2L

)
≤ Pf

(
|TL∗ | ≤

√
2K−1

0 t2L∗

)
with L∗ = 2j∗ and j∗ = blog2[(N/

√
log logN)1/(2s+2ν+1)]c. Remark that for N large enough,

4 log logN ≤ (N/
√

log logN)1/(2s+2ν+1) ≤ N/(log logN)3/2, so that j0 ≤ j∗ ≤ jm and L∗ belongs to
L. Note also that with this choice t2L∗ ≤ ψN and L∗−2s ≤ 22sψN . Using triangle inequality we have
that

Pf
(
|TL∗ | ≤

√
2K−1

0 t2L∗

)
≤ Pf

(
|TL∗ − Ef (TL∗)| ≥ ‖f − f0‖22 −

√
2K−1

0 t2L∗ −Bf (TL∗)

)
(16)

where Bf (TL) = ‖f − f0‖22−Ef (TL). If f is in the Sobolev ball Ws(S2, R), it directly follows from the
definition of Ws(S2, R) (8) that

Bf (TL∗) =
∑
l>L∗

l∑
m=−l

|f?lm |2 ≤ ((4π)−1 +R2)L∗−2s ≤ ((4π)−1 +R2)22sψN .

We set C1 =
√

2K−1
0 + ((4π)−1 +R2)22s and C2 = 1− C1/C > 0. Using the definition of H1

ψN ≤ C−1‖f − f0‖22.
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Markov inequality yields the following upperbound for the expression (16)

Pf (DN = 0) ≤
Varf (TL∗)

C2
2‖f − f0‖4

. (17)

Let us now state the following Lemma which evaluates the variance of the estimator TL.

Lemma 4. If Assumption 1 is verified,

Varf (TL) ≤ c4

(
L4ν+2

N2
+
‖f − f0‖2L4ν+4

N2
+
‖f − f0‖2L2ν+1

N
+
‖f − f0‖3L2ν+2

N
+
‖f − f0‖4

N

)
where c4 only depends on d0, d1 and ν.

Proof. We have
Varf (TL) = E((TL − E(TL))(TL − E(TL)).

Simple calculations entail that

Varf (TL) = −
L∑

l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

|f?l1m1
|2|f?l2m2

|2

+
4

(N(N − 1))2

 L∑
l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

E

(∑
i1<i2

Φl1m1(Zi1)Φl1m1(Zi2)
∑
i3<i4

Φl2m2(Zi3)Φl2m2(Zi4)

)
where i1, i2, i3, i4 belong to {1, . . . , n}. The term

E

(∑
i1<i2

Φl1m1(Zi1)Φl1m1(Zi2)
∑
i3<i4

Φl2m2(Zi3)Φl2m2(Zi4)

)
is bounded by∑

i1<i2

∑
i3<i4

E(Φl1m1(Zi1)Φl1m1(Zi2)Φl2m2(Zi3)Φl2m2(Zi4))

=
∑
i1<i2

∑
i3<i4

[
|f?l1m1
|2|f?l2m2

|21i1 6=i2 6=i3 6=i4 + |E(Φl1m1(Z)Φl2m2(Z))|21i1=i3,i2=i4

+|E(Φl1m1(Z)Φl2m2(Z))|21i1=i4,i2=i3 + E(Φl1m1(Z)Φl2m2(Z))f?l1m1f
?l2
m2
1i1=i3,i2 6=i4

+E(Φl1m1(Z)Φl2m2(Z))f?l1m1
f?l2m21i1 6=i3,i2=i4 + E(Φl1m1(Z)Φl2m2(Z))f?l1m1f

?l2
m21i1=i4,i2 6=i3

+E(Φl1m1(Z)Φl2m2(Z))f?l1m1
f?l2m2

1i1 6=i4,i2=i3)

]
.

Eventually we get that

Varf (TL) =
L∑

l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

[(
(N − 2)(N − 3)

N(N − 1)
− 1

)
|f?l1m1
|2|f?l2m2

|2 (18)

+
1

N(N − 1)

(
|E(Φl1m1(Z)Φl2m2(Z))|2 + |E(Φl1m1(Z)Φl2m2(Z))|2

)
+

2(N − 2)

N(N − 1)
E(Φl1m1(Z)Φl2m2(Z))f?l1m1f

?l2
m2

+
2(N − 2)

N(N − 1)
R
(
E(Φl1m1(Z)Φl2m2(Z))f?l1m1f

?l2
m2

)]
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where R(x) denotes the real part of x. We shall now upperbound each term that appears in the
expression (18) above.

. First term. Since
∑L

l=1

∑
m |f?lm |2 ≤ ‖f − f0‖2, we obtain

L∑
l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

(
(N − 2)(N − 3)

N(N − 1)
− 1

)
|f?l1m1
|2|f?l2m2

|2 ≤ ‖f − f0‖42
N

.

. Second term. Firstly

|E(Φl1m1(Z)Φl2m2(Z))|2 =

∣∣∣∣∫ Φl1m1Φl2m2f0 +

∫
Φl1m1Φl2m2(fZ − f0)

∣∣∣∣2
≤ 2|Ef0(Φl1m1(Z)Φl2m2(Z))|2 + 2

∣∣∣∣∫ Φl1m1Φl2m2(fZ − f0)

∣∣∣∣2
≤ 2|Ef0(Φl1m1(Z)Φl2m2(Z))|2 + 2‖Φl1m1Φl2m2‖22‖fZ − f0‖22.

We can remark that, under Assumption 1,

‖fZ − f0‖22 =
∑

l≥0,|m|≤l

|(fZ − f0)?lm|2 ≤
∑
l≥0

‖f?lε ‖2op
∑
|m|≤l

|(f − f0)?lm|2 ≤ d2
1‖f − f0‖22

since ‖f?lε ‖op ≤ d1 for all l. Now let us show that there exists C1 > 0 such that

L∑
l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

‖Φl1m1Φl2m2‖22 ≤ C1L
4ν+4.

We deduce from (14) that

l1∑
m1=−l1

∫
|Φl1m1(x)|2|Φl2m2(x)|2dx ≤ 3d−2

0

4π
l2ν+1
1

∫
|Φl2m2 |2 ≤

3d−2
0

4π
l2ν+1
1

l2∑
m=−l2

|(f∗l2
ε−1)m2m|2

≤ 3d−4
0

4π
l2ν+1
1 l2ν2 .

Then
L∑

l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

‖Φl1m1Φl2m2‖22 ≤
3d−4

0

4π

L∑
l1,l2=1

l2∑
m2=−l2

l2ν+1
1 l2ν2 ≤ C1L

4ν+4

and, using Lemma 3,

L∑
l1,l2=1

∑
m1,m2

|E(Φl1m1(Z)Φl2m2(Z))|2 ≤ 2

L∑
l1,l2=1

∑
m1,m2

|Ef0(Φl1m1(Z)Φl2m2(Z))|2

+2C1L
4ν+4d2

1‖f − f0‖22
≤ C2(L4ν+2 + L4ν+4‖f − f0‖22).
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In the same way

L∑
l1,l2=1

l1∑
m1=−l1

l2∑
m2=−l2

|E(Φl1m1(Z)Φl2m2(Z))|2 ≤ C2(L4ν+2 + L4ν+4‖f − f0‖22).

Thus, the second term is bounded by a constant times L4ν+2/N2 + L4ν+4‖f − f0‖22/N2.

. Third term. Using Cauchy-Schwarz inequality we get

L∑
l1,l2=1

∑
m1,m2

f?l1m1
f?l2m2E(Φlm1(Z)Φlm2(Z)) ≤

 L∑
l1,l2=1

∑
m1,m2

|f?l1m1
|2|f?l2m2

|2
1/2

 L∑
l1,l2=1

∑
m1,m2

|E(Φl1m1(Z)Φl2m2(Z))|2
1/2

≤
√
C2 ‖f − f0‖22(L2ν+1 + L2ν+2‖f − f0‖2).

The third term is of order ‖f − f0‖22L2ν+1/N + ‖f − f0‖32L2ν+2/N .

. Fourth term. We bound the fourth term in the same way as the third.

Finally we have the bound for Varf (TL)

L4ν+2

N2
+
‖f − f0‖22L4ν+4

N2
+
‖f − f0‖22L2ν+1

N
+
‖f − f0‖32L2ν+2

N
+
‖f − f0‖42

N
.

�

This gives

Varf (TL∗)

‖f − f0‖4
≤ c4

(
L∗4ν+2

N2‖f − f0‖4
+

L∗4ν+4

N2‖f − f0‖2
+

L∗2ν+1

N‖f − f0‖2
+

L∗2ν+2

N‖f − f0‖
+

1

N

)
.

Besides, as ‖f − f0‖22 ≥ C2−2sL∗−2s and N ≥ L∗2s+2ν+1
√

log logN , we get an upperbound for (17) in
terms of L∗

C3

(
1

C2 log logN
+

L∗2−2s

C log logN
+

1

C
√

log logN
+

L∗1−s√
C log logN

+
1

N

)
.

Since s ≥ 1, all these terms tend to zero when N goes to infinity, and so does Pf (DN = 0).
Notice that this inequality gives a non asymptotic theoretical control of the second kind error of

the test. Indeed this error is bounded by C(s, ν, d0, d1)(1−C1/C)−2/
√
C, so it can be made lower than

a fixed β, choosing C large enough.
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8.5 Proof of Theorem 4

This proof follows the same line as the one of Theorem 3. We first give an adaptation of Lemma 4 in
order to control the variance of TL:

Varf (TL) ≤ C0

(
L−4ν0+2−β

N2
e4Lβ/δ +

‖f − f0‖2L−4ν0+4−2β

N2
e4Lβ/δ

+
‖f − f0‖2L−2ν0+1−β/2

N
e2Lβ/δ +

‖f − f0‖3L−2ν0+2−β

N
e2Lβ/δ +

‖f − f0‖4

N

)
.

(19)

This result is obtained with standard integrals evaluation which give for any real α,
L∑
l=1

lαel
β/δ ≤ C

∫ L+1

1
xαex

β/δdx ≤ C ′Lα+1−βeL
β/δ (20)

(for L large enough if α < 0). Now, we evaluate the first type error. Using that Ef0(TL∗) = 0, we write

Pf0(DN = 1) = Pf0
(
|TL∗ | > K0t

2
L∗
)
≤ K−2

0 t−4
L∗Varf0(TL∗)

≤ K−2
0 C0t

−4
L∗L

∗−4ν0+2−β exp (4L∗β/δ)N−2 ≤ K−2
0 C0L

∗−β = o(1)

when N goes to infinity.. To bound the error of the second kind, let f ∈ H1(s,R, CψN ). We have

Pf (DN = 0) ≤ Pf
(
|TL∗ | ≤ K0t

2
L∗
)
≤ Pf

(
|TL∗ − Ef (TL∗)| ≥ ‖f − f0‖22 −K0t

2
L∗ −Bf (TL∗)

)
.

The definition of L∗ implies that, for N large enough(
δ

16
log(N)

)1/β

≤ L∗ ≤
(
δ

8
log(N)

)1/β

.

That ensures that L∗−2s ≤ (δ/16)−2s/βψN and t2L∗ ≤ (δ logN/8)(−2ν0+1)/βN−3/4 ≤ ψN for N large
enough. We set C1 = K0 + ((4π)−1 +R2)(δ/16)−2s/β and C2 = 1− C1/C (which is positive if C large
enough). Markov inequality yields

Pf (DN = 0) ≤
Varf (TL∗)

C2
2‖f − f0‖4

. (21)

Using (19), we bound

Varf (TL∗)

‖f − f0‖4
≤ C0

(
L∗−4ν0+2−β

N2‖f − f0‖4
e(4L∗β/δ) +

L∗−4ν0+4−2β

N2‖f − f0‖2
e(4L∗β/δ)

+
L∗−2ν0+1−β/2

N‖f − f0‖2
e(2L∗β/δ) +

L∗−2ν0+2−β

N‖f − f0‖
e(2L∗β/δ) +

1

N

)
.

Besides, as ‖f − f0‖22 ≥ C3L
∗−2s, we get the following upperbound

C4

(
(logN)(−4ν0+2−β+4s)/βN1/2

N2
+

(logN)(−4ν0+4−2β+2s)/βN1/2

N2

+
(logN)(−2ν0+1−β/2+2s)/βN1/4

N
+

(logN)(−2ν0+2−β+s)/βN1/4

N
+

1

N

)
.

and all these terms tend to zero when N goes to infinity.
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8.6 Proof of Theorem 5

The proof is analogous to the proof of Theorem 1, with hypothesis functions

fθ = f0 +
L∑

m=−L
θLmϕLm, P(θLm = ±γ) = 1/2,

where
γ2 = c1 exp(−2Lβ/δ)L−2s+2ν0−1

and
L =

⌊
(2δ log(N))1/β

⌋
.

This choice of L ensures that, for N large enough,

(δ log(N))1/β ≤ L ≤ (2δ log(N))1/β.

The four steps of the proof of Theorem 1 can be rewritten. Moreover, in this supersmooth case, the
bound on the chi-square divergence is stronger, so c1 can be chosen independently of η.
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