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Abstract. A robust controller is derived for networked control sys-
tems with uncertain plant dynamics. The link between the nodes is
disturbed by time-varying communication delays, samplings and time-
synchronization. A stability criterion for a robust control is presented in
terms of LMIs based on Lyapunov-Krasovskii techniques. A second-order
system example is considered and the relation between the admissive
bounds of the synchronization error and the size of the uncertainties is
computed.
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1 Introduction

Internet technology appears as a natural and cheap way to ensure the com-
munication link in remotely controlled systems [1, 8, 16]. Today, the available
Quality of Service is often good enough for that kind of applications. However,
such a communication link constitutes an additional dynamical system, which
great influence on stability was already mentioned in the 60’s [4]. Indeed, several
dynamics and perturbations (communication delay, real-time sampling, packet
dropout and synchronization errors) are unavoidably introduced and have to be
taken into account during the design of the control/observation loop.

In the literature, many authors assume that the nodes of the NCS are syn-
chronized [8]. However the synchronization is an fundamental issue of NCS since
ensuring several nodes are synchronized is not easy and some error in it may
reduce the performances of the controller [5]. The article focusses on the lake of
time-synchronization and provides a robust controller for continuous networked
control systems with synchronization error and to parameter uncertainties. A
time-delay representation which takes into account the transmission delays, the
sampling and the synchronization errors.

? This work was supported by the European project FeedNetBack
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Several works on networked controlled systems introduced the question of
transmission delays [2]. It is well known that delays generally lead to unstable
behavior [10][11]. Moreover in networked control situations, the delays are basi-
cally variable (jitter phenomenon) and unpredictable. This is a source of problem
when the classical predictor-based controllers are intended to be applied. These
techniques generally need the constant delay, i.e. hi(t) = hi. In the case of vari-
able delays, some researches have used independent-of-delay conditions. Because
such i.o.d. conditions may be conservative in general, particular cases such as
constant or symmetric delays were considered [3]. These assumptions refers to
the case where the transmission delays are equal, i.e. h1(t) = h2(t) = R(t)/2,
where R(t) denotes the round trip time (RTT). Another interesting approach
was recently given in [14], which generalized the predictor techniques to the case
of variable delays.

Considering unknown time-varying delays and samplings, some stability and
stabilization results, [15] have been provided known introducing bounds of the
delays and of the sampling interval (hm, hM and T such that 0 ≤ hm ≤ h(t) ≤
hM and such that the difference between two successive sampling instants is less
than T ), which is not that restrictive. In this paper, the same assumptions are
done to ensure the stability of the NCS using a observer-based controller which
extends the controller from [9] to the case of time varying delays, synchronization
errors and parameter uncertainties.

The present article is organized as follows. Section II concerns the problem
formulation providing a presentation of the plant and of the communication.
Section III exposes the control strategy. Section IV deals with the stability of
the controller. An example is provided in Section V.

2 Preliminaries

The network control problem is described in Fig.1. The plant and the controller
are connected through a network which induces additional dynamics. It is as-
sumed that the time synchronization of the process and controller clocks is not
achieved. Then the time tp given by the plant’s clock and the time tc delivered
by the controller’s clock do not have the same sense. The reference time is given
by the plant clock. It means that tc = tp + ε(t) where ε corresponds to a time-
varying error of synchronization. The features of the plant and the assumptions
on the network are described in the following.

2.1 Definition of the plant

Consider the uncertain systems:

ẋ(t) = (A + ∆γA)x(t) + (B + ∆γB)u(t),
y(t) = (C + ∆γC)x(t). (1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are, respectively, the state, input and
output vectors. The constant and known matrices A, B and C correspond to the
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Fig. 1: Plant controller through a network

nominal behavior of the plant. The (time-varying) uncertainties are given in a
polytopic representation:

∆γA = γ
∑N

i=1 λi(t)Ai, ∆γB = γ
∑N

i=1 λi(t)Bi ∆γC = γ
∑N

i=1 λi(t)Ci

where N corresponds to the numbers of vertices. The matrices Ai, Bi and Ci

are constant and known. The scalar γ ∈ R characterizes the size of the un-
certainties. Note that when γ = 0, no parameter uncertainty is disturbing the
system. However the greater the γ, the greater the disturbances. The functions
λi(.) are weighted scalar functions which follow a convexity property, ie. for all
i = 1, .., N and for all t ≥ 0: λi(t) ≥ 0 and

∑N
i=1 λi(t) = 1. It is also assumed

that the computation power is low on the plant and its functions are limited to
receive control packets, to apply control and to send output measurement data.
The computation thus is removed in a centralized controller.

2.2 Synchronization and delays models

In addition to parameter uncertainties, the stability of the closed-loop system
must be ensured whatever the delays, the possible aperiodicity of the real-time
sampling processes and synchronization error. Concerning the transmission de-
lays, the delays are assumed to be non-symmetric but have known minimal and
maximal bounds hm and hM , so that:

A1 (maximal allowed delay) : hm ≤ hi(t) ≤ hM . (2)

Since we aim at limiting the value of hm, the use of the User Datagram
Protocol (UDP) is preferred to Transmission Control Protocol (TCP), the relia-
bility mechanisms of which may needlessly slow down the feedback loop. Another
feature of UDP is that the packets do not always arrive in their chronological
emission order. The reception function will be added a re-ordering mechanism
thanks to some “time-stamps” added in packets. This can be expressed as:

A2 (packet reordering) : ḣi(t) < 1. (3)

Another disturbance implied by the network comes from the samplers and
zero-holders. Following the lines of [6], we consider they produce an additional
variable delay t− tk, where tk is the kth sampling instant. Moreover, because of
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Fig. 2: Architecture of the networked controller

the operating system, the sampling is generally not periodic. So, we only assume
there exists a known maximum sampling interval T so that:

A3 (max. sampling interval) : 0 ≤ tk+1 − tk ≤ T. (4)

Assume the function ε is time-varying and there exists a known constant ε̄
such that:

A4 : |ε(t)| ≤ ε̄ (5)

3 Observer-based networked control

The system architecture is exposed in Fig. 2. The controller has to estimate
present state of plant, using output measurements, and to compute the control
value which will be sent to the plant.

D1 The control law: The controller computes a control law which considers
some set-values to be reached. The static state feedback control u(t) = Kx̂(t)
is defined considering the state estimate x̂ given by the observer. The diffi-
culty is to determine a gain K guaranteeing stability despite the delay δ1(t).

D2 Transmission of the control u: The kth packets sent by the controller to
the process includes the designed control u(t1,k) and a sampling time t1,k

when it was produced. The plant receives this information at time tr1,k. This
time does not have the same meaning for both parts. The term tr1,k − t1,k,
corresponding to the transmission delay, corrupted by ε, is estimated by the
plant once the packet has reached it.

D3 Receipt and processing of the control data: The control, sent at time
t1,k, is received by the process at time tr1,k ≥ t1,k + hm. There is no raison
that the controller also knows the time tr1,k when the control u(t1,k) will be
injected into the plant input. Finally, there exists k such that hm ≤ t1,k ≤
hM + T and the process is governed by:

ẋ(t) = (A + ∆γA)x(t) + (B + ∆γB)u(t1,k) (6)

D4 Transmission of the output information: The process have access to its
output y only in discrete-time. A packet contains the output y(t2,k′) and the
sampling time t2,k′ . The controller receives the output packet at time tr2,k′ .
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D5 Observation of the process: For a given k̂ and any t ∈ [t1,k̂ + (hM −
hm)/2, t1,k̂+1 + (hM − hm)/2[, there exists a k′ such that:

˙̂x(t) = Ax̂(t) + Bu(t1,k̂ + ε)− L(y(t2,k′)− ŷ(t2,k′ − ε)),
ŷ(t) = Cx̂(t).

(7)

The design of an observer gain L ensuring stability is not straightforward.

Note that the observation is based on the nominal values of the system definition.
No assumption is introduced to estimate the uncertainties and the λi functions.
The time stamp t1,k̂ corresponds to the time where the control input is assumed
to be implemented into the plant input. The index k′ corresponds to the most
recent output information the controller has received. The time tr1,k and the
control u(t1,k) (see D2) are not known from the observer.

An improve with respect to [13] is that no buffers are required in the con-
troller. This allows considering the input packets as soon as they arrive.

4 Stabilization under synchronization error

This section focusses on developing asymptotic stability of the networked control
architecture detailed in Fig. 2.

4.1 Closed-loop system

The input delay approach to sampled-data signals allows a homogenized defi-
nition of the delays δ1(t) , t − t1,k where k corresponds to the real sampling
implemented in the plant, δ̂1(t) , t− t1,k̂ and δ2(t) , t− t2,k′ to be considered.
The observer dynamics are then driven by:

˙̂x(t) = Ax̂(t) + Bu(t− δ̂1(t) + ε)− L(y(t− δ2(t))− ŷ(t− δ2(t)− ε)),
ŷ(t) = Cx̂(t),

(8)

where the features of the system lead to hm ≤ δi(t) ≤ hM + T for i = 1, 2.
Equivalently, if the average delay δ(hm, hM , T ) = (hM + T + hm)/2 and the
maximum delay amplitude µ(hm, hM , T ) = (hM + T − hm)/2 is used, then:

δ − µ ≤ δi(t) ≤ δ + µ, ∀i = 1, 2. (9)

According to (6) and (7) and for given k and any t ∈ [tr1,k +hm, tr1,k+1 +hm[,
there exist k̂ and k′ such that the global remote system is governed by:

ẋ(t) = (A + ∆γA)x(t) + (B + ∆γB)Kx̂(t1,k),
˙̂x(t) = Ax̂(t) + BKx̂(t1,k̂ − ε)−∆γLCx(t2,k′)− LC(x(t2,k′)− x̂(t2,k′ + ε)).

(10)
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Rewriting the equations with the error e(t) = x(t)− x̂(t), the dynamics become:

ẋ(t) = (A + ∆γA)x(t) + (B + ∆γB)K(x(t1,k)− e(t1,k))
ė(t) = Ae(t) + LCe(t2,k′) + ∆Ax(t) + ∆BK(x(t1,k)− e(t1,k)) + ∆γLCx(t2,k′)

−BK
∫ t1,k̂+ε

t1,k
[ẋ(s)− ė(s)]ds + LC

∫ t2,k′
t2,k′−ε

[ẋ(s)− ė(s)]ds.

Applying the input delay representation [6] yields:

ẋ(t) = (A + ∆γA)x(t) + (B + ∆γB)Kx(t− δ1)−∆γBKe(t− δ1)
ė(t) = Ae(t) + ∆γAx(t) + ∆γBK(x(t− δ1)− e(t− δ1)) + L∆γCx(t− δ2)

+LCe(t− δ2)−BK
∫ t−δ̂1+ε

t−δ1
[ẋ(s)− ė(s)]ds + LC

∫ t−δ2

t−δ2−ε
[ẋ(s)− ė(s)]ds.

(11)
with δ1(t) = t− t1,k and δ2(t) = t− t2,k′ . From the fact that the communication
delays belong to the interval [hm, hM ] where hm and hM are given by the
network properties. Then the condition (9) on the delays still holds.

In an ideal case, ie. ε = 0 (from A2, synchronized case), the C2P delays are
assumed to be well known, ie. δ1(t) = δ̂1(t) (see [13]) and the model is assumed
to be perfectly known and constant (γ = 0). For this ideal case, Theorem 2
and 3 from [13] deliver controller and observer gains, since the global system is
rewritten using the error vector e(t) = x(t)− x̂(t) as:

ẋ(t) = Ax(t) + BKx(t− δ1(t))−BKe(t− δ1(t))
ė(t) = Ae(t) + LCe(t− δ2(t))

4.2 Stability Criteria

It is now accepted that δ1(t) 6= δ̂1(t) and ε 6= 0. The stability of the controller
and of the observer is not ensured anymore by Theorem 2 and 3 in [13], as
ε 6= 0 leads error in the delay measurement. As in equation (11), there are
interconnection terms between the two variables x and e, a separation principle
is no longer applicable to prove the global stabilization. The stability proof
requires to consider now both variables simultaneously.

Theorem 1. For given K and L, suppose that, there exists for q representing
the subscript x or e, positive definite matrices : Pq1, Sq, Rqa, Rqε, Sxe, Qxe and
Rb and matrices of size n×n: Pq2, Pq3, Zql for l = 1, 2, 3, Yql′ for l′ = 1, 2 such
that the following LMI’s hold :




Θi
x Θi

x12 µP T
x Ai

K P T
x Ai

K µP T
x Ai

K
∗ −Sx + 2Rb 0 0 0
∗ ∗ −µRxa 0 0
∗ ∗ ∗ −Sxe 0
∗ ∗ ∗ ∗ −µRb


 < 0, (12)




Πi P T
e

[
0

γAi

]

0

αP T
e

[
0

γBiK

]

0

(1 + µ)P T
e

[
0

γLCi

]

0
∗ −Qxe 0 0
∗ ∗ −αRb 0
∗ ∗ ∗ −(1 + µ)Rb


 < 0, (13)
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[
Rq Yq1 Yq2
∗ Zq1 Zq2
∗ ∗ Zq3

]
≥ 0, q ∈ {x, e}, (14)

where α = (1 + 2µ), β = 2(µ + ε̄), Pq =
[

Pq1 0
Pq2 Pq3

]
and

Πi =




Θe Θi
e12 µP T

e AL ε̄P T
e AL ε̄P T

e AL βP T
e AK βP T

e AK

∗ −Se + Sxe 0 0 0 0 0
∗ ∗ −µRea 0 0 0 0
∗ ∗ ∗ −ε̄Reε 0 0 0
∗ ∗ ∗ ∗ −ε̄Rxε 0 0
∗ ∗ ∗ ∗ ∗ −βReε 0
∗ ∗ ∗ ∗ ∗ ∗ −βRxε




Θx12 = PT
x Ai

K −
[

Y T
x1

Y T
x2

]
, Θe12 = PT

e

[
0

LC − γBiK

]
−

[
Y T

e1
Y T

e2

]
,

Θi
x = Θni

x +
[

Qxe 0
0 2βRxε + 4µRb

]
, Θe = Θn

e +
[

0 0
0 2βReε + 4µRb

]
,

Θni
x = PT

x

[
0 I

Āi −I

]
+

[
0 I

Āi −I

]T

Px +
[

Sx + Yx1 + Y T
x1 + δZx1 Yx2 + δZx2

∗ δRx + 2µRxa + δZx3

]
,

Θn
e = PT

e

[
0 I
A −I

]
+

[
0 I
A −I

]T

Pe +
[

Se + Ye1 + Y T
e1 + δZe1 Ye2 + δZe2

∗ δRe + 2µRea + δZe3

]
,

and where AK =
[

0
BK

]
, Ai

K =
[

0
B̄iK

]
and AL =

[
0

LC

]
.

Then, the NCS (10) is asymptotic stable.

The proof of Theorem 3 is given in the appendix.

Remark 1. Theorem 1 guarantees the robust stability of the global remote to
be guaranteed system with respect to the synchronization error and for observer
and controller gains given in [13]. Since the problems of designing observer and
controller gains are dual, to develop constructive LMI’s is not straightforward.

5 Application to a mobile robot

This study is illustrated on the model of a mobile robot (Slave) which can move
in one direction. The identification phase gives the following dynamics:

{
ẋ =

[
0 1
0 −11, 32− ζγ

]
x +

[
0

−11, 32 + ζγ

]
u(t− δ1),

y = [ 1 + ζγ/10 0 ] x,
(15)

where the scalar function ζ(t) lies in [−1, 1] and is taken as ζ(t) = sin(6t).
The characteristics of transmission delays in a classical network (between Lens
and Lille in France (50km)) allows hm = 0, 1s and hM = 0.4s. Consider now
that the bandwidth of the network allows the sampling period as T = 0.1s to
be defined. For these values, Theorems 2 and 3 in [13] produce the following
gains L = [−0.9119 −0.0726 ]T and K = [−0.9125 −0.0801 ]. This gains ensures that,
in the ideal case the remote system is α-stable for αx = αe = 1.05. Theorem
1 ensures that, with these features, the global system is asymptotically stable
and robust without any time-varying synchronization error less than ε̄ = 0.04s
in (5) for γ = 0. Figure 3 shows the the maximal admissive ε̄ for greater values
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Fig. 3: Maximal synchronization error with respect to the disturbances

of γ. Moreover it guarantees asymptotic stability of the global system without
the introduction of a buffer in the controller.

Figure 4a shows the simulation results for γ = 0.1 and ε = 0.03 (point
(2) in Figure 3). The state of the process and the sampled input and output are
provided. It can be seen that the state convergence to the reference. The stability
of the system despite the synchronization error and the parameters uncertainties
is ensured.

Figure 4b present simulations for γ = 0 and ε = 0 (point (1)) and for γ = 1.5
and ε = 0.03 (point (3)). In comparison to Figure 4a, the results for (1) are
closed to the ones obtained for (2). Concerning (3), Theorem 1 does not ensure
the stability. However the controller still stabilize the system. It means that the
conditions from Theorem 1 are conservative. Further results would investigate
in reducing the conservativeness of the stability conditions.

6 Concluding remarks

This paper presents a strategy for an observer-based control of a networked
controlled systems under synchronization erros. No buffering technique was in-
volved, which allows using the available information as soon as received. Various
perturbations were dealt with jittery, non-symmetric and unpredictable delays,
synchronization error, aperiodic sampling (real-time) and uncertainties in the
model. A remaining assumption in [13] which is that the clocks have to be syn-
chronized is not required anymore.

A characteristic feature of this control strategy is to consider that the ob-
server based controller runs in continuous time (i.e., with small computation
step) whereas the process provides discrete-time measurements. Thus, the ob-
server keeps on providing a continuous estimation of the current state, even if
the data are not sent continuously.
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Fig. 4: Simulation results

The proposed conditions are conservative. New and less conservative results
which guarantee stability of system with sampled-data control recently appears
and might help in reducing the conservativeness. It would be interesting to apply
these new technics on the present system.
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A Proof of Theorem 1

To analyze the asymptotic stability property of such a system, equations (11) are
rewritten by using the descriptor representation [7] with x̄(t) = col{x(t), ẋ(t)},
ē(t) = col{e(t), ė(t)}. In this section, when there is no confusion, any function
considered at time ‘t’ will be written without ‘(t)’. Consider the Lyapunov-
Krasovskii (LK) functional:

V = Vxn + Vxa + Vxε + Ven + Vea + Veε + Vxe (16)

where the sub-LK functionals are, for q representing the subscript of the variables
‘x’ and ‘e’:

Vqn = q̄T EPq q̄ +
∫ 0

−δ

∫ t

t+θ
q̇T (s)Rq q̇(s)dsdθ

+
∫ t

t−δ
qT (s)Sqq(s)ds,

Vqa =
∫ µ

−µ

∫ t

t+θ−δ
q̇T (s)Rqaq̇(s)dsdθ,

Vqε = 2
∫ µ+ε̄

−µ−ε̄

∫ t

t+θ−δ
q̇T (s)Rqεq̇(s)dsdθ

Vqb = 2
∫ µ

−µ

∫ t

t+θ−δ
q̇T (s)Rbq̇(s)dsdθ

with E = diag{In, 0} and Px, Pe defined in Theorem 1.
The signification of each sub-LK functional has to be explain. The first func-

tionals Vxn and Ven deal with the stability of the Slave and the observer systems
subject to the constant delay δ while Vxa and Vea refer to the disturbances due
to the delay variations. Even if the functionals do not explicitly depend on each
time varying delay, it will be considered both different delays δ1 and δ2. The
functionals Vqε are concerned with synchronization errors. The last functionals
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Vqb deals with the interconnection between the variables x and e. Consider as a
first step, the polytopic representation of the dynamics in x:

ẋ =
∑N

i=1 λi

{
Āix + B̄iK(x(t− δ1)− e(t− δ1))

}
(17)

where Āi = A + γAi and B̄i = B + γBi. According to Theorem 2 in [12], if LMI
(14) holds for ′q = x′ and for all vertices of the polytopic system, the following
inequality holds:

V̇xn + V̇xa ≤
∑N

i=1 λi

{
ξT
x

[
Ψ i

x1 Θi
x12

∗ −Sx

]
ξx + ηi

x

}
(18)

where ξx = col{x, ẋ, x(t− δ)} and:

ηi
x = −2x̄T PT

x Ai
Ke(t− δ1), Ψ i

x1 = Θni
x + µPT

x Ai
KR−1

xa AiT
K Px.

Using the Leibnitz formula and a classical LMI bounding, it yields, for i = 1, 2:

ηi
x ≤ x̄T PT

x Ai
K(S−1

xe + µR−1
b )AiT

K Pxx̄

+eT (t− δ)Sxee(t− δ) + | ∫ t−δ

t−δ1
ėT (s)Rbė(s)ds| (19)

where Sxe and Rb are positive definite matrices which represent the presence of
the error vector in the state equation. Then, the following inequality holds:

V̇xn + V̇xa ≤
∑N

i=1 λi

{
ξT
x

[
Ψni

x2 Θi
x12

∗ −Sx

]
ξx

}

+eT (t− δ)Sxee(t− δ) + | ∫ t−δ

t−δ1
ėT (s)Rbė(s)ds|,

(20)

where Ψni
x2 = Θni

x + PT
x Ai

K(S−1
xe + µR−1

xa + µR−1
b )AiT

K Px. Concerning the errors
dynamics, differentiating Ven + Vea along the trajectory of (11) and assuming
that LMI (14) holds with q = e yields:

V̇en + V̇ea ≤
∑N

i=1 λi{ξT
e

[
Ψe1 P T

e AL − Y T
e

∗ −Se

]
ξe − ηx

e1

+ηe
e1 − ηx

e2 + ηe
e2 + ηxi

∆A + ηxi
∆B + ηei

∆B + ηxi
∆C

}
,

(21)

where ξe = col{e, ė, e(t− δ)} and where

Ψe1 = Θn
e + µPT

e ALR−1
ea AiT

L Pe, ηq
e1 = 2ēT PT

e AK

∫ t1,k̂+ε

t1,k
q̇(s)ds,

ηq
e2 = −2ēT PT

e AL

∫ t2,k′
t2,k′−ε

q̇(s)ds, ηxi
∆A = 2ēT PT

e [ 0 γAT
i ]T x,

ηxi
∆B = 2ēT PT

e [ 0 γ(BiK)T ]T x(t− δ1), ηei
∆B = −2ēT PT

e [ 0 γ(BiK)T ]T e(t− δ1),
ηxi

∆C = 2ēT PT
e [ 0 γ(LCi)

T ]T x(t− δ1),

with q representing either x or e. Note that the functions ηq
ei, for q =‘x’,‘e’ and

i = 1, 2 correspond to the disturbance due to the synchronization error. Consider
i = 1: Noting that from assumption A4, inequality t1,k̂ + ε− t1,k ≤ ε̄+2µ holds,
then a classical bounding leads to:

ηx
q1 ≤ (ε̄ + 2µ)ēT PT

e AKR−1
qε AT

KPeē +
∫ t1,k̂+ε

t1,k
q̇T (s)Rqεq̇(s)ds. (22)



12 Lecture Notes in Computer Science: Authors’ Instructions

By the same way, the following inequalities hold:

ηq
e2 ≤ ε̄ēT PT

e ALR−1
qε AT

LPeē +
∫ t2,k′

t2,k′−ε
q̇T (s)Rqεq̇(s)ds. (23)

Following the same method as in (19), the following inequalities hold:

ηxi
∆A ≤ ēT PT

e

[
0

γAi

]
Q−1

xe

[
0

γAi

]T

Peē + xT Qxex,

ηxi
∆B ≤ (1 + µ)ēT PT

e

[
0

γBiK

]
R−1

b

[
0

γBiK

]T

Peē

+xT (t− δ)Rbx(t− δ) + | ∫ t−δ

t−δ1
ẋT (s)Rbẋ(s)ds|,

ηei
∆B ≤ µēT PT

e

[
0

γBiK

]
R−1

b

[
0

γBiK

]T

Peē

−2ēT PT
e

[
0

γBiK

]
e(t− δ) + | ∫ t−δ

t−δ1
ėT (s)Rbė(s)ds|,

ηxi
∆C ≤ (1 + µ)ēT PT

e

[
0

γLCi

]
R−1

b

[
0

γLCi

]T

Peē

+xT (t− δ)Rbx(t− δ) + | ∫ t−δ

t−δ2
ẋT (s)Rbẋ(s)ds|.

(24)

Finally, the following inequality holds:

V̇en + V̇ea ≤ ξT
e

[
Ψn

e2 Θei
12

∗ −Se + Rb

]
ξe + xT Qxex

+2xT (t− δ)Rbx(t− δ)− 2ēT PT
e

[
0

γBiK

]
e(t− δ)

+| ∫ t−δ

t−δ2
ẋT (s)Rbẋ(s)ds|+ ∑

q=x,e

{
| ∫ t−δ

t−δ1
q̇T (s)Rbq̇(s)ds|

+
∫ t1,k̂+ε

t1,k
q̇T (s)Rqpq̇(s)ds +

∫ t2,k′
t2,k′−ε

q̇T (s)Rqpq̇(s)ds)
}

,

(25)

where

Ψn
e2 = Θn

e + PT
e AL(µRea + ε̄R−1

xε + ε̄R−1
eε )−1AT

LPe

+βPT
e AK(R−1

xε + R−1
eε )AT

KPe + PT
e

[
0

γAi

]
Q−1

xe

[
0

γAi

]T

Pe

+αPT
e

[
0

γBiK

]
R−1

b

[
0

γBiK

]T

Pe + (1 + µ)PT
e

[
0

γLCi

]
R−1

b

[
0

γLCi

]T

Pe.

Differentiating Vxε, Veε, Vxb and Veb leads to:

V̇qε = 2βq̇T Rqεq̇ − 2
∫ t−δ+µ+ε̄

t−δ−µ−ε̄
q̇T (s)Rxεq̇(s)ds

V̇qb = 4µq̇T Rbq̇ − 2
∫ t−δ+µ

t−δ−µ
q̇T (s)Rbq̇(s)ds,

(26)

Combining (20), (25) and (26) and noting that the sum of the negative in-
tegrals in (26) with the integrals from (23) is negative, the following inequality
holds:

V̇ ≤ ∑N
i=1 λi

{
ξT
x

[
Ψi

x Θxi
12

∗ −Sx + Rex

]
ξx + ξT

e

[
Ψe Θei

12
∗ −Se + Sxe

]
ξe

}

where Ψ i
x = Ψni

x2 +
[

0 0
0 2βRxε + 4µRb

]
, and Ψe = Ψn

e +
[

0 0
0 2βReε + 4µRb

]
.

Then the Schur complement leads to the LMI’s given in (12) and (13). Then
LMI’s from Theorem 1 are satisfied, the system (11) is asymptotically stable.


