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Control of a Cantilever Array by Periodic Networks of Resistances

In this paper, we present a two-scale model including an optimal active control for a one-dimensional cantilever array with regularly spaced actuators and sensors. With the purpose of implementing the control in real time, we propose an approximation that may be realized by an ana log distributed electronic circuit. More precisely, our ana log processor is made by Periodic Network of Resistances (PNR). The control approximation method is based on two general concepts, namely on functions of operators and on the Dunford-Schwartz representation formula. We con ducted validations of the control approximation method as well as of its effect in the complete control loop.

Introduction

In the past decade, a number of papers have been fo cused on semi-decentralized distributed optimal control for systems with distributed actuators and sensors. Most of them are dealing with infinite length systems, see [START_REF] Bamieh | Distributed control of spatially invariant systems[END_REF] and [START_REF] Paganini | Decentralization prop erties of optimal distributed controllers[END_REF] for systems governed by partial differential equations, and [START_REF] Dullerud | Distributed control design for spatially interconnected systems[END_REF] for discrete systems. In the papers [START_REF] Kader | Approxi mation of an optimal control law using a distributed electronic circuit: application to vibration control[END_REF] and [START_REF] Kader | Dis tributed optimal control of vibrations: a high fre quency approximation approach[END_REF] the authors have introduced an approximation of an optimal control to a finite length beam endowed with a periodic dis tribution of piezoelectric sensors and actuators. Even if it was giving satisfactory results, it was suffering from some limitations. In [START_REF] Lenczner | Semi decentralized approximation of optimal control for partial differential equations in bounded domains[END_REF] it has been extended so that to cover a larger range of systems and to increase its precision and robustness. Indeed, the new method does not require that each operator of the state equation and of the cost func tional be functions of a same operator but they must be only functions of a same operator up to some change of variable operators. Regarding precision, the Taylor series approximating a function of an operator has been replaced by the use of the Dunford-Schwartz representation formula followed by a quadrature rule for the contour integral.

Here we apply our new method to a recently developed and validated two-scale model of cantilever arrays, submit ted in the paper [START_REF] Lenczner | A multiscale model of cantilever ar rays and its updating[END_REF]. It is rigorously justified thanks to an adaptation of the two-scale approximation method intro duced in [START_REF] Lenczner | A multiscale model for atomic force microscope array mechanical behavior[END_REF] and detailed in [START_REF] Lenczner | A two-scale model for atomic force microscopes arrays in static operat ing regime[END_REF]. Its main advantage is that in the same time it requires little computing effort and it is reasonably precise. This paper presents results from an implementation of the new semi-decentralized optimal control strategy on the two-scale model of cantilever arrays. We provide results re garding precision and cost. However our calculations have been carried out using the simplest optimal control strat egy, namely a Linear Quadratic Regulator. As in [START_REF] Kader | Dis tributed optimal control of vibrations: a high fre quency approximation approach[END_REF], we also provide a realization of the semi-decentralized control scheme through a Periodic Network of Resistances (PNR), implementing a finite difference scheme for the partial dif ferential operator in the Dunford-Schwartz formula. Fi nally, we quote that the entire approach can be extended to other linear optimal control problems, i.e. LQG or H= controls as well as to more physical actuating and sensing principles.

A Two-Scale Model of Cantilever Arrays

We consider a one-dimensional cantilever array com prised of an elastic base, and a number of clamped elas tic cantilevers with free end, see Figure 1. Assuming that the number of cantilevers is sufficiently large, a homoge nized model was derived using a two-scale approximation method. This is reported in the detailed paper [START_REF] Lenczner | A two-scale model for atomic force microscopes arrays in static operat ing regime[END_REF] devoted to static regime. The corresponding model extended to dy namic regime is introduced in the letter [START_REF] Lenczner | A multiscale model for atomic force microscope array mechanical behavior[END_REF]. The modelling papers were written in view of Atomic Force Microscopy application.

Fig. 1: Array of Cantilevers

After a number of simplifications, the approximate ho mogenized model expressed in the two-scale referential, which is a rectangle n = (0, L B ) x (0, D(: ). The parame ters LB and L(: represent respectively the base length in the macroscale x-direction and the scaled cantilever length in the microscale y-direction. The base is modelled by the liner= {(x,y) Ix E (O, L B ) and y = O}, and the rectan gle n is filled by an infinite number of cantilevers. We de scribe the system motion by its bending displacement only. So, the base is governed by an Euler-Bernoulli beam equa tion with two kinds of distributed forces, one exerted by the attached cantilevers and the other, denoted by u(t, x, 0), originating from an actuator distribution. The bending dis placement, the mass per unit length, the bending coefficient and the scaled cantilever width being denoted by w(t, x, 0), p B , R B and C(:, the base governing equation states

B n2 R B n4 O* R C n 3 . r p UuW + UX•••Xw + {,c UyyyW = u Ill . ( 1 
)
The base is assumed to be clamped, so the boundary con-ditions are

W = OxW = 0, (2) 
at its ends. Each cantilever is oriented in the y-direction, and its motion is governed by the Euler-Bernoulli equation distributed along the y-direction. It is subjected to a con trol force u( t, x, y) taken as distributed along each whole .:l = It)Q L ll a ;xwn (t,x) ll�2 ( r ) n=l [START_REF] Lenczner | A two-scale model for atomic force microscopes arrays in static operat ing regime[END_REF] + llun(t,x)ll�2 ( r ) dt.

The choice of the functional is related to vibration stabi = Io La (u v)lr dx + l(; Io. u v dydx,

for any regular function v, satisfying in particular the con ditions: v = Bxv = 0 at both end of the base and ayv = 0 at y = 0 at the junction.

Model Reformulation

To simplify the model, but keeping its distributed fea ture, we discretize in the y-direction projecting on a ba sis Kn(Y) = I� yT�(y)dy, where Tn(Y) is the basis of Chebyshev polynomial. We define the approximations of the displacement and of the control { w(t, x, y) ::::::! n � l Wn(t, x)Kn(y), u(t,x,y) ::::::! L Un(t,x)Kn(y), n=l

where Wn ( t, x) and Un ( t, x) are the polynomial coeffi cients in the approximation of w and u respectively. We N also choose v ::::::! L vm(t,x)Km(Y), so we find that m=l ( Wn ( t, x) 

Classical Formulation of the LQR Problem

Now, we write the above LQR problem in a classical abstract setting, see [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF], even if we do not detail the func tional framework. We set Z T = ( Wn Ot Wn ) n= 1 2 ... N the state variable, uT = ( un)n=I,2,. . ., N the contr�l LQR problem, consisting in minimizing the functional un der the constraint [START_REF] Lenczner | A multiscale model for atomic force microscope array mechanical behavior[END_REF], may be written under its usual form as Btz (t, x) = Az (t) +Bu (t) fort > 0 and z (0) = zo , [START_REF] Lenczner | A multiscale model of cantilever ar rays and its updating[END_REF] with the minimized cost functional [START_REF] Lenczner | A two-scale model for atomic force microscopes arrays in static operat ing regime[END_REF]. We know that (A, B) is stabilizable and that (A, C) is detectable, in the sense that the system is controllable and observable. It fol lows that for each zo , the LQR problem (8) admits a unique solution u* = -K z, [START_REF] Lenczner | Semi decentralized approximation of optimal control for partial differential equations in bounded domains[END_REF] where K = s-1 B* P, and P is the unique self-adjoint non negative solution to the operational Riccati equation A*P +PA-PBS -1 B*P +C*C=0. (10) 

Semi-Decentralized Approximation

This Section is devoted to formulate the approxima tion method. The mathematical derivation has been intro duced in a paper [START_REF] Lenczner | Semi decentralized approximation of optimal control for partial differential equations in bounded domains[END_REF]. We denote by A, the mapping: A : where M = -M -1 (K B ,\ -1/ 2 +Kc ,\ 1/ 2 ). From (9), the optimal controller K admits the factorization

K = k(A) = <I>uq(A)<I>.Z 1 , (11) 
where q (,\) = s-1 (,\) bT (,\) p (,\) , and where for all ,\ E <J, p( ,\) is the unique self-adjoint nonnegative matrix solving the algebraic Riccati equation aT (,\) p +pa(,\) -pb (,\) s-1 (,\) bT (,\) p +cT (,\) C (,\) = 0.

Approximation of the Functions of A

We build the approximation in two steps. Firstly, we use a rational approximation kR(A) of k(A), then it is ap proximated by another function kR,M which is simple to discretize, and yields an accurate approximation. To do so, we use the Dunford-Schwartz formula, see [START_REF] Yosida | Functional analysis[END_REF], represent ing a function of an operator, because it involves only the operator ((I -A) -1 which may be simply and accurately approximated. Since the function k(A) is not known, the spectrum <J (A) cannot be easily determined, so we approx imate k(,\) by a highly accurate rational approximation kR(A), then the Dunford-Schwartz formula is applied to kR(A) with a path tracing out ellipses including Ia but no poles. Since the interval Ia is bounded, for each function kij(,\) have a rational approximation over Ia, we write un der a global formulation, (which may be understood com ponent wise) In the following equations, we state that the matrices kR (() associated to the rational approximation with the numerator polynomial degrees R N and the denominator polynomial degrees RD. So, for each z E L 2 (r ) 2 N and ( E C, we introduce the 2N-dimensional vector field v ( = -i('kR (()((I -A) -1 z.

Decomposing v ( into its real part vf and its imaginary part v&, the couple ( vf, v&) is solution of the system Thus, combining the rational approximation kR and the quadrature formula yields an approximate realization kR,M (A) of k (A) ,

1 M kR M (A) Z = -� v ( 1 ( 1h ) w1. ' 27r � l=l ( 14 
)
This formula is central in the method, so it is the center of our attention in the simulations. A fundamental remark is that, a "real-time" realization, kR,M (A) z, requires solv ing M systems like (13) corresponding to the M quadra ture nodes ((81). The matrices kR (((81)) could be com puted "off-line" once and for all, and stored in memory, so their determination would not penalize a rapid real-time computation. In total, the ultimate parameter responsible of accuracy in a real-time computation, apart from spatial dis cretization discussed in next Section, is M the number of quadrature points.

Circuit Implementation

To realize an optimal control by a set of distributed circuits, we introduce a spatial discretization and synthe sis of Equation (13). The interval r is meshed with regu larly spaced nodes separated by a distance h, we introduce Ah, 1 the finite difference discretization of A -1 , associated with the clamping boundary condition. In practice, the dis cretization length h is chosen small compared to the dis tance between cantilevers. Then, Zh denoting the vector of nodal values of z, for each (we introduce (v f,h ,v &,h ), a discrete approximation of ( vf, v&), solution of the discrete set of equations,

( 1 v f,h -(2v& ,h -Ahv f,h =R e (-i(' kR (() ) zh, (15) (2vf,h + ( 1 v &,h -Ahv& ,h =I m (-i(' kR ( ()) Zh• (16)
Finally, an approximate optimal control, intended to be im plemented in a set of spatially distributed actuators, could be estimated from the nodal values,

M k - 1 � (z R,M,hZh -27r � V 1 ,hW 1, l=l (Ahi1)i (J\hidk-2 (J\hidk-1 (J\hidk (A1.idk+1 (J\hidk+2 (J\hii)N-1 =V ,A =0 (1) u, 0•-2) u, (k-1) u, (J;) u, (k+I) u, (Jc+2) u, 
(N-1)
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. , Fig. 2: Analog computation of Ah vi.

g(A,.v1h, -2 g(A,.v1h, -1 estimated at mesh nodes in the following. We propose a synthesis of ( 15-16) by a distributed electronic circuit. The system is rewritten under the manageable form (17- 18) and for the sake of simplicity, we use the notations

u \ k-2) u \ k-1) g(A,.v1)k u \ k) g(J\h VJ )k,+J (Ac +!) U1 g(J\h VJ )k,+2 (Ac +2) Ul .(k) - (k) ii -9 V 1
a = R e ( -i ( k R ( ( ) ) Zh, f3 =I m ( -i ( k R ( ( ) ) Zh, V i = v f,h ,
and v2 = v &,h .

Analog computation of Ah vi and Ah v2

The analog computation of Ah vi and Ah v2 are made by Periodic Network of Resistances(PNR) circuits [START_REF] Ratier | Towards 2d electronic circuits in the spatial domain[END_REF]. These electronic circuits have been developed to solve a large class of PDEs by analog computation. More exactly, PNR circuits compute the finite difference solution of a PDE. PNR circuits are gathering of cells (Figure 2), the in terior cells are indexed by k = 1, ... , N -1, while the boundary cells correspond to k = -1, 0, N and N + 1. We will show that the circuits solve the equations Ah" i ui =ii.

If the current sources ii are replaced by a voltage controlled current sources defined by ii = gvi (with g is a real num ber), the voltage outputs of the circuits ui solve g(Ahvi)

and so Ah vi. The computation of Ah v2 is done in the same way.

The interior cell k which compute (Ahvi) k is repre sented on Figure 3 with its two adjacent cells on each side.

We call P i the resistances between the potentials ui k) and ui k ± 2 l, and p 2 the resistances between the potentials ui k)

and ui k ± i ) . By applying the Kirchhoff Current Law (KCL) at node ui k) , rearranging some terms and dividing by h4, the equation of the cell k can be written under the form:

If one choose the negative potential P i = -h4p0 and posi tive potential p 2 = h4p0/4, then the potential at node ui k)

is expressed as a function of its neighbor voltages as

_!_ [ ( k -2 ) -4 ( k -i ) + 6 ( k) -4 ( k +l ) h• Ui Ui Ui U1 + ( k + 2 ) ]
.( k) The analog computation of Equation (17) can made by an array of classical non inverting summing amplifiers of Figure 5. Notice that there is no current exchange between these circuits and PNR inputs and outputs, see buffers in With a proper choice of resistances, Figure 5 solve ( 17),

v (k) = R i + R 2 [ & a + & g (Ahv ) 1 Ri R Rb 1 k (19) + t ,8 + �g (Ahv2)k], h 1 1 1 1 1 W ere R u = R a + Rb + Re + R d .

Analog computation of equation (18)

In a very similar way, the analog computation of Equa tion 18 can made by an array of classical difference sum ming amplifiers of Figure 6. Analysis of the circuit of Fig ure 6 leads to (20). With a proper choice of resistances, Figure 6 solve (18),

(k } &!!1 ,e + &!!1 (A ) V2 = R R' R R' g h V 2 k R':' a R' w b (20) 
-]?a -]?g (Ahv1)k, . is choice has no effect on real-time computation time. .

c d h 1 1 1 1 d l 1 1 1 w ere R = W + R' + R' an R = W + R' + W.
E = 1
• lkll " , between the exact control function L2(1") and final approximation are shown in Figure 7, for the number of nodes M varying from 5 to 20. It may be easily tuned without changing spatial complexity associated with the fi nite difference discretization of A -1 .

We also present the ratio of the computation time of solving the whole system for varying number of nodes M to the reference computation time of solving the whole sys tem for M = 20, see Figure 8. In this paper, we have presented a semi-decentralized approximation of an optimal control operator applied to a two-scale model of microcantilever arrays. This model is discretized in y-direction projecting on a transformed ba sis of Chebyshev polynomials. It has been shown that the semi-decentralized optimal controller can be implemented by a set of distributed electronic circuits. Numerical sim ulations have been carried out to validate the method and study its performances. This method can be extended to other optimal control theories, such as LQG or H00•

  cantilever. It can be replaced by any other realistic force distribution. Denoting by w(t, x, y), pc and Rc cantilever bending displacements, the mass per unit length, and the bending coefficient, the governing equation in (x, y) E f2 is c >) 2 RC >) 4 p Utt W + U y ••• y W = U, endowed with the boundary conditions

  t, Ls)Kn(O) = 0. In(6), we use the notations n=l M m,n = p8(KmKn)lr + l(;p c Io Lc KmKn dy, Kf!, n = R 8 (KmKn) lr , K;;,: n = l(;Rc Io Lc a;yKm8�yKn dy, B m,n = (KmKn) Ir + l(; Io Lc KmKn dy.The LQR problem is set for control variables (un)n =I,2,. .. , N E L 2 (r ) N and for the cost functional
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( 4 )

 4 lization of the microcantilever array.representing an end clamped in the base, and a free end. The weak formulation associated to (1-4) states as Io La (p 88ftw v + R8a ;xwa;x v) lr dx +l e Io. pcaitw v + Rca; Y wa; Y v dydx[START_REF] Kader | Dis tributed optimal control of vibrations: a high fre quency approximation approach[END_REF] 

  )n=l , 2 , -•• , N are the solutions to a set of equations posed on r , N L Mm,n 8ftwn + Kf!,, n a;, ... x Wn n,m=l N -+K;;,, nw n = L Bm,nUn in [O, oo ) x r. n,m=l N The boundary conditions are L wn(t, O)Kn(O) N L OxWn(t, O)Kn(O) n=l n=l N 0 and L Wn(t, Ls)Kn(O) n=l

  able, = -( M-1 (K8a; + Kc)) NxN O NxN the ( O NxN ) state operator, B = (M_ 1 B) NxN the control operator, C = ( 8;x 1 NxN O NxN ) the observation operator, O NxN O NxN and S = I NxN the weight operator. Consequently, the

f

  _____, W, where Wi s the unique solution of a ; ... x W = f in r with the boundary conditions w = OxW = 0 for x = { 0, L B }. The spectrum O" (A) is discrete and made up of real eigenvalues A k • They are solutions to the eigen value problem A(h = A k cP k with 11¢ k ll L 2 ( r ) = 1. In the sequel, Ia = (O"min, O"max ) refers to an open interval that includes the complete spectrum.

5. 1

 1 Factorization of K by a Matrix of Functions of A In this part, we introduce the factorization of the con troller K under the form of a product of a matrix of functions of A. To do so, we introduce the change of variable operators <I> z = ( �! �) , <I>u = I and <l>y = ( a;�! �) ' from which we introduce the ma trices of functions of A, a(A) = <I>.z 1 A<I>z,b(A) = <I>,Z 1 B<I>u,c(A) = <I>}}C<I>z ands (A) = <I>[J 1 S<I>u, sim ple to implement on a semi-decentralized architecture. A straightforward calculation yield a(,\)= (� �) ,b(,\) = ( M � 1 B ) , c ( ,\) = ( � � ) , and s ( ,\) = I ,

( 12 )

 12 where dm, d'm, are matrices of coefficients and R = ( R N , RD ) is the couple comprised of the matrices R N of numerator polynomial degrees and the matrices RD of de nominator polynomial degrees. The path C, in the Dunford Schwartz formula, is chosen to be an ellipse parameterized by ((8) = ( 1 (8) + i(2(8), with 8 E [0,2n] . The parametriza tion is used as a change of variable, so the integral can be approximated by a quadrature formula involving M nodes (81)1 = 1 , .. ,M E [O, 2n] , and M weights (w1)1 = 1 , .. ,M, I M (g) = L,t!, 1 g (81) w1.
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 1 vf-( 2 v&-Avf=Re(-i( ' kR (() ) z, ( l 3) (2vf + ( 1 v& -Av&= I m (-i(' kR ( ()) z.

Fig. 3 :

 3 Fig. 3: Five adjacent interior cells.

Figure 3

 3 Figure 3 is controlled by the voltage vi k) through the equa tion ilk) = gvi k) . The four boundary cells are represented in Figure 4. The imposed values of the voltages correspond

Fig. 4 :

 4 Fig. 4: Four boundary cells.

6. 2

 2 Analog computation of equation (17)

Figure 3 .Fig. 5 :

 35 Fig. 5: Analog computation of the k-th equation (17).

2 ( 3 Fig. 6 :

 236 Fig. 6: Analog computation of the k-th equation (18).

  In this Section, we validate the approximation method, established in Section 5, by a numerical simulation. We consider a silicon array comprised of an elastic base clamped of 10 elastic cantilevers, with base dimensionsL B x l B x h B = 500µm x l6.7µm x lOµm, and one can tilever dimensions Le x le x he = 41. 7 µm x 12.5µm x l.25µm. The model parameters of base and cantilever: the bending coefficient R B = 1.09 x 10-5 N /m, R e = 2.13 x 10-4 N/m the mass per unit length p B = 0.0233kg/m, p c = 0.0029lkg/m. In the rational approximation, the numerator polynomial degrees R N and the denominator polynomial degrees R D can be chosen sufficiently large (namely R N = R D = 20) so that the relative errors be tween the exact solution k and its rational approximation k llkR-kllL2(J,,) b . h d f 10-8 Th' R, e = llkllL2U,,J , can em t e or er o
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 7 Fig. 7: The relative error between the exact solution and the final approximation
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 8 Fig. 8: The ration of computation time