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Abstract

We study the smooth-fit property of the American put price with finite maturity

in an exponential Lévy model when the underlying stock pays dividends at a

continuous rate. As in the perpetual case, a regularity property is sufficient

for smooth-fit to occur. We also derive conditions on the Lévy measure under

which smooth-fit fails.
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1. Introduction

The continuity of the derivative with respect to the underlying stock price of the

American put price is a well known property in the Black-Scholes model, called the

smooth-fit property. In the context of exponential Lévy models, this property may no

longer be true. Figure 1 demonstrates that in the CGMY model, one of the most used

exponential Lévy models in practice (see [5]), the smooth-fit property holds when the

parameter Y = 1 and it fails when Y = 0.2.

In the case of perpetual American options, a necessary and sufficient condition

for smooth-fit was derived by Alili and Kyprianou [1] in an exponential Lévy model
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Figure 1: An example where the smooth-fit fails in the CGMY model

without dividends. The picture is still unclear in the case of finite horizon, except for

the jump-diffusion model (see [14]).

This paper deals with the smooth-fit property of the American put price in a general

Lévy model when the underlying stock pays dividends at a continuous rate. We first

show that the condition derived by Alili and Kyprianou is also sufficient for smooth-fit

in the finite horizon case (see Theorem 4.1). This condition is typically not satisfied

when the logarithmic stock price is a Lévy process with finite variation and positive

drift. In this case, we prove that, for large maturities, the smooth-fit property is

not satisfied (see Theorem 4.3). Under a slightly stronger condition, we derive a

lower bound for the jump of the derivative (see Theorem 4.2 and Remark 4.1). In

the perpetual case, we also propose a proof of a slightly weaker version of Alili and

Kyprianou’s result, based on the variational inequality.

The paper is organized as follows : in Section 2, we describe the exponential Lévy

model with dividends and the basic properties of the perpetual and finite horizon

American put price in this model. The third section is devoted to the properties of

the free boundary in the infinite and finite horizon cases. The fourth section studies

the smooth-fit property in the finite horizon case. The fifth section deals with the

smooth-fit property in the perpetual case.

Acknowledgement

The authors are grateful to Goran Peskir for fruitful discussions and, especially, for

providing the proof of Theorem 4.1.



The Smooth-Fit Property 3

2. The American put price in an exponential Lévy model

2.1. Lévy processes

A real Lévy process X is a real valued stochastic process, starting from 0, with

stationary and independent increments. Without loss of generality, we may and shall

assume that the sample paths of X are right continuous with left limits. The ran-

dom process X can be interpreted as the independent superposition of a Brownian

motion with drift and an infinite superposition of independent (compensated) Poisson

processes. More precisely, the Lévy-Itô decomposition (see [13]) gives the following

representation of X

Xt = γt+ σBt + Yt, (1)

Yt = X̃t + lim
ε→0

X̃ε
t , (2)

X̃t =

∫ t

0

∫

|x|≥1

xJX(ds× dx), X̃ε
t =

∫ t

0

∫

ε≤|x|<1

xJ̃X(ds× dx),

where γ and σ are real numbers, (Bt)t≥0 is a Brownian motion, JX is a Poisson

measure on R+ × (R \ {0}) and J̃X is the compensated Poisson measure J̃X(dt, dx) =

J(dt, dx) − dtν(dx). The measure ν is a positive Radon measure on R\{0}, called the

Lévy measure of X, and it satisfies

∫

R

1 ∧ x2ν(dx) <∞. (3)

Notice that the terms in the right hand side of (1) are independent and the convergence

of the last term is almost surely uniform with respect to t on [0, T ]. The Lévy-Itô

decomposition entails that the distribution of X is uniquely determined by (σ2, γ, ν),

called the characteristic triplet of the process X. The characteristic function of Xt, for

t ≥ 0, has the following Lévy-Khinchin representation (see [13])

ΦXt
(z) = E

(

eiz.Xt
)

= exp[tϕ(z)], z ∈ C, (4)

with

ϕ(z) = −
1

2
σ2z2 + iγ.z +

∫

(eizx − 1 − izx1|x|≤1)ν(dx).
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The Lévy process X is a Markov process and its infinitesimal generator is given by

lf(x) =
σ2

2

∂2f

∂x2
(x) + γ

∂f

∂x
(x)

+

∫
(

f(x+ y) − f(x) − y
∂f

∂x
(x)1|y|≤1

)

ν(dy), (5)

for every f ∈ C2
b (R), where C2

b (R) denotes the set of all bounded twice continuously

differentiable functions with bounded derivatives. We complete this subsection by

recalling two classical results about Lévy processes with finite variation (see [13]).

Proposition 2.1. A Lévy process is of finite variation if and only if its characteristic

triplet (σ2, γ, ν) satisfies

σ = 0 and

∫

|x|≤1

|x|ν(dx) <∞. (6)

Remark 1. It follows from Proposition 2.1 that, for a finite variation Lévy process

with characteristic triplet (σ, ν, γ), we have

lim
a→0

aν((−∞,−a]) = 0.

Theorem 2.1. Let X be a finite variation Lévy process with characteristic triplet

(0, γ, ν). We have

lim
t→0+

Xt

t
= γ −

∫

|x|≤1

xν(dx) a.s.

2.2. The exponential Lévy model

Let (St)t∈[0,T ] be the price of a financial asset modeled as a stochastic process on a

filtered probability space (Ω,F , (Ft),P0). We suppose that there exists an equivalent

(risk neutral) probability P under which the discounted underlying process is a martin-

gale. In the exponential Lévy model, the risk neutral dynamics of St under P is given

by

St = S0e
(r−δ)t+Xt , (7)

where the interest rate r, the dividend rate δ are nonnegative constants and (Xt)t∈[0,T ]

is a real Lévy process with characteristic triplet (σ2, γ, ν). We include r and δ in (7)

for ease of notation.
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Under P, the discounted dividend adjusted stock price (e−(r−δ)tSt)t∈[0,T ] is a mar-

tingale, which is equivalent to the following two conditions on the characteristic triplet

(see [6], Proposition 3.17)
∫

|x|≥1

exν(dx) <∞, (8)

and
σ2

2
+ γ +

∫

(ex − 1 − x1|x|≤1)ν(dx) = 0. (9)

We suppose that the conditions (8) and (9) are satisfied in the sequel. We deduce from

(8) that the infinitesimal generator defined in (5) can be written as

lf(x) =
σ2

2

(

∂2f

∂x2
−
∂f

∂x

)

(x) +

∫
(

f(x+ y) − f(x) − (ey − 1)
∂f

∂x
(x)

)

ν(dy). (10)

The stock price (St)t∈[0,T ] is also a Markov process, we denote by L its infinitesimal

generator. From (10), we deduce that

Lf(x) =
x2σ

2

2

∂2f

∂x2
(x) + x(r − δ)

∂f

∂x
(x) + Bf(x), (11)

where

Bf(x) =

∫

ν(dy)

(

f(xey) − f(x) − x(ey − 1)
∂f

∂x
(x)

)

.

2.3. The American put price

In this model, the value at time t of an American put with maturity T and strike

price K is given by

Pt = ess sup
τ∈Tt,T

E(e−rτψ(Sτ ) | Ft),

where ψ(x) = (K−x)+ and Tt,T denotes the set of stopping times satisfying t ≤ τ ≤ T .

Due to the Markov property (see [7] and [10]), we have

Pt = P (t, St),

where

P (t, x) = sup
τ∈T0,T−t

E(e−rτψ(Sx
τ )), (12)

with Sx
t = xe(r−δ)t+Xt . The following proposition follows easily from (12).

Proposition 2.2. For t ∈ [0, T ], the function x 7→ P (t, x) is nonincreasing and convex

on [0,+∞).

For x ∈ [0,+∞), the function t 7→ P (t, x) is continuous and nonincreasing on [0, T ].
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We recall the following proposition about the variational inequality related to the

American put in the exponential Lévy model (see [9] Theorem 3.1).

Theorem 2.2. The distribution (∂t +L− r)P is a nonpositive measure on (0, T )×R,

and, on the open set {(t, x) ∈ (0, T )×R | P (t, x) > ψ(x)}, we have (∂t +L− r)P = 0.

2.4. The perpetual American put price

The perpetual American put price is an American put price with maturity T equal

to infinity. So, as previously, the value at time t of a perpetual American put with

strike price K is given by

P ∗
t = ess sup

τ∈Tt,∞

E(e−rτψ(Sτ ) | Ft),

where ψ(x) = (K − x)+ and Tt,∞ denotes the set of stopping times satisfying t ≤ τ .

Due to the fact that the process X has stationary and independent increments, it can

be proved that

P ∗
t = P ∗(St),

where

P ∗(x) = sup
τ∈T0,∞

E(e−rτψ(Sx
τ )), (13)

with Sx
t = xe(r−δ)t+Xt . The following proposition follows easily from (13).

Proposition 2.3. The function x 7→ P ∗(x) is nonincreasing and convex on [0,+∞).

As in the finite horizon case, the perpetual American put in the exponential Lévy

model satisfies the following variational inequality (see [9], Theorem 3.1).

Theorem 2.3. The distribution (L − r)P ∗ is a nonpositive measure on R
+, and, on

the open set {x ∈ R
+ | P ∗(x) > ψ(x)}, we have (L− r)P ∗ = 0.

3. Properties of the free boundary

3.1. The finite horizon case

Throughout this subsection we will assume that at least one of the following condi-

tions is satisfied:

σ 6= 0, ν((−∞, 0)) > 0 or

∫

(0,+∞)

(x ∧ 1)ν(dx) = +∞. (14)
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Under this assumption, we have (as observed in [9])

∀t ∈ [0, T ), ∀x ∈ [0,+∞), P (t, x) > 0.

We will also assume that r > 0. The critical price at time t ∈ [0, T ) is defined by

b(t) = inf{x ≥ 0 | P (t, x) > ψ(x)}.

Note that, since t 7→ P (t, x) is nonincreasing, the function t 7→ b(t) is nondecreasing. It

follows from (14) that b(t) ∈ [0,K). We obviously have P (t, x) = ψ(x) for x ∈ [0, b(t))

and also for x = b(t), due to the continuity of P and ψ. We also deduce from the

convexity of x 7→ P (t, x) that

∀t ∈ [0, T ), ∀x > b(t), P (t, x) > ψ(x).

Then, the continuation region C can be written as

C = {(t, x) ∈ [0, T ) × [0,+∞) | x > b(t)}.

The graph of b is called the exercise boundary or free boundary.

We recall the following properties of t 7→ b(t) (see [9] section 4).

Theorem 3.1. The function t 7→ b(t) is continuous and b(t) > 0 on [0, T ).

We also recall from [9] the following result, which characterizes the limit of the critical

price b(t) as t approaches T .

Theorem 3.2. If
∫

(ex − 1)+ν(dx) ≤ r − δ, we have limt→T b(t) = K.

If
∫

(ex − 1)+ν(dx) > r − δ, we have limt→T b(t) = ξ, where ξ is the unique real

number in the interval (0,K) such that

ϕ(ξ) = rK,

where ϕ is the function defined by

ϕ(x) = ϕ(x) + δx, and ϕ(x) =

∫

(xey −K)+ν(dy), x ∈ (0,K).
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3.2. The perpetual case

Assume that P ∗ > 0. The critical price in this case is defined by

b∗ = inf{x ≥ 0 | P ∗(x) > ψ(x)}.

Note that, since x 7→ P ∗(x) is nonincreasing convex function, and P ∗ > 0, we have

b∗ ∈ (0,K) (one can prove that b∗ < K by the same argument as in [9] page 574). In

this case, the continuation region C∗ can be written as

C∗ = {x ∈ [0,+∞) | x > b∗} = (b∗,+∞).

4. The smooth-fit principle in an exponential Lévy model

4.1. The finite horizon put

Throughout this subsection we will assume that r > 0.

To a fixed level x ∈ R we associate the first strict passage time τ−x below x for the

process (log St

S0
) i.e.

τ−x = inf{t ∈ (0, T ) | (r − δ)t+Xt < x},

with the convention that inf ∅ = T . Recall that 0 is regular for (−∞, 0) if and only if

P(τ−0 = 0) = 1. Denote

d := r − δ −

∫

(ex − 1)ν(dx).

Note that, if X has finite variation, we have, from Theorem 2.1,

lim
t→0

(r − δ)t+Xt

t
= d.

So that d appears as the drift of the logarithmic stock price. The following proposition

is a summary of what is known from the literature (see [1], Proposition 7, or [8],

Theorem 6.5).

Proposition 4.1. The point 0 is regular for (−∞, 0) if and only if one of the following

three conditions holds

1. X has finite variation and d < 0,
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2. X has finite variation, d = 0 and

∫ 0−

−1

|x|ν(dx)
∫ |x|

0
ν(y,+∞)dy

= +∞,

3. X has infinite variation.

The second case was added to the class of processes exhibiting regularity of 0 for the

lower half line in Bertoin [4] and, for the other cases, one refers to the discussion at

the beginning of Bertoin [3], section VI.3.

The following theorem gives a sufficient condition for the smooth-fit property.

Theorem 4.1. If 0 is regular for (−∞, 0), then the smooth-fit principle is satisfied.

The proof of this result was given to us by G. Peskir. Note that the idea goes back

to J. Bather [2] in the case of Brownian motion (see [12] Section 9.2). In fact, it was

conjectured in [1] that regularity is a necessary and sufficient condition for smooth fit

in the case of strong Markov processes. This conjecture was disproved for diffusions

in [11].

Proof of Theorem 4.1. Suppose that 0 is regular for (−∞, 0) and fix t ∈ [0, T ). We

want to show that x 7→ P (t, x) is differentiable at b(t) and that ∂xP (t, b(t)) = ψ′(b(t))

(smooth-fit), where b(t) ∈ (0,K) is the critical price. To simplify the proof we consider

t = 0. First note that, for h > 0,

P (0, b(0) + h) − P (0, b(0))

h
≥
ψ(b(0) + h) − ψ(b(0))

h
,

since P ≥ ψ and P (t, b(0)) = ψ(b(0)). So, it follows that

lim inf
h→0+

(

P (0, b(0) + h) − P (0, b(0))

h

)

≥ ψ′(b(0)). (15)

Next we consider the optimal stopping time related to P (0, b(0) + h)

τh = inf{t ∈ [0, T ) | S
b(0)+h
t < b(t)}

= inf

{

t ∈ [0, T ) | (r − δ)t+Xt ≤ ln

(

b(t)

b(0) + h

)}

≤ inf

{

t ∈ [0, T ) | (r − δ)t+Xt ≤ ln

(

b(0)

b(0) + h

)}

=: τ∗h ,
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where the inequality follows from the fact that (b(t))t∈[0,T ) is nondecreasing. Recall

that P(τ−0 = 0) = 1. On the set {τ−0 = 0}, given a fixed t ∈ (0, T ), there exists s ∈ [0, t]

such that (r− δ)s+Xs < 0. For h small enough, we have (r− δ)s+Xs < ln
(

b(0)
b(0)+h

)

,

so that τ∗h ≤ s. Therefore, limh→0 τ
∗
h ≤ t. Since t is arbitrary, we deduce that τ∗h → 0

almost surely when h goes to 0. Hence

lim
h→0

τh = 0,

almost surely. Moreover, since

P (0, b(0)) ≥ E

(

e−rτhψ(b(0)e(r−δ)τh+Xτh )
)

,

we have

P (0, b(0) + h) − P (0, b(0))

h
=

E
(

e−rτhψ(b(0)e(r−δ)τh+Xτh )
)

− P (0, b(0))

h

≤ E

(

e−rτh
ψ((b(0) + h)e(r−δ)τh+Xτh ) − ψ(b(0)e(r−δ)τh+Xτh )

h

)

.

Since ψ is continuously differentiable in a neighborhood of b(0), we have

lim
h→0

ψ((b(0) + h)e(r−δ)τh+Xτh ) − ψ(b(0)e(r−δ)τh+Xτh )

h
= ψ(b(0)).

Then, using the Lipchitz continuity of ψ, by dominated convergence we get,

lim sup
h→0

(

P (0, b(0) + h) − P (0, b(0))

h

)

≤ ψ′(b(0)). (16)

Combining (15) and (16), we deduce the theorem.

It is well known that if X has infinite variation, 0 is regular (see Theorem 4.1), so

that we have smooth-fit. We will now assume that X has finite variation. Denote

d+ := r − δ −
∫

(ex − 1)+ν(dx). Note that d = d+ +
∫

(ey − 1)−ν(dy). Recall that,

if d < 0, 0 is regular for (−∞, 0), so that the smooth-fit property is satisfied. We

will prove below (see Theorem 4.3) that if d > 0, the smooth fit property cannot be

satisfied, at least for large maturities. Under the stronger condition d+ ≥ 0, we have a

more precise result.

Theorem 4.2. If X has finite variation and d+ ≥ 0, we have

∂+
x P (t, b(t)) 6= ∂−x P (t, b(t)),
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for every t ∈ (0, T ).

Proof. Let t ∈ [0, T ), x ≥ 0 and suppose that X is a finite variation Lévy process

such that d+ ≥ 0. In this case, the infinitesimal generator in (11) can be written as

Lf(x) = x

[

r − δ −

∫

(ey − 1)ν(dy)

]

∂f

∂x
(x) +

∫

ν(dy)[f(xey) − f(x)], (17)

for all f ∈ C1
b (R), where C1

b (R) denotes the set of all bounded C1 functions with bounded

derivative. Recall that from Theorem 2.2, (∂t+L−r)P = 0 in the sense of distributions

on the continuation region C. So (L−r)P ≥ 0 since t 7→ P (t, x) is nonincreasing. Also,

x 7→ P (t, x) is convex, so its right derivative ∂+
x P is bounded and right continuous.

Then, from (17) we deduce

b(t)

[

r − δ −

∫

(ey − 1)ν(dy)

]

∂+
x P (t, b(t)) +

∫

ν(dy)[P (t, b(t)ey) − P (t, b(t))]

≥ rP (t, b(t)). (18)

Note that P (t, b(t)) = ψ(b(t)) = K − b(t), P (t, b(t)ey) = ψ(b(t)ey) = K − b(t)ey if

y < 0 and P (t, b(t)ey) ≤ P (t, b(t)) if y > 0. So, from (18) we get

b(t)

[

r − δ −

∫

(ey − 1)ν(dy)

]

∂+
x P (t, b(t)) ≥ −

∫

y<0

ν(dy)[(K − b(t)ey) − (K − b(t))]

+ r(K − b(t))

= b(t)

∫

y<0

(ey − 1)ν(dy) + r(K − b(t))

= −b(t)

∫

(ey − 1)−ν(dy) + r(K − b(t)).(19)

Note also that d = d+ +
∫

(ey − 1)−ν(dy). If we had d = 0, we would deduce that

ν(−∞, 0) = 0 and (19) would become

r(K − b(t)) ≤ b(t)

∫

(ey − 1)−ν(dy) = 0,

which is in contradiction with the fact that r > 0 and b(t) ∈ (0,K). Therefore, we

must have d > 0, and (19) now gives

∂+
x P (t, b(t)) ≥

−
∫

(ey − 1)−ν(dy) + r( K
b(t) − 1)

r − δ −
∫

(ey − 1)+ν(dy) +
∫

(ey − 1)−ν(dy)
(20)

> −1.

We conclude the theorem since ∂−x P (t, b(t)) = ψ′(b(t)) = −1.
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Remark 4.1. If d+ > 0, we can see from (20) the following explicit lower bound for

the jump of the derivative

∂+
x P (t, b(t)) + 1 ≥

d+

d
> 0,

for every t ∈ [0, T ].

We will now prove that if d is positive the smooth-fit property fails, at least for large

values of the maturity.

Theorem 4.3. If X is a finite variation Lévy process and d > 0, and if T > K
db∗

,

where b∗ is the critical price of the perpetual put, there exists t ∈ [0, T ) such that

∂+
x P (t, b(t)) > −1.

We first show the following lemma.

Lemma 4.1. Asume X is a finite variation Lévy process and d > 0. Fix t ∈ [0, T )

and assume ∂+P (t, b(t)) = ∂−P (t, b(t)). Then, we have

lim sup
h→0

b(t+ h) − b(t)

h
≥ b∗d,

where b∗ is the critical price of the perpetual put.

Proof. To simplify the proof we consider the case t = 0. Let h > 0 and suppose

that the smooth-fit property is satisfied at t = 0. Let τh be the optimal stopping time

related to P (0, b(0) + h),

τh = inf{t ∈ [0, T ) | S
b(0)+h
t < b(t)}

= inf

{

t ∈ [0, T ) | (r − δ)t+Xt < ln

(

b(t)

b(0) + h

)}

,

with the convention inf ∅ = T . Note that τh is nonnegative and nondecreasing with

respect to h. We denote by τ0 the limit of τh when h goes to 0. Note also that by the

zero-one law, we have P(τ0 = 0) ∈ {0, 1}. We now discuss both cases.

Case 1 : P(τ0 = 0) = 0.

Note that τ0 ≤ τh and

P (0, b(0) + h) = E

(

e−rτhψ((b(0) + h)e(r−δ)τh+Xτh )
)

≥ E

(

e−rτ0ψ((b(0) + h)e(r−δ)τ0+Xτ0 )
)

.
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So, by letting h go to 0, we have

P (0, b(0)) = E

(

e−rτ0ψ(b(0)e(r−δ)τ0+Xτ0 )
)

. (21)

Then, using the convexity of ψ, we get

P (0, b(0) + h) − P (0, b(0))

h
≥ (22)

E

(

e−rτ0
ψ((b(0) + h)e(r−δ)τ0+Xτ0 ) − ψ(b(0)e(r−δ)τ0+Xτ0 )

h

)

≥ E

(

e−rτ0ψ′
d(b(0)e(r−δ)τ0+Xτ0 )e(r−δ)τ0+Xτ0

)

= −E

(

e−δτ0+Xτ01{(r−δ)τ0+Xτ0
<ln( K

b(0)
)}

)

.

Now, suppose δ > 0. Since τ0 > 0 a.s. and eX is a martingale, we obviously have

lim inf
h→0

P (0, b(0) + h) − P (0, b(0))

h
≥ −E

(

e−δτ0+Xτ0

)

= −E
(

e−δτ0
)

> −1. (23)

On the other hand, if δ = 0, (21) becomes

P (0, b(0)) = E
(

e−rτ0ψ(b(0)erτ0+Xτ0 )
)

= KE

(

e−rτ01{rτ0+Xτ0
≤ln( K

b(0)
)}

)

− b(0)E
(

eXτ01{rτ0+Xτ0
≤ln( K

b(0)
)}

)

.

Since P (0, b(0)) = K − b(0), we derive

K
[

1 − E

(

e−rτ01{rτ0+Xτ0
≤ln( K

b(0)
)}

)]

= b(0)
[

1 − E

(

eXτ01{rτ0+Xτ0
≤ln( K

b(0)
)}

)]

.

Note that the left hand side is positive because τ0 > 0 a.s. and r > 0. Therefore

E

(

eXτ01{rτ0+Xτ0
≤ln( K

b(0)
)}

)

< 1 and (22) gives

lim inf
h→0

P (0, b(0) + h) − P (0, b(0))

h
≥ −E

(

eXτ01{rτ0+Xτ0
<ln( K

b(0)
)}

)

> −1. (24)

We deduce from (23) and (24) that the smooth-fit fails for every δ ≥ 0.

Case 2 : P(τ0 = 0) = 1.
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We then have limh→0 τh = 0 a. s.. In particular τh < T for h close to 0 and from

the definition of τh we have

(r − δ)τh +Xτh
≤ ln(b(τh)) − ln(b(0) + h)

≤ ln(b(τh)) − ln(b(0)).

Therefore, using Theorem 2.1 and (9), we have

r − δ + lim
h→0

(

Xτh

τh

)

= r − δ + γ −

∫

{|y|≤1}

yν(dy)

= d

≤ lim inf
h→0

ln(b(τh)) − ln(b(0))

τh

≤ lim sup
t→0

ln(b(t)) − ln(b(0))

t

≤
1

b(0)
lim sup

t→0

b(t) − b(0)

t

≤
1

b∗
lim sup

t→0

b(t) − b(0)

t
.

Hence

lim sup
h→0

b(h) − b(0)

h
≥ b∗d.

Proof of Theorem 4.3. Suppose that the smooth-fit is satisfied for every t ∈ [0, T ).

Recall that t 7→ b(t) is a continuous nondecreasing function on [0, T ). So b is almost

everywhere differentiable on [0, T ) and from Lemma 4.1 we have

b′(t) ≥ b∗d > 0 a.e. on [0, T ).

Therefore, by integrating the last inequality, we get K ≥ b(t) − b(0) ≥ db∗t. Finally,

we get a contradiction for T > K
db∗

.

4.2. The perpetual put

The following Theorem can be proved by the same argument as in the finite horizon

case.

Theorem 4.4. If 0 is regular for (−∞, 0), then the smooth-fit principle is satisfied.

We also have the following result. This result was already proved by Alili and Kypri-

anou [1]. Our contribution is only to give a proof based on the variational inequality.
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Theorem 4.5. If X has finite variation and d > 0, the smooth-fit principle is not

satisfied.

Proof. Suppose that the smooth-fit principle is satisfied and d > 0. From Theo-

rem 2.3 and (17) we have, for x ≥ b∗,

x

(

r − δ −

∫

(ey − 1)ν(dy)

)

∂xP
∗(x)

+

∫

(P ∗(xey) − P ∗(x)) ν(dy) − rP ∗(x) = 0. (25)

In particular, for x = b∗, we deduce from ∂xP
∗(b∗) = −1 and P ∗(b∗) = K − b∗

b∗δ +

∫

(P ∗(b∗ey) − (K − b∗ey)) ν(dy) = rK. (26)

Note that (25) can be written as

xδ + xd(∂xP
∗(x) + 1)

∫

(P ∗(xey) − P ∗(x) + x(ey − 1)) ν(dy) =

r(P ∗(x) + x). (27)

subtracting (26) from (27), we get

(x− b∗)δ + xd(∂xP
∗(x) + 1)

+

∫

(P ∗(xey) − P ∗(x) + x(ey − 1) − (P ∗(b∗ey) − (K − b∗ey))) ν(dy)

= r(P ∗(x) − (K − x)). (28)

For y ∈ R, let fy the function defined by fy(x) = P ∗(xey) − P ∗(x) + x(ey − 1). Then

(28) becomes

(x− b∗)δ + xd(∂xP
∗(x) + 1) +

∫

(fy(x) − fy(b∗)) ν(dy) = r(P ∗(x) − (K − x)). (29)

We see from (25) that ∂xP
∗ is continuous on (b∗,∞), so fy ∈ C1(b∗,∞) and

f ′y(x) = ey(∂xP
∗(xey) + 1) − (∂xP

∗(x) + 1) ≥ 0

if y ≥ 0, because x 7→ P ∗(x) is convex. So, for x > b∗ and y > 0,

fy(x) − fy(b∗) ≥ 0.

Also, for y ≤ ln( b∗

x
), by the mean value theorem we have

fy(x) − fy(b∗) = f ′y(θ)(x− b∗), (30)
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for some θ ∈ (b∗, x), where

f ′y(θ) = ey(∂xP
∗(θey) + 1) − (∂xP

∗(θ) + 1) (31)

≥ −(∂xP
∗(θ) + 1)

≥ −(∂xP
∗(x) + 1).

From (30) and (31) we get

∫

{y≤ln( b∗

x
)}

(fy(x) − fy(b∗)) ν(dy) ≥ −(∂xP
∗(x) + 1)(x− b∗)ν

(

(−∞, ln(
b∗

x
))

)

= (∂xP
∗(x) + 1)Ab∗

x B
b∗

x , (32)

whereAb∗

x = 1
x

x−b∗

ln(x)−ln(b∗) andBb∗

x = ln( x
b∗

)ν
(

(−∞, ln( b∗

x
))
)

. Note that limx→b∗ A
b∗

x =

b∗

x
and limx→b∗ B

b∗

x = 0 (see Remark 1). Therefore, from (32) we can choose some

x1 > b∗ such that for x ∈ (b∗, x1)

∫

{y≤ln( b∗

x
)}

(fy(x) − fy(b∗)) ν(dy) ≥ −
xd

4
(∂xP

∗(x) + 1). (33)

Now, let y ∈ (ln( b∗

x
), 0). Then, we have fy(b∗) = 0 and

fy(x) = P ∗(xey) − P (x) + x(ey − 1) (34)

= P ∗(xey) − P (x) − x(ey − 1)∂xP
∗(x) + x(ey − 1)(∂xP

∗(x) + 1)

≥ x(ey − 1)(∂xP
∗(x) + 1),

since x 7→ P (t, x) is convex. We see from (6) that y 7→ ey − 1 is ν-integrable, so there

exists some x2 > b∗ such that for x ∈ (b∗, x2)

∫

{ b∗

x
)<y<0}

(ey − 1)ν(dy) ≥ −
d

4
. (35)

Therefore, from (34) and (35) we check that for x ∈ (b∗, x2)

∫

{ln( b∗

x
)<y<0}

(fy(x) − fy(b∗))ν(dy) ≥ −
xd

4
(∂xP

∗(x) + 1). (36)

On the other hand, the function f defined by f(x) = P ∗(x) − (K − x) is continuously

differentiable and satisfies f(b∗) = 0 and f ′(x) = ∂xP
∗(x) + 1 ≥ 0. By the mean value

theorem we have

f(x) − f(b∗) = (∂xP
∗(θ) + 1)(x− b∗),
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for some θ ∈ (b∗, x). Therefore

f(x) − f(b∗) ≤ x(∂xP
∗(x) + 1)(1 −

b∗

x
),

since x 7→ P (t, x) is convex. So, there exists some x3 > b∗ such that, for x ∈ (b∗, x3),

P ∗(x) − (K − x) ≤
xd

4
(∂xP

∗(x) + 1). (37)

Denote x0 = x1∧x2∧x3. Recombining (29), (33), (36) and (37), we get for x ∈ (b∗, x0)

(x− b∗)δ +
xd

4
(∂xP

∗(x) + 1) +

∫

{y>0}

(fy(x) − fy(b∗)) ν(dy) ≥ 0.

This contradicts (30).
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