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im This study aimed to examine the effect
ood G‐layer on the viscoelastic properties

ion wood and opposite wood samples were
x French Guianese tropical rainforest species
, Ocotea guyanensis, Inga alba, Tachigali
thera sagotiana and Virola michelii); the
the former three of these species had a G‐
tension wood from the latter three had no G‐

layer. Tensile dynamic mechanical analysis (DMA) was
performed on green never dried wood samples in the
longitudinal direction with samples submerged in a water
bath at a temperature (30°C) and frequency (1 Hz) repre-
sentative of the conditions experienced by wood within a
living tree. Then, DMA was repeated with samples condi-
tioned to an air-dried state. Finally, samples were oven-dried
to measure longitudinal shrinkage.
& Results Tension wood did not always have a higher
longitudinal storage (elastic) modulus than opposite wood
from the same tree regardless of the presence or absence of
a G‐layer. For the species containing a G‐layer, tension
wood had a higher damping coefficient and experienced a
greater longitudinal shrinkage upon drying than opposite
wood from the same species. No difference was found in
damping coefficients between tension wood and opposite
wood for the species that had no G‐layer.
& Conclusion It is proposed that the different molecular
composition of the G-layer matrix has an influence on the
viscoelasticity of wood, even if a biomechanical gain is not
yet clear. This study shows that rheological properties and
longitudinal shrinkage can be used to detect the presence of
a G‐layer in tension wood.

Keywords DMA .G‐layer . Reaction wood . Tropical
wood . Viscoelasticity

1 Introduction

Reaction wood is formed in response to mechanical stress
that has caused vertical misalignment of the tree stem. Such
stress arises from: (1) uneven self-loading, for example due
to weight overhang (Yoshida et al. 2000) resulting from
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non-symmetrical crown growth or growth on sloping
ground, and (2) external factors such as wind loading
(Tanaka et al. 1981). Tension wood (TW), the name given
to reaction wood produced by angiosperm trees, is found on
the upper side of the leaning stem. As the name implies,
TW creates a tensile force somewhat higher than that of the
geometrically opposing (opposite) wood (OW) within the
same tree (Fisher and Stevenson 1981; Wardrop 1964),
with the result that the stem will be bent towards the side
with the higher force (i.e. towards the TW). In order to
perform its function, the anatomical (Jourez et al. 2001;
Ruelle et al. 2006) and mechanical properties (Clair et al.
2003; Coutand et al. 2004; Fang et al. 2008; Ruelle et al.
2007) of TW can be very different from those of OW. A
remarkable anatomical feature of TW in some species is the
gelatinous G‐layer (Clair et al. 2006; Onaka 1949), which is
deposited after the S2 layer during cell differentiation (Clair
et al. 2011). However, this G‐layer is not present in the TW
of all species (Chang et al. 2009; Clair et al. 2006), and thus
we can make a simple anatomical distinction between the
G-layer and non-G-layer TW.

There is still some debate as to the actual molecular
composition of the G‐layer. To date, the literature shows that
the G‐layer is composed of mostly (~90%) highly crystalline
cellulose (Daniel et al. 2006; Nishikubo et al. 2007; Norberg
and Meier 1966). These cellulose aggregates are embedded
in a matrix containing xlyoglucans (Baba et al. 2009;
Nishikubo et al. 2007) and aribinogalactans, in which lignin
is absent (Donaldson 2001) or occurs only in trace amounts
(Joseleau et al. 2004). In contrast, the S2-layer of normal
wood consists of ~59% cellulose crystal aggregates in a
matrix consisting of ~14% non-cellulosic polysaccharides
and ~27% lignin (Fengel and Wegener 1984).

In G-layer tension wood, the greater the quantity of G‐
layer, the higher the tensile maturation stress (Fang et al.
2008). However, there is apparently no difference in
maturation stresses between G-layer and non-G-layer-pro-
ducing species (Clair et al. 2006). Therefore, the benefit of a
G‐layer to the living tree is currently unknown.

Mechanical research into TW has until now mainly
focused on the axial elastic modulus. However, wood, like
other polymeric composite materials, displays viscoelastic
behaviour (Navi and Stanzl-Tschegg 2009). By definition,
the mechanical response of a viscoelastic material contains
both elastic (instantaneous) and viscous (time-dependant)
elements. After loading and upon unloading, a purely
elastic material will immediately return to its initial state,
giving back all the mechanically applied energy, whilst a
purely viscous material will show a delay in response,
never return to its initial state and dissipate all the applied
energy. Therefore, a viscoelastic material will return part of
the applied energy, with a delay in mechanical response,
and dissipate the rest. Wood elasticity is mainly obtained

from the stiffness and orientation of the crystalline cellulose
microfibrils (i.e. microfibril angle or MFA) within the
secondary wall (Cave 1968; Salmen and Burgert 2009),
whilst the origin of wood viscosity is the non-cellulosic
polysaccharide matrix (Navi and Stanzl-Tschegg 2009;
Salmen and Burgert 2009). Wood viscoelasticity is aniso-
tropic and highly dependent upon temperature and moisture
content (Navi and Stanzl-Tschegg 2009).

In this study, the aimwas to observe the effect of the G‐layer
on the longitudinal viscoelastic properties of TW compared
with OW in tropical rainforest species. We hypothesised that
the different composition of the G‐layer would result in a
different viscoelastic response. In order to do so, we performed
dynamic mechanical analysis (DMA) on TW and OW of tree
species, which either exhibited or did not exhibit a G layer in
their TW. We further theorised that any difference in
viscoelastic properties could have a biomechanical role within
the living tree; thus, initial DMA tests were performed on green
wood under conditions resembling those of the living tree.

2 Material and methods

2.1 Material

Sample trees were collected in the vicinity of the Paracou
experimental field station (5°18′ N, 52°55′ W), a lowland
tropical forest near Sinnamary, French Guiana. Six common
species were chosen (Table 1), representing three groups of
taxonomically similar species; two trees were sampled per
species. Individuals with a crooked or sweeping stem form
were chosen to maximise the possibility of TW occurrence.
On the standing trees, the asymmetrical trunk stresses
associated with reaction wood formation (Trenard and
Gueneau 1975) were verified by performing maturation
strain measurements at eight points around the circumfer-
ence at breast height (Fang et al. 2008) using the strain
gauge method (Jullien and Gril 2008; Yoshida and
Okuyama 2002). Trees were then felled and eight radial
sections, matching the locations of the maturation strain
measurements, were cut from each. The section corresponding
to the highest maturation strain measurement was used to
provide TW; the opposite section, in relation to standing tree
geometry, displaying the lowest maturation strain measure-
ment was used for OW. Three samples of dimensions 150×2×
12 mm3 (L × R × T) were cut from the outer (bark side) part
of the TW and OW sections of each tree, resulting in six
samples per wood type per species. To maintain the green
condition, sample material was not allowed to dry out
throughout the preparation process. Following preparation,
samples were stored in water, in sealed containers, at 4°C.
Anatomical measurements, to confirm the presence of TW
and identify fibre pattern (presence or absence of a G‐layer),
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were carried out on an adjacent sample material from one of
the two sample trees per species (Chang et al. 2009).
Maturation strain measurements and fibre characteristics are
shown in Table 1.

2.2 Overview of dynamic mechanical analysis

Material viscoelastic properties are commonly measured by
DMA (Menard 2008). This technique provides the storage
modulus (E′) and the loss angle called ‘tangent delta’
(tan δ). In the case of a material with low viscosity, like
wood, E′ is close to the elastic modulus of the material,
which is directly proportional to the stiffness of the sample.
Experimentally, E′ is calculated from the ratio of the peak-
to-peak range of stress (Δσ) to the peak-to-peak range of
strain (Δε) multiplied by the cosine of the phase angle δ, i.
e. the phase lag, between the oscillating applied stress and
the resulting strain (Fig. 1). Tan δ is representative of the
ratio between the dissipated energy and the elastically
stored energy during one loading cycle. A purely elastic
material will have no phase lag (hence, zero tan δ), whereas
a material with a viscous component will have a phase lag
relative to the degree of viscosity (up to 90° for a purely
viscous material). In the case of a material that is
predominantly elastic, like wood, tan δ is considered to be
the damping coefficient. In a comparison of materials, a
higher relative tan δ indicates a material with a higher
relative damping, i.e. a relatively more viscous material.

2.3 Dynamic mechanical analysis of green wood

DMA tests were performed using a BOSE-Electroforce
3230 Dynamic Mechanical Analyser equipped with tensile

fatigue grips, a submersible 450 N load cell and a high-
resolution displacement sensor (1 mm range). Samples
were tensile tested in the longitudinal direction under water
by means of a custom-made water bath whose temperature
was regulated to 30°C (using a Huber Ministat cc3), a
temperature close to the natural environment of the trees in
the tropical rainforest. Prior to the mechanical testing,
samples were placed in water for more than 2 h at room
temperature; then transferred to a water bath at 30°C for a
further 2 h. After thermal conditioning, sample dimensions
were measured. The sample was then loaded into the grips,
which were placed 119 to 129 mm apart; this distance
depended on the batch of samples tested as a joint sealing
the grip support to water required periodic inspection to
prevent leaks. All samples from one species were measured

Fig. 1 An example of a sinusoidal loading in dynamic mechanical
analysis or DMA. Note that the x-axis (time) does not start at zero and
that several cycles have already passed. For a linear viscoelastic
material (shown), the imposed sinusoidal stress results in a sinusoidal
strain with a time delay of δ/ω, where δ is the phase lag or phase angle
between σ and ε, and ω is the angular frequency or periodicity of both
sine wave

Table 1 Materials used in the study

Family Species Tree Tree diameter at
breast height (cm)

GS TW (μm/m) GS OW (μm/m) Fibre pattern

Lauraceae Sextonia rubra A 25 −2,362 −400 G-Thick
B 21 −1,657 −59

Ocotea guyanensis A 19 −1,870 −585 G-Thin
B 18 −1,798 −266

Myristicaceae Iyranthera sagotiana A 26 −1,485 −305 No G
B 22 −922 −165

Virola michelii A 36 −1,699 45 No G
B 37 −232 −7

Fabaceae Inga alba A 29 −2,408 −401 G-Thin
B 17 −2,192 −10

Tachigali melinoni A 18 −1,488 −519 Few or no G
B 12 −2,112 −653

There are six species with two trees per species; thus, the values presented refer to individual measurements. Negative GS implies tension and
positive GS implies compression. GS measurements were made at eight points around the circumference of the tree; the maximum was chosen to
be TW and the geometrically opposite, which displayed the minimum GS as OW

GS maturation stress, TW tension wood, OW opposite wood

Effect of G-layer on hardwood viscoelastic properties



within one batch. A quasi-static loading, within the elastic
limit, was imposed to ensure that there would be no
slippage of the sample in the grips during subsequent
loading used for the determination of viscoelastic proper-
ties. A quasi-static ramp test was again performed on each
sample prior to DMA analysis to determine the tensile
Young’s (or longitudinal elastic) modulus, which was in
turn used to calculate the quantity of stress to produce a
given strain. The DMA applied a sinusoidal force leading to
0.02% mean strain with oscillating peak-to-peak amplitude
of 0.03%, resulting in a range of strain from 0.005% to
0.035%, which was large enough to remain in tension but
small enough to remain within the linear viscoelastic
domain (Sun et al. 2007). Sinusoidal force was imposed
at a frequency of 1 Hz to represent the oscillation of the
correct order for a standing tree (Bruchert et al. 2003;
Moore and Maguire 2008) whilst remaining in a frequency
range where the utilised DMA apparatus and configuration
was determined to have a more accurate response (unpub-
lished data). Tan δ was calculated by Fourier transformation
analysis within the integral BOSE WinTest™ DMA
Analysis software. Values of E′ and tan δ were post-
corrected for the stiffness of the testing apparatus.

2.4 DMA of air-dried wood and longitudinal shrinkage

Following the DMA tests in the green condition,
samples were air-dried, under gentle displacement
restraints to prevent distortion, for a period of about
2 weeks until constant mass was achieved. DMA was
repeated as above, but without the water bath. Sample
grips were always 122 mm apart. Following the DMA
tests in the air-dried condition, samples were oven-dried
in order to obtain dry mass and length used to calculate
basic density (ρ = oven dry mass/green volume), check
the moisture content of samples in the air-dried condition
and to calculate longitudinal shrinkage between the green
and oven-dried conditions.

2.5 Statistical analysis

Analysis of variance (ANOVA) was used to determine
whether there was a significant effect of wood type on the
specific storage modulus (E′ρ−1, i.e. E′ normalised for basic
density), tan δ, longitudinal shrinkage or basic density (ρ).
Data were primarily grouped by species then subdivided
into TW or OW (n=6). An F-test was used to determine the
significance (α=0.05) of wood type on each variable, and,
when appropriate, a post hoc Tukey HSD test was used to
examine the within-species differences in means between
wood types. This analysis was also carried out on data
grouped by species, tree and wood type (n=3). Due to the
statistically prohibitive low quantity of individuals sampled

per species, interspecies differences were not pursued.
Analysis was carried out using the open source R software
(R Development Core Team 2011).

3 Results

The E′ρ−1 in the green condition is plotted by species and
wood type (Fig. 2A). ANOVA showed that wood type was
significant (F=121.21, p<0.001). The post hoc Tukey HSD
test showed that the E′ρ−1 of TW was significantly higher
(p<0.001) than that of the OW for Ocotea guyanensis, Inga
alba, Tachigali meloni and Virola michelii by 4.14, 5.48,
3.54 and 3.98×10−6 m2 s−2, respectively. A similar pattern
is observed when analysing the data from individual trees
(Table 2), though differences were not always significant.

The E′ρ−1 in the dry condition is plotted by species and
wood type (Fig. 2B). ANOVA showed that wood type was
significant. The post hoc Tukey HSD test showed that the
E′ρ−1 of TW was significantly higher (p<0.001) than that
of the OW for I. alba, T. meloni and V. michelli by 11.61,
6.48 and 5.01×10−6 m2 s−2, respectively. Differences in air-
dried E′ρ−1 were almost identical to those in the green
condition; the exception was that the difference between
TW and OW from Ocotea guyanensis was no longer
significant (p=0.3). Additionally, whilst the E′ρ−1 of most
species increased upon drying, that of O. guyanensis
remained of a similar order for OW whilst decreasing
slightly for TW, though this was only true for one tree
(Table 2). A paired two-sample t test between green and air-
dried E′ρ−1 showed that this difference was not significant
(p=0.2), and therefore drying is considered to have had no
effect on the E′ρ−1 of O. guyanensis.

The mean measured tan δ at 1 Hz are presented in
Fig. 3. In the green condition (Fig. 3A), wood type was a
significant factor in explaining the differences in tan δ
(F=5.49, p<0.001). A post hoc Tukey HSD test showed
that species exhibiting a G‐layer had a visibly and
significantly higher tan δ in the TW than the OW.
Differences between the mean tan δ of the TW and OW
were 0.0091 for Sextonia rubra (p<0.001), 0.0105 for O.
guyanensis (p<0.001) and 0.0080 for I. alba (p<0.001).
In the air-dried condition (Fig. 3B), the general trend was
for a decrease in tan δ, but wood type remained a
significant factor (F=4.61, p<0.001) for the differences
in tan δ, and there were significant differences between the
TW and OW of two of the G-layer species: 0.0037 for O.
guyanensis (p<0.001) and 0.0063 for I. alba (p<0.001).
There were no significant differences in the air-dried tan δ
of the non-G-layer species, and upon drying, there was no
longer a significant difference in tan δ of the TW and OW
of S. rubra. This trend can also be seen in the individual
tree data (Table 2).

J.P. McLean et al.



The mean values of longitudinal shrinkage between the
green and oven-dried conditions are shown in Fig. 4. Wood
type was a significant factor in explaining the differences in

longitudinal shrinkage (F=12.45, p<0.001). A post hoc
Tukey HSD test showed that those species that exhibited
G-layer formation had visibly and significantly higher
longitudinal shrinkage in the TW than the OW. Differences
between the mean longitudinal shrinkage of the TW and
OW were 0.45% (or TW shrunk 2.6 times more than OW)
for S. rubra (p<0.001), 0.64% (or TW shrunk 4.0 times
more than OW) for O. guyanensis (p<0.001) and 0.42% (or
TW shrunk 2.9 times more than OW) for I. alba (p<0.001).
No significant differences were found in the longitudinal
shrinkage of the non-G-layer species.

Mean values of basic density are shown in Fig. 5. Wood
type was a significant factor in explaining the differences in
basic density (F=3.81, p<0.001). A post hoc Tukey HSD test
showed that basic density of OW was higher than TW by
0.05 g cm−3 in S. rubra and 0.04 g cm−3 in V. michelii, whilst
the TW had a higher basic density than the OW in O.
guyanensis by 0.05 g cm−3. Density values seemed to be fairly
constant intra-species (Table 2), with the exception of I. alba.

Relationships between maturation stress, E′ρ−1, tan δ and
longitudinal shrinkage were examined, but no clear trends
were observed, even when segregated by species and wood
type (data not shown).

4 Discussion

The TW examined in this study did not always have a
higher E′ρ−1 (specific tensile storage modulus) than OW
from the same tree. The observed E′ρ−1 should be close to
the specific tensile elastic modulus due to the observed
cosine of δ being ~1; we can thus consider E′ρ−1 as the
specific stiffness of the measured samples. Furthermore, we
can reasonably assume that tensile and flexural moduli of
wood will show the same qualitative differences between
wood types. Therefore, we can consider that a similar trend
in wood specific modulus has been observed before in the
literature. Ruelle et al. (2007) did not always find a
significant difference between the air-dried specific flexural
modulus of elasticity (MOE ρ−1) of OW and TW in
Guianese species. Of the ten species studied by Ruelle et
al. (2007), only O. guyanensis was present in this study,
and the same trend was observed (i.e. TW had a higher
modulus than OW). The same authors presented a ratio of
TW MOE ρ−1 over OW MOE ρ−1 for this species equal to
1.28; the same ratio applied here to E′ρ−1 was 1.22 and thus
comparable. The authors additionally presented ratios <1,
which showed that the OW was stiffer than the TW for two
species (Virola surinamensis and Cecropia sciadophylla).
Furthermore, it is interesting that the maturation stresses
showed no relationship to the specific tensile elastic storage
modulus. MFA was not measured directly in this study, but
considering the well-studied relationship between MFA and

A

B

Fig. 2 Bar chart of mean specific tensile longitudinal storage modulus
at 1 Hz by species and wood type for wood in the green condition (A)
and dry condition (B). Error bars represent the standard error of the
mean (n=6). Sr Sextonia rubra, Og Ocotea guyanensis, Is Iyranthera
sagotiana, Vm Virola michelii, Ia Inga alba, Tm Tachigali melinoni
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elasticity (Cowdrey and Preston 1966), it can be deduced that
there is quite possibly no simple relationship between the
maturation stresses and MFA. This could be further evidence
that MFA alone is not responsible for generating the tensile
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Fig. 5 Bar chart of mean basic density (oven dry mass/green volume)
by species and wood type between the green and oven dry condition.
Error bars represent the standard error of the mean (n=6). Sr Sextonia
rubra, Og Ocotea guyanensis, Is Iyranthera sagotiana, Vm Virola
michelii, Ia Inga alba, Tm Tachigali melinoni
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Fig. 4 Bar chart of mean longitudinal shrinkage by species and wood
type between the green and oven dry condition. Error bars represent
the standard error of the mean (n=6). Sr Sextonia rubra, Og Ocotea
guyanensis, Is Iyranthera sagotiana, Vm Virola michelii, Ia Inga alba,
Tm Tachigali melinoni
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Fig. 3 Bar chart of mean tensile longitudinal tan δ at 1 Hz by species
and wood type in the green (A) and air-dried condition (B). Error bars
represent the standard error of the mean (n=6). Sr Sextonia rubra, Og
Ocotea guyanensis, Is Iyranthera sagotiana, Vm Virola michelii, Ia
Inga alba, Tm Tachigali melinoni
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forces associated with stem uprighting. This was previously
proposed by Ruelle et al. (2007) who further suggested that
“maturation strain is not strictly linked to MFA, but as much
(or even more) to the chemical process of maturation”.

The higher longitudinal shrinkage observed in the G-
layer TW is similarly unrelated to the specific elastic
modulus, which again can be taken as a proxy for MFA.
The literature shows that having a low MFA is a
characteristic of the G‐layer (Daniel et al. 2006; Wada et
al. 1995), as is high longitudinal shrinkage (Clair and
Thibaut 2001). This does not follow the positive MFA and
shrinkage relationship observed by Meylan (1972).
Furthermore, Clair et al. (2008) have previously demon-
strated that this high longitudinal shrinkage was due to the
collapse of the mesoporosity of the G‐layer. The fact that
the non-G-layer TW did not have higher shrinkage than
the OW in this study may not be true across all species, as
Ruelle et al. (2007) previously observed a large (two
times) difference in non-G-layer TW of Simarouba amara.
However, in the same study, the shrinkage for S. amara
TW was well below that of the G-layer TW of Eperua
falcata or O. guyanensis, where the TW longitudinal
shrinkage was greater than four times that of the
corresponding OW. Whilst it is therefore not possible to
state that there is definitely no difference in shrinkage between
non-G-layer TW and OW, the fact remains that this result
demonstrates that longitudinal shrinkage can be usefully
employed as a method to differentiate between TW containing
a G‐layer and TW not containing a G‐layer. The difference in
shrinkage between the G-layer TW and OW is obviously, at
least for the species examined, of a greater magnitude than any
difference that may exist in longitudinal shrinkage between
non-G-layer TW and OW.

For the species investigated, the TW of those with a G‐
layer was observed to have higher macroscopic damping
relative to the OW of the same tree. This was not the case
for species without a G‐layer. Within the context of the
current study, we cannot be sure whether or not this
damping plays a direct biomechanical role for the tree or
whether it is indicative of another biomechanical function.
However, it is possible to speculate on the origin or origins
of this damping within the material. For example, xyloglu-
can is thought to occur in the G‐layer (Baba et al. 2009;
Nishikubo et al. 2007), but not in typical lignified
secondary cell walls. This polymer is thought to cross-link
cellulose microfibrils in the primary cell wall (Bootten et al.
2004) and could cross-link the cellulose microfibrils on the
surface of the G‐layer with those on the adjacent S2 layer
(Baba et al. 2009; Mellerowicz et al. 2008; Nishikubo et al.
2007). During tensile strain, a viscous (shear) deformation
at the interface between the G‐layer and the S2 layer, thus

unique to fibres containing a G‐layer, could occur and
may explain the higher macroscopic damping of TW
compared with OW within the same species. Further-
more, the absence of lignin in the G‐layer may allow for
the greater deformation of the polysaccharides between
the cellulose molecules. Alternatively, if a shear lag
effect (Young et al. 2004) is present in wood, as proposed
by Montero et al. (2011), then axial loading of the G‐layer,
which is presumed to be stiffer than the normal secondary
cell wall due to the abundance of cellulose (Daniel et al.
2006) and low MFA (Clair et al. 2011), could lead to a
higher strain concentration at the interconnecting fibre
ends. In this case, higher localised strains, relative to non-
G-layer fibres, in the cellulose poor compound middle
lamella (Roger et al. 2005) may result in viscous
deformations and be manifested in higher macroscopic
damping.

It is not clear why some species have developed the G-
layer strategy in TW whilst others have not. On an
evolutionary timescale, it appears that both sets of species
appeared at similar times, but when a species has developed
the G-layer, it has subsequently retained it (Ruelle J, 2009,
presonal communication). Therefore, it may be a better (e.g.
more efficient) system of stress generation. Clearly, there is
more interesting research to be done on the diversity of
tension wood and stem reorientation biomechanics. Future
research should focus on matrix chemistry, micromechanics
and the relationship between the wood matrix and matura-
tion stress production.

5 Conclusion

The presence of a G‐layer in the tension wood of the
studied species was accompanied by an increased damping
coefficient and notably higher longitudinal shrinkage
relative to the respective opposite wood. Therefore, DMA
and shrinkage measurements can provide a means of
detecting G-layer material. The contribution of the G-layer
matrix to damping and to maturation stress generation
should be further studied.
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