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Dynamics in the Sherrington-Kirkpatrick Ising spin glass at and above Tg
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A detailed numerical study is made of relaxation at equilibrium in the Sherrington-Kirkpatrick Ising spin glass
(ISG) model, at and above the critical temperature Tg . The data show a long time stretched exponential relaxation
q(t) ∼ exp{−[t/τ (T )]β(T )} with an exponent β(T ) tending to ≈1/3 at Tg . The results are compared to those
which were observed by A. T. Ogielski, [Phys. Rev. B 32, 7384 (1985)] in the three-dimensional ISG model and
are discussed in terms of a phase space percolation transition scenario.
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I. INTRODUCTION

The Sherrington-Kirkpatrick (SK) Ising spin glass (ISG)
model has been intensively studied for almost 40 years.
Introduced1,2 as a starting point for studying Edwards-
Anderson-like3 spin glasses, it is a classical mean-field N -spin
Ising model in which there are quenched random interactions
between all pairs of spins. It has an ordered spin glass phase
below the critical temperature Tg = 1. The static properties
such as the specific heat, the magnetic susceptibility, and the
spin glass order parameter are known to high precision in
the ordered state and are well understood in terms of Parisi’s
replica symmetry breaking (RSB) theory4 and its subsequent
developments. The paramagnetic regime has been considered
“trivial” in that there are simple exact expressions for the basic
static physical properties in the large N limit.

In the ordered state the dynamics are very slow; the equilib-
rium relaxation time diverges exponentially when the number
of sites N goes to infinity.5–7 For the paramagnetic state, the
dynamics has been discussed in early work, Refs. 2 and 10–12.
The ISG relaxation corresponds to a continuous spectrum
of relaxation frequencies, for which an explicit linearized
expression was given in Ref. 2, leading to a relaxation function
for Gaussian interactions and Glauber dynamics in the form
of an integral, Ref. 2, Eq. (5.27). It was concluded that in the
large size limit at Tg the relaxation at thermal equilibrium of
the autocorrelation q(t) = (1/N )

∑
i〈Si(0)Si(t)〉 as a function

of time t (in Monte Carlo steps per spin) would be q(t) ∼ t−1/2,
and above Tg the very long time limit would take the form of
a simple exponential q(t) ∼ exp{−[t/τ (T )]} corresponding
to a cutoff in the relaxation frequency spectrum. As far as
we are aware, after exploratory numerical calculations on a
very limited number of Gaussian interaction samples over
a few Glauber time steps in Ref. 2, no further numerical
work on the dynamics in this temperature region has been
reported.

Here a detailed numerical study of the thermal equilibrium
relaxation of the autocorrelation function q(t,N ) in the ordered
state as a function of time t in updates per spin and N the
number of spins7 is extended to temperatures at and above Tg .
At Tg the relaxation is always finite size limited; the expected
scaling form

q(t,N )N1/3 = F [−(t/N2/3)] (1)

is observed. For the three temperatures above Tg at which
measurements were made the large size limit behavior [q(t,N )
independent of N ] is reached with the largest samples studied.

For q(t) values down to atleast q(t) ≈ 10−6 the autocorre-
lation function decay is strongly nonexponential. Satisfactory
long t fits are given both above Tg and in the finite size scaling
regime at Tg by stretched exponentials

q(t) ∼ exp{−[t/τ (T )]β(T )}, (2)

with a temperature-dependent exponent β(T ) which is smaller
than 1 and which tends to β(T ) ∼ 1/3 at T = Tg .13

II. THE MEAN-FIELD FERROMAGNET

Before discussing the SK data analysis it is instructive as an
illustration to recall the (nonequilibrium) relaxation behavior
for the mean-field Ising ferromagnet, for which exact results by
Suzuki and Kubo14 were discussed in Ref. 2. At temperatures
above Tg = 1 the relaxation takes the form

m(t,T ) = (1 − β)1/2/{(1 − β + β3/3)

× exp[2(1 − β)t] − β3/3}1/2, (3)

where β = 1/T , which becomes

m(t,Tc) = [1 + (2/3)t]−1/2 (4)

at Tc. It is easy to see from Eq. (3) that above Tc and
beyond a time t � τ (T ) = 1/(1 − β), m(t,T ) is essentially
equal to A(T ) exp[−t/τ (T )], a pure exponential with a time-
independent prefactor,

A(T ) = [(1 − β)/(1 − β + β3/3)]1/2 (5)

(see Fig. 1). Beyond t ≈ τ only one single mode contributes
to the relaxation in the mean-field ferromagnet. At short times
[time zero to time ∼ τ (T )] there is a more complex function
which connects up between the starting point m(0,T ) = 1 and
the asymptotic region. At no time for temperatures above Tc

is m(t,T ) ≈ t−1/2 exp(−t/τ ) a useful approximation.
It can be helpful to show the data in the form of a derivative

plot −d log[m(t)]/d log(t) against t . Then a pure exponential
m(t) = A exp[−t/τ ] appears as a straight line of slope 1/τ

passing through the origin.
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FIG. 1. (Color online) An example of an m(t) plot for the
mean-field ferromagnet calculated using Eq. (3). The points cor-
respond to m(t) at T = 1.05Tc; the black line is the algebraic
critical behavior, and the blue curve is the asymptotic pure
exponential.

III. SK SIMULATIONS

We now return to the SK simulations. Systems of size N =
64, 128, 256, 512, 1024, and 2048 were equilibrated using the
procedure described in Ref. 7. Simulations were made on 1024
independent disorder samples at each size with two clones
simulated in parallel. (As shown in Ref. 6, two clones allow
one to build up a noisy but unbiased estimate of the thermal
fluctuations. Here they are only used to decrease the thermal
fluctuations). We performed 107 Monte Carlo updates per site
after thermalization, with measurements of q(t) made every
four time intervals. Both Metropolis and heat-bath relaxation
runs were carried out. It can be noted that SK simulations are
numerically demanding: there are about as many individual
spin-spin interactions in an N = 2048 SK sample as in an
L = 90 sample in dimension 3.

In the N = 256 data set, and that set only, it turns out that
one specific disorder sample i gives qi(t,T ) that are very far
from the values for all the 1023 other samples of the same size.
This is true for sample i with either heat bath or Metropolis
updating schemes and for all values of T . For example, at
T = Tc = 1 we have 1024 estimates for q(256,t = 1024) with
a median equal to 0.000 004 0, first and third quartiles equal
to −0.000 118 3 and 0.000 129 2, respectively, and an isolated
maximum value equal to 0.294 604 0. This single outlier was
omitted from the global analysis, since it would have led to a
long t distortion of our values of the mean 〈q(256,t,T )〉 and the
statistical error. At long t when 〈q(t,T )〉 is very small, if one
single sample by statistical accident is very uncharacteristic it
can have a big influence on the mean and the error. Note that in
our simulation the thermal noise on 〈q(t,T )〉 is much smaller
than the disorder noise.

The temperatures at which measurements were made are
T = Tg = 1 and T = 1.1, 1.2, and 1.3.

IV. SK ANALYSIS

The standard dynamic finite size scaling rule exactly at the
critical point can be written

qc(L,t) = L−β/νF [t/τ (L)], (6)

with τ (L) ∼ Lz. It is well known that quite generally finite size
scaling is modified above the upper critical dimension du, with
the combination (T − Tg)L1/ν replaced by (T − Tg)N1/(duν),8

where N is the number of sites, namely, L is replaced by N1/du .
The SK model is the infinite dimensional version of a

model with upper critical dimension du = 6,8,9 and its scaling
behavior is accordingly described by the effective length
scale Leff = N1/6. This result can be obtained directly by
noting that in the critical region the Landau expansion of the
free energy of the replicated model starts (symbolically) by
a(T − Tg)Q2 + bQ3, with Q being the n by n matrix qa,b

where n is the number of replica. The partition function takes
the form

∫
dQ exp{−N [a(T − Tg)Q2 + bQ3]}, and after the

change of variable Q = X/[(T − Tg)N ]1/2 one obtains a free
energy that is a function of (T − Tg)N1/3, in agreement with
the above statement since ν = 1/2 for this model.

Therefore for dimension 6 and above (including SK) the
effective ISG “length” scale is Leff = N1/6. The mean-field
ISG critical exponents are β = 1, ν = 1/2, and z = 4.

Hence in the SK case the dynamic scaling becomes

qc(N,t) ∼ N−1/3F [t/N2/3], (7)

so that in a critical temperature scaling plot one should expect
qc(N,t)N1/3 to be the function F [t/N2/3].

In conditions where qc(N,t) approaches the N → ∞ limit,
the scaling rule becomes

qc(t) ∼ N−1/3(t/N2/3)−1/2 = t−1/2 (8)

independent of N . This is the situation for short times and
large N (Fig. 2).

For reasons to be discussed below, in addition to testing
this scaling form we want to test if the long time critical
finite size scaling function F [x] is consistent with the stretched
exponential form B exp[−(x)β] having the particular exponent
value β = 1/3. In Fig. 3 the scaled critical temperature
relaxation data are plotted as log[q(t)N ] on the y axis against
(t/N2/3) on the x axis. The long time critical scaling rule is
well obeyed over the whole range of sizes N which have been
studied; beyond times of a few Monte Carlo steps qc(N,t)N1/3

is indeed an N -independent function F [t/N2/3] to within the
error bars for all t and N , with no visible sign of corrections
to finite size scaling.

The initial very short time relaxation (Fig. 2, invisible
in Fig. 3) follows approximately the N -independent form
q(t) ∼ t−1/2 as predicted. As can be seen in Fig. 3, within the
numerical precision the finite size scaling function is from then
on compatible with a stretched exponential having exponent
β = 1/3.

For the three temperatures above Tg , T = 1.1, 1.2, and 1.3,
the raw q(N,t) data are shown in Figs. 4, 5, and 6. It can be
seen that at each of these temperatures the size dependence
saturates with increasing N . The q(N,t) curves for the largest
sizes coincide within the numerical error bars, so these data
can be taken to represent the “infinite” N limit behavior.
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FIG. 2. (Color online) The short time scaled SK relaxation data
q(t)N 1/3 against t/N 2/3 in logarithmic coordinates at the critical
temperature T = 1. The colors for N = 64, 128, 256, 512, 1024, and
2048 are yellow, pink, cyan, green, red, and black. For clarity the
N = 2048 points are larger than the others. The blue line indicates
qc(t) ∼ t−1/2.

The q(t) curves calculated with the expression given in
Ref. 2, Eq. (5.27), are almost identical to the limiting numerical
q(N,t) curves for T = 1.1 and T = 1.2 but the calculated
curve for T = 1.3 lies somewhat above the numerical data and
has a rather different shape. The good quantitative agreement
for the first two temperatures is perhaps fortuitous as the
expression in Ref. 2 corresponds to a model with Gaussian
interactions, and a linearization approximation was made in
the calculation. The authors expected the expression to become
accurate only at temperatures well above Tg . Nevertheless the

FIG. 3. (Color online) The scaled SK relaxation data q(t)N1/3

in logarithmic coordinates against t/N2/3 at the critical temperature
T = 1. The color code is the same as in Fig, 2. The blue curve is a
stretched exponential q(t)N1/3 = 14 exp{−[(t/N2/3)]}.

FIG. 4. (Color online) The raw relaxation data q(t) against t at
the temperature T = 1.1. The color code for N is the same as in
Fig. 2. The fit of Eq. (2) to the largest sizes is shown as the full black
curve. q(t) calculated from Ref. 2, Eq. (5.27), is shown as the full
blue (top) curve.

approach of Ref. 2 is substantially validated by the numerical
data.

We can note that the simulations made with the Metropolis
updating rules (not shown) provide q(t,N ) data which are
very similar to the heat-bath data but with a global shift in
the time scale to times shorter by a factor of between 2 and
3 depending on the temperature. It can be shown that as a
general rule q(t) will fall faster with Metropolis updating than
with heat-bath/Glauber updating; the Metropolis acceptance
rate is higher than that for heat-bath/Glauber updating with a
ratio of which depends on temperature.

FIG. 5. (Color online) The raw relaxation data q(t) against t at
the temperature T = 1.2. The color code for N is the same as in
Fig. 2. The fit of Eq. (2) to the largest sizes is shown as the full black
curve. q(t) calculated from Ref. 2, Eq. (5.27), is shown as the full
blue (top) curve.
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FIG. 6. (Color online) The raw relaxation data q(t) against t at
the temperature T = 1.3. The color code for N is the same as in
Fig. 2. The fit of Eq. (2) to the largest sizes is shown as the full black
curve. q(t) calculated from Ref. 2, Eq. (5.27), is shown as the full
blue (top) curve.

The figures are of the same form as in the ferromagnetic
example of Fig. 1 with an initial short time regime followed
by a long time asymptote, except that the long time ferro-
magnet pure exponential asymptote is replaced by a stretched
exponential. Beyond the initial short time regime the stretched
exponentials fit the large N SK data to within the numerical
precision.

If the stretched exponential form Eq. (2) is assumed, then

−d log[q(t)]/d log(t) = β(T )(t/τ )β(T ). (9)

An example of a plot of −d log[q(t)]/d log(t) against t is
shown in Fig. 7. For a pure exponential relaxation β = 1

FIG. 7. (Color online) The derivative plot −d log[q(t)]/d log(t)
against t at T = 1.1 for the two largest sizes, N = 2048 (black) and
1024 (red/gray). The fit (blue curve) is for the same parameters as in
Fig. 4.

the data points would lie on a straight line going through
the origin. This is clearly not the case. By analogy with the
ferromagnetic behavior, beyond an initial short time region the
large N data are fitted by B(T )tβ(T ) curves with β(T ) less than
1 and B(T ) = β(T )/τ (T )β(T ).

Satisfactory fits are obtained with β(1.1) ≈ 0.52, τ (1.1) ≈
6.8; β(1.2) ≈ 0.61, τ (1.2) ≈ 4.2; and β(1.3) ≈ 0.68, τ (1.3) ≈
3.2 for the heat-bath updates. These fits are shown as the black
curves in Figs. 4 to 6.

The relaxation time τ (T ) is of course increasing as Tg

is approached but with only three temperature points it is
difficult to estimate a functional form for τ (T ). However, the
most significant result is that the relaxation above Tg in the
effectively infinite size limit can be represented by stretched
exponentials having exponents β(T ) which are less than 1 and
which drop regularly as Tg is approached.

From this result for the large N limit relaxation data at
the temperatures above Tg together with the scaled finite size
limited relaxation at criticality, it can thus be concluded that
in the paramagnetic region the SK model thermodynamic
limit equilibrium relaxation can be treated as essentially a
stretched exponential, with an exponent β(T ) which decreases
continuously as the temperature is lowered. β(T ) tends to a
value βc ≈ 1/3 at criticality. It should be underlined that this
behavior has been followed down numerically though 5 orders
of magnitude in q(t) at each temperature.

V. ISG IN DIMENSION THREE

It is instructive to compare with the situation for a finite
dimension model. Ogielski15 fitted thermodynamic limit q(t)
data on the bimodal ISG in dimension 3 using an empirical
function of the form

q(t) ∼ t−x(T ) exp{−[t/τ (T )]β(T )}, (10)

where an algebraic prefactor multiplies a stretched expo-
nential. Ogielski15 estimated Tg ≈ 1.175 which is close to
recent estimates Tg ≈ 1.12.16,17 The values estimated for
the stretched exponential exponent β(T ) decrease regularly
from β(T ) ≈ 1 at a temperature of about 4.0 to β(T ) ≈ 0.35
at a temperature just above Tg . The relaxation time τ (T )
diverges as T → Tg and the algebraic prefactor exponent x(T )
decreases from ≈0.5 at high temperatures to (d − 2 + η)/2z ∼
0.070 at Tg . These equilibrium relaxation results were obtained
from high quality simulations on very large samples (up to
L = 64) and have never been improved on since.

Thus the general pattern of the paramagnetic state relax-
ation reported by Ogielski15 in the three-dimensional (3D) ISG
and the observed behavior of the SK model described above
show striking similarities; above all both sets of data in the
paramagnetic region are consistent with stretched exponential
decay having an exponent β(T ) tending to a critical value
βc ≈ 1/3 at Tg . These two models represent the lowest integer
dimension at which finite temperature ISG ordering takes place
and the infinite dimension mean-field limit (for which the
RSB theory is well established), respectively, so it would seem
reasonable to expect that the same pattern of relaxation should
hold for ISGs at all intermediate dimensions also, both above
and below the upper critical dimension (see Ref. 18).

054442-4



DYNAMICS IN THE SHERRINGTON-KIRKPATRICK ISING . . . PHYSICAL REVIEW B 84, 054442 (2011)

Shortly after Ogielski’s work15 was published it was noted
that his data were consistent with β(Tg) = 1/3, and it was
conjectured19 that stretched exponential relaxation with an
exponent tending to precisely 1/3 at criticality could be
universal in ISGs. The argument is briefly summarized in the
next section.

VI. PERCOLATION TRANSITION SCENARIO

A thermodynamic phase transition can be regarded as a
qualitative change in the topology of the thermodynamically
attainable phase space with decreasing temperature, i.e., with
decreasing internal energy. Thus for a standard ferromagnetic
transition a high temperature spherical phase space becomes
more and more “elliptic” as the temperature is lowered and
the number of attainable states drops; finally at Tc it splits
into two (up and down) mirror-image subspaces. In a naı̈ve
scenario based on RSB, for an ISG at Tg phase space shatters
into a large number of inequivalent clusters. In Euclidean space
there is a well-studied transition of this type, the percolation
transition. For a concentration p > pc there is a giant cluster
of sites while just below pc there are only small inequivalent
clusters.

The total phase space of an N -spin S = 1/2 Ising system is
an N -dimensional hypercube. Relaxation of any N -spin Ising
system by successive single spin updates can be considered
strictly as a random walk of the system point along near neigh-
bor edges among the thermodynamically attainable vertices
on this hypercube.15 It was argued19 that, as random walks
on full [hyper]spherical surfaces result in pure exponential
decay20,21 and random walks on threshold percolation clusters
in Euclidean space lead to sublinear diffusion 〈R2〉 ∼ tβd ,22

random walks on threshold percolation clusters inscribed on
(hyper)spheres would be characterized by “subexponential”
relaxation of the form q(t) = 〈cos[θ (t)]〉 = exp[−(t/τ )βd ]
with the same exponents βd as in the corresponding Euclidean
space. This was demonstrated numerically for d = 3 to 8.23

A hypercube being topologically equivalent to a hypersphere,
on a diluted hypercube at threshold24,25 random walks can
be expected to lead to stretched exponential relaxation with
exponent β = 1/3. Successive explicit numerical studies of
random walks on the randomly occupied hypercube at pc

(Refs. 26–28) have confirmed this.

It is important to note that the limiting behavior for
relaxation due to diffusion on sparse graphs has been shown
analytically to take the form of a stretched exponential with
exponent β = 1/3 (Refs. 29 and 30).

It was further conjectured19 that in a complex Ising system
such as an ISG the phase transition would be analogous
to a percolation transition in configuration space. Detailed
“rough landscape” models for the configuration space of
complex systems have been widely invoked (see, for instance,
Refs. 31–33); these models can be thought of in terms of
linked basins with a gradual dilution of the links leading finally
to a percolation threshold. Because the critical properties of
a percolation transition are very robust, if the configuration
space percolation threshold scenario is valid the basic critical
behavior should not be sensitive to model details; in par-
ticular, stretched exponential relaxation with exponent 1/3
should be observed generically in ISGs whatever the space
dimension and possibly also in a wider class of complex
systems.

VII. CONCLUSION

The present numerical SK results taken together with
Ogielski’s 3D ISG analysis15 can be taken as a strong empirical
indication of a universal equilibrium relaxation pattern for
ISGs in the paramagnetic regime: stretched exponential decay
Eq. (2) having an exponent β(T ) which tends to 1/3 when
the relaxation time diverges at the critical temperature Tg .
Autocorrelation function decay at the percolation transition
on the randomly occupied hypercube26–28 has precisely this
form, suggesting that the ISG phase transition can indeed be
considered in terms of a percolation transition in phase space.

The same type of relaxation pattern has been observed
in many other complex system studies, both numerical and
experimental. It is tempting to conclude that the physical
scenario could have implications for a wide class of transitions,
extending well beyond the ISG family.
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