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Abstract 

In this paper, we present a two-scale model including 
an optimal active control for a one-dimensional cantilever 
array with regularly spaced actuators and sensors. With 
the purpose of implementing the control in real time, we 
propose an approximation that may be realized by an ana­
log distributed electronic circuit. More precisely, our ana­
log processor is made by Periodic Network of Resistances 
(PNR). The control approximation method is based on two 
general concepts, namely on functions of operators and 
on the Dunford-Schwartz representation formula. We con­
ducted validations of the control approximation method as 
well as of its effect in the complete control loop. 

1. Introduction 

In the past decade, a number of papers have been fo­
cused on semi-decentralized distributed optimal control for 
systems with distributed actuators and sensors. Most of 
them are dealing with infinite length systems, see [1] and 
[10] for systems governed by partial differential equations, 
and [3] for discrete systems. In the papers [4] and [5] the 
authors have introduced an approximation of an optimal 
control to a finite length beam endowed with a periodic dis­
tribution of piezoelectric sensors and actuators. Even if it 
was giving satisfactory results, it was suffering from some 
limitations. In [9] it has been extended so that to cover a 
larger range of systems and to increase its precision and 
robustness. Indeed, the new method does not require that 
each operator of the state equation and of the cost func­
tional be functions of a same operator but they must be 
only functions of a same operator up to some change of 
variable operators. Regarding precision, the Taylor series 
approximating a function of an operator has been replaced 
by the use of the Dunford-Schwartz representation formula 
followed by a quadrature rule for the contour integral. 

Here we apply our new method to a recently developed 
and validated two-scale model of cantilever arrays, submit­
ted in the paper [8]. It is rigorously justified thanks to an 
adaptation of the two-scale approximation method intro­
duced in [6] and detailed in [7]. Its main advantage is that 
in the same time it requires little computing effort and it is 
reasonably precise. 

This paper presents results from an implementation of 
the new semi-decentralized optimal control strategy on the 
two-scale model of cantilever arrays. We provide results re­
garding precision and cost. However our calculations have 
been carried out using the simplest optimal control strat­
egy, namely a Linear Quadratic Regulator. As in [5], we 

also provide a realization of the semi-decentralized control 
scheme through a Periodic Network of Resistances (PNR), 
implementing a finite difference scheme for the partial dif­
ferential operator in the Dunford-Schwartz formula. Fi­
nally, we quote that the entire approach can be extended 
to other linear optimal control problems, i.e. LQG or H= 
controls as well as to more physical actuating and sensing 
principles. 

2. A Two-Scale Model of Cantilever Arrays

We consider a one-dimensional cantilever array com­
prised of an elastic base, and a number of clamped elas­
tic cantilevers with free end, see Figure 1. Assuming that 
the number of cantilevers is sufficiently large, a homoge­
nized model was derived using a two-scale approximation 
method. This is reported in the detailed paper [7] devoted 
to static regime. The corresponding model extended to dy­
namic regime is introduced in the letter [6]. The modelling 
papers were written in view of Atomic Force Microscopy 
application. 

Fig. 1: Array of Cantilevers 

After a number of simplifications, the approximate ho­
mogenized model expressed in the two-scale referential, 
which is a rectangle n = (0, LB) x (0, D(: ). The parame­
ters LB and L(: represent respectively the base length in the 
macroscale x-direction and the scaled cantilever length in 
the microscale y-direction. The base is modelled by the 
liner= {(x,y) Ix E (O, LB) and y = O}, and the rectan­
gle n is filled by an infinite number of cantilevers. We de­
scribe the system motion by its bending displacement only. 
So, the base is governed by an Euler-Bernoulli beam equa­
tion with two kinds of distributed forces, one exerted by 
the attached cantilevers and the other, denoted by u(t, x, 0), 
originating from an actuator distribution. The bending dis­
placement, the mass per unit length, the bending coefficient 
and the scaled cantilever width being denoted by w(t, x, 0),
pB, RB and C(:, the base governing equation states

Bn2 RBn4 O* RCn3 . r p UuW + UX···Xw + {,c UyyyW = u Ill . (1) 

The base is assumed to be clamped, so the boundary con-
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ditions are 

W = OxW = 0, (2) 

at its ends. Each cantilever is oriented in the y-direction, 
and its motion is governed by the Euler-Bernoulli equation 
distributed along the y-direction. It is subjected to a con­
trol force u( t, x, y) taken as distributed along each whole
cantilever. It can be replaced by any other realistic force
distribution. Denoting by w(t, x, y), pc and Rc cantilever
bending displacements, the mass per unit length, and the 
bending coefficient, the governing equation in (x, y) E f2
is 

c >)2 RC >)4 p UttW + Uy···yW = U,
endowed with the boundary conditions 

(3) 

N 
L Bxwn(t, Ls)Kn(O) = 0. In (6), we use the notationsn=l 

Mm,n = p8(KmKn)lr + l(;pc IoLc KmKn dy, 
Kf!, n = R8(KmKn)lr, 
K;;,:n = l(;Rc IoLc a;yKm8�yKn dy, 
Bm,n = (KmKn) Ir + l(; IoLc KmKn dy. 

The LQR problem is set for control variables 
(un)n=I,2,. .. ,N E L2(r )N and for the cost functional

N 
.:l = It)Q L lla;xwn(t,x)ll�2(r)n=l (7) 

+ llun(t,x)ll�2(r) dt.
The choice of the functional is related to vibration stabi­

( 4) lization of the microcantilever array. 

representing an end clamped in the base, and a free end. 
The weak formulation associated to (1-4) states as 

IoLa (p88ftw v + R8a;xwa;xv)lr dx 
+le Io. pcaitw v + Rca;Ywa;Yv dydx (5) 

= IoLa (u v)lr dx + l(; Io. u v dydx, 
for any regular function v, satisfying in particular the con­
ditions: v = Bxv = 0 at both end of the base and ayv = 0 
at y = 0 at the junction.

3. Model Reformulation 

To simplify the model, but keeping its distributed fea­
ture, we discretize in the y-direction projecting on a ba­
sis Kn(Y) = I� yT�(y)dy, where Tn(Y) is the basis of
Chebyshev polynomial. We define the approximations of 
the displacement and of the control 

{ w(t, x, y) ::::::! n�l Wn(t, x)Kn(y),
u(t,x,y) ::::::! L Un(t,x)Kn(y),n=l 

where Wn ( t, x) and Un ( t, x) are the polynomial coeffi­
cients in the approximation of w and u respectively. WeN 
also choose v ::::::! L vm(t,x)Km(Y), so we find thatm=l ( Wn ( t, x) ) n= l ,2 ,-·· ,N are the solutions to a set of equations
posed on r , 

N 
L Mm,n8ftwn + Kf!,,na;, ... xWnn,m=l N -+K;;,,nwn = L Bm,nUn in [O, oo) x r .n,m=l 

N 
The boundary conditions are L wn(t, O)Kn(O) 
N 
L OxWn(t, O)Kn(O)n=l 

n=l N 0 and L Wn(t, Ls)Kn(O)n=l 

(6) 

4. Classical Formulation of the LQR Problem 

Now, we write the above LQR problem in a classical 
abstract setting, see [2], even if we do not detail the func­
tional framework. We set Z T = ( Wn Ot Wn) n= 1 2 ... N 
the state variable, uT = ( un)n=I,2,. . . ,N the contr�l 

·
v�i-

A ( ONxN INxN) able, = -(M-1(K8a; + Kc))NxN ONxN the

( ONxN ) state operator, B = (M_1 B)NxN the control opera-

tor, C = (8;x1NxN ONxN) the observation operator,ONxN ONxN 
and S = INxN the weight operator. Consequently, the
LQR problem, consisting in minimizing the functional un­
der the constraint (6), may be written under its usual form 
as Btz (t, x) = Az (t) +Bu (t) 

fort > 0 and z (0) = zo , (8) 

with the minimized cost functional (7). We know that 
(A, B) is stabilizable and that (A, C) is detectable, in the
sense that the system is controllable and observable. It fol­
lows that for each zo , the LQR problem (8) admits a unique
solution 

u* = -Kz, (9)

where K = s-1 B* P, and P is the unique self-adjoint non­
negative solution to the operational Riccati equation 

A*P +PA-PBS-1B*P +C*C=0. (10) 

5. Semi-Decentralized Approximation 

This Section is devoted to formulate the approxima­
tion method. The mathematical derivation has been intro­
duced in a paper [9]. We denote by A, the mapping: A : 
f _____, W, where W is the unique solution of a; ... xW = f
in r with the boundary conditions w = OxW = 0 for
x = { 0, LB}. The spectrum O" (A) is discrete and made
up of real eigenvalues Ak· They are solutions to the eigen­
value problem A(h = AkcPk with 11¢kllL2(r) = 1. In the
sequel, Ia = (O"min, O"max ) refers to an open interval that
includes the complete spectrum. 
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5.1 Factorization of K by a Matrix of Functions of A 
In this part, we introduce the factorization of the con­

troller K under the form of a product of a matrix of
functions of A. To do so, we introduce the change of

variable operators <I> z = ( �! �) , <I>u = I and

<l>y = (a;�! �) ' from which we introduce the ma­

trices of functions of A, a(A) = <I>.z1A<I>z,b(A) = 
<I>,Z1B<I>u,c(A) = <I>}}C<I>z ands (A) = <I>[J1S<I>u, sim­
ple to implement on a semi-decentralized architecture. A 
straightforward calculation yield 

a(,\)= (� �) ,b(,\) = (M�1B) ,
c ( ,\) = ( � �) , and s ( ,\) = I,

where M = -M-1(KB ,\-1/2 +Kc ,\1/2). From (9), the 
optimal controller K admits the factorization

K = k(A) = <I>uq(A)<I>.Z1, (11) 

where q (,\) = s-1 (,\) bT (,\) p (,\) , and where for all
,\ E <J, p( ,\) is the unique self-adjoint nonnegative matrix
solving the algebraic Riccati equation 

aT (,\) p +pa(,\) -pb (,\) s-1 (,\) bT (,\) p 
+cT (,\) C (,\) = 0. 

5.2 Approximation of the Functions of A 
We build the approximation in two steps. Firstly, we 

use a rational approximation kR(A) of k(A), then it is ap­
proximated by another function kR,M which is simple to
discretize, and yields an accurate approximation. To do so, 
we use the Dunford-Schwartz formula, see [12], represent­
ing a function of an operator, because it involves only the 
operator ((I -A)-1 which may be simply and accurately
approximated. Since the function k(A) is not known, the
spectrum <J (A) cannot be easily determined, so we approx­
imate k(,\) by a highly accurate rational approximation
kR(A), then the Dunford-Schwartz formula is applied to
kR(A) with a path tracing out ellipses including Ia but no
poles. Since the interval Ia is bounded, for each function 
kij(,\) have a rational approximation over Ia, we write un­
der a global formulation, (which may be understood com­
ponent wise) 

(12) 

where dm, d'm, are matrices of coefficients and R = 
(RN, RD) is the couple comprised of the matrices RN of
numerator polynomial degrees and the matrices RD of de­
nominator polynomial degrees. The path C, in the Dunford­
Schwartz formula, 

is chosen to be an ellipse parameterized by ((8) = 
(1(8) + i(2(8), with 8 E [0,2n] . The parametriza­
tion is used as a change of variable, so the integral can 
be approximated by a quadrature formula involving M 
nodes (81)1=1, .. ,M E [O, 2n] , and M weights (w1)1=1, .. ,M, 
IM (g) = L,t!,1 g (81)w1. 

In the following equations, we state that the matrices 
kR (() associated to the rational approximation with the
numerator polynomial degrees RN and the denominator
polynomial degrees RD. So, for each z E L2(r )2N and
( E C, we introduce the 2N-dimensional vector field

v( = -i('kR (()((I -A)-1 z. 
Decomposing v( into its real part vf and its imaginary part
v&, the couple ( vf, v&) is solution of the system

{ (1vf-(2v&-Avf=Re(-i('kR (())z,
(l3) (2vf + (1v& -Av&= Im (-i('kR (()) z. 

Thus, combining the rational approximation kR and
the quadrature formula yields an approximate realization
kR,M (A) of k (A) , 

1 
M 

kR M (A) Z = - � v(1(1h)w1. ' 27r � l=l 
(14) 

This formula is central in the method, so it is the center 
of our attention in the simulations. A fundamental remark 
is that, a "real-time" realization, kR,M (A) z, requires solv­
ing M systems like (13) corresponding to the M quadra­
ture nodes ((81). The matrices kR (((81)) could be com­
puted "off-line" once and for all, and stored in memory, 
so their determination would not penalize a rapid real-time 
computation. In total, the ultimate parameter responsible of 
accuracy in a real-time computation, apart from spatial dis­
cretization discussed in next Section, is M the number of
quadrature points. 

6. Circuit Implementation 

To realize an optimal control by a set of distributed 
circuits, we introduce a spatial discretization and synthe­
sis of Equation (13). The interval r is meshed with regu­
larly spaced nodes separated by a distance h, we introduce 
Ah, 1 the finite difference discretization of A -1, associated
with the clamping boundary condition. In practice, the dis­
cretization length h is chosen small compared to the dis­
tance between cantilevers. Then, Zh denoting the vector of
nodal values of z, for each (we introduce (vf,h,v&,h), a
discrete approximation of ( vf, v&), solution of the discrete
set of equations, 

(1 vf,h -(2v&,h -Ahvf,h =Re (-i('kR (()) zh, (15) 

(2vf,h + (1v&,h -Ahv&,h =Im (-i('kR (()) Zh· (16)

Finally, an approximate optimal control, intended to be im­
plemented in a set of spatially distributed actuators, could 
be estimated from the nodal values, 

M 
k - 1 � (z R,M,hZh -

27r � V1,hW1, 
l=l 
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Fig. 2: Analog computation of Ah vi. 
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Fig. 3: Five adjacent interior cells. 

estimated at mesh nodes in the following. We propose 
a synthesis of ( 15-16) by a distributed electronic circuit. 
The system is rewritten under the manageable form (17-
18) and for the sake of simplicity, we use the notations a =
Re (-i(kR (()) Zh, f3 =Im (-i(kR (()) Zh, Vi = vf,h, 
and v2 = v&,h. 

6.1 Analog computation of Ah vi and Ah v2 
The analog computation of Ah vi and Ah v2 are made by

Periodic Network of Resistances(PNR) circuits [11]. These 
electronic circuits have been developed to solve a large 
class of PDEs by analog computation. More exactly, PNR 
circuits compute the finite difference solution of a PDE. 

PNR circuits are gathering of cells (Figure 2), the in­
terior cells are indexed by k = 1, ... , N - 1, while the
boundary cells correspond to k = -1, 0, N and N + 1. We
will show that the circuits solve the equations Ah"iui =ii.
If the current sources ii are replaced by a voltage controlled
current sources defined by ii = gvi (with g is a real num­
ber), the voltage outputs of the circuits ui solve g(Ahvi) 
and so Ah vi. The computation of Ah v2 is done in the same
way. 

The interior cell k which compute (Ahvi)k is repre­
sented on Figure 3 with its two adjacent cells on each side. 

We call Pi the resistances between the potentials uik) and

uik±2l, and p2 the resistances between the potentials uik)
and uik±i). By applying the Kirchhoff Current Law (KCL)

at node uik), rearranging some terms and dividing by h4,
the equation of the cell k can be written under the form:

If one choose the negative potential Pi = -h4p0 and posi­

tive potential p2 = h4p0/4, then the potential at node uik) 
is expressed as a function of its neighbor voltages as 

_!_ [ (k-2) - 4 (k-i) + 
6 (k) - 4 (k+l )h• Ui Ui Ui U1 

+ 
(k+2)] .(k) u1 = Po2i ,

which is the stencil of the differential operation A -i. Con­
sequently, the whole electronic circuit composed of N - 1 
cells computes the finite difference approximation ui =
Ah ii = g (Ah vi). The numerical value of Po only changes

the magnitude of the voltages uik). The values of the re­
sistances inside a cell depend only on the circuit topology 
and are easily expressed as a function of p1 or p2, here the
resistances of the cells can be taken as r1 = r3 = r 4 =
r6 =pif4 and r2 = r5 = p2/2. 

The VCCS (Voltage Controlled Current Source) ilk) of

Figure 3 is controlled by the voltage vik) through the equa­

tion ilk) = gvik). The four boundary cells are represented
in Figure 4. The imposed values of the voltages correspond 
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Fig. 4: Four boundary cells. 

to the clamping boundary condition. Remark that the ter­
minals denoted by a cross are not connected, so the resis­
tances are linked by one side at them can be removed with­
out changing the behavior of the circuits. They are saved to 
show clearly the real difference between interior cells and 
boundary cells. 

6.2 Analog computation of equation (17) 

The analog computation of Equation (17) can made by 
an array of classical non inverting summing amplifiers of 
Figure 5. Notice that there is no current exchange between 
these circuits and PNR inputs and outputs, see buffers in 
Figure 3. Analysis of the circuit of Figure 5 leads to (19). 

a 
Rb 

g(Ahvl)k 
Re 

(3 
Rd 

g(Ahv2lk 

Fig. 5: Analog computation of the k-th equation (17). 

With a proper choice of resistances, Figure 5 solve ( 17), 

v(k) = Ri +R2 [&a + &g (Ahv ) 1 Ri R Rb 1 k (19) 
+t,8 + �g (Ahv2)k],

h 1 1 1 1 1 W ere Ru = Ra + Rb + Re + Rd . 

6.3 Analog computation of equation (18) 

In a very similar way, the analog computation of Equa­
tion 18 can made by an array of classical difference sum­
ming amplifiers of Figure 6. Analysis of the circuit of Fig­
ure 6 leads to (20). With a proper choice of resistances, 
Figure 6 solve (18), 

(k} &!!1,e + &!!1 (A ) V2 = R R' R R' g h V2 k
R':' a R' w b (20) 

-]?a - ]?g (Ahv1)k, 
c d 

h 1 1 1 1 d l 1 1 1 w ere R = W + R' + R' an R = W + R' + W. v a b 1 w c d 2 

(3 

Fig. 6: Analog computation of the k-th equation (18). 

7. Numerical Simulation 

In this Section, we validate the approximation method, 
established in Section 5, by a numerical simulation. We 
consider a silicon array comprised of an elastic base 
clamped of 10 elastic cantilevers, with base dimensions 
LB x lB x hB = 500µm x l6.7µm x lOµm, and one can­
tilever dimensions Le x le x he = 41. 7 µm x 12.5µm x 
l.25µm. The model parameters of base and cantilever: the
bending coefficient RB = 1.09 x 10-5 N /m, Re = 2.13 x 
10-4N/m the mass per unit length pB = 0.0233kg/m,
pc = 0.0029lkg/m. In the rational approximation, the
numerator polynomial degrees RN and the denominator
polynomial degrees RD can be chosen sufficiently large
(namely RN = RD = 20) so that the relative errors be­
tween the exact solution k and its rational approximation 

k llkR-kllL2(J,,) b 
.

h d f 10-8 Th' R, e = llkllL2U,,J , can em t e or er o . is

choice has no effect on real-time computation time. 

10' 
Relative error E 

10-·5�---�10---�15---� 20 
Number of Quadrature Nodes (M) 

Fig. 7: The relative error between the exact solution and 
the final approximation 
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Numerical integrations have been performed with a 
standard trapezoidal quadrature rule. The relative error, 

llkR M-kllL2(I ) . E = 1
·
lkll " , between the exact control functionL2(1") 

and final approximation are shown in Figure 7, for the num-
ber of nodes M varying from 5 to 20. It may be easily tuned 
without changing spatial complexity associated with the fi­
nite difference discretization of A -1.

We also present the ratio of the computation time of 
solving the whole system for varying number of nodes M 
to the reference computation time of solving the whole sys­
tem for M = 20, see Figure 8. 

0.95 

�� 0.9 
§.� 
-� 0.85 
"' " � 0.8 

0.75 

Time consumption ratio with respect to M 

10 15 
Number of Nodes (M) 

20 

Fig. 8: The ration of computation time 

8. Conclusion 

In this paper, we have presented a semi-decentralized 
approximation of an optimal control operator applied to a 
two-scale model of microcantilever arrays. This model is 
discretized in y-direction projecting on a transformed ba­
sis of Chebyshev polynomials. It has been shown that the 
semi-decentralized optimal controller can be implemented 
by a set of distributed electronic circuits. Numerical sim­
ulations have been carried out to validate the method and 
study its performances. This method can be extended to 
other optimal control theories, such as LQG or H00• 
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