Alexandre Seuret 
  
Karl H Johansson 
  
Networked control under time-synchronization errors

Keywords: Networked control systems, Time-delay, clocks synchronization errors, Lyapunov-Krasovskii functionals

A robust controller is derived for networked control systems with uncertain plant dynamics. The link between the nodes is disturbed by time-varying communication delays, samplings and timesynchronization. A stability criterion for a robust control is presented in terms of LMIs based on Lyapunov-Krasovskii techniques. A second-order system example is considered and the relation between the admissive bounds of the synchronization error and the size of the uncertainties is computed.

Introduction

Internet technology appears as a natural and cheap way to ensure the communication link in remotely controlled systems [START_REF] Abdallah | Delay effect in the networked control of mobile robot[END_REF][START_REF] Hespanha | A survey of recent results in networked control systems[END_REF][START_REF] Zampieri | A survey of recent results in Networked Control Systems[END_REF]. Today, the available Quality of Service is often good enough for that kind of applications. However, such a communication link constitutes an additional dynamical system, which great influence on stability was already mentioned in the 60's [START_REF] Ferrel | Remote manipulation with transmission delay[END_REF]. Indeed, several dynamics and perturbations (communication delay, real-time sampling, packet dropout and synchronization errors) are unavoidably introduced and have to be taken into account during the design of the control/observation loop.

In the literature, many authors assume that the nodes of the NCS are synchronized [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]. However the synchronization is an fundamental issue of NCS since ensuring several nodes are synchronized is not easy and some error in it may reduce the performances of the controller [START_REF] Freris | Fundamental Limits on Synchronization of Affine Clocks in Networks[END_REF]. The article focusses on the lake of time-synchronization and provides a robust controller for continuous networked control systems with synchronization error and to parameter uncertainties. A time-delay representation which takes into account the transmission delays, the sampling and the synchronization errors.

Several works on networked controlled systems introduced the question of transmission delays [START_REF] Azorin | Dynamic analysis for a teleoparation system with time delay[END_REF]. It is well known that delays generally lead to unstable behavior [START_REF] Niculescu | Delay Effects on Stability. A Robust Control Approach[END_REF] [START_REF] Richard | Time delay systems: an overview of some recent advances and open problems[END_REF]. Moreover in networked control situations, the delays are basically variable (jitter phenomenon) and unpredictable. This is a source of problem when the classical predictor-based controllers are intended to be applied. These techniques generally need the constant delay, i.e. h i (t) = h i . In the case of variable delays, some researches have used independent-of-delay conditions. Because such i.o.d. conditions may be conservative in general, particular cases such as constant or symmetric delays were considered [START_REF] Eusebi | Force-Reflecting telemanipulators with Time-delay: Stability Analysis and control design[END_REF]. These assumptions refers to the case where the transmission delays are equal, i.e.

h 1 (t) = h 2 (t) = R(t)/2,
where R(t) denotes the round trip time (RTT). Another interesting approach was recently given in [START_REF] Witrant | Remote output stabilization via communication networks with a distributed control law[END_REF], which generalized the predictor techniques to the case of variable delays.

Considering unknown time-varying delays and samplings, some stability and stabilization results, [START_REF] Yue | State feedback controller design for networked control systems[END_REF] have been provided known introducing bounds of the delays and of the sampling interval (h m , h M and T such that 0 ≤ h m ≤ h(t) ≤ h M and such that the difference between two successive sampling instants is less than T ), which is not that restrictive. In this paper, the same assumptions are done to ensure the stability of the NCS using a observer-based controller which extends the controller from [START_REF] Motestruque | Stability of model-based networked control system with time-varying transmission time[END_REF] to the case of time varying delays, synchronization errors and parameter uncertainties.

The present article is organized as follows. Section II concerns the problem formulation providing a presentation of the plant and of the communication. Section III exposes the control strategy. Section IV deals with the stability of the controller. An example is provided in Section V.

Preliminaries

The network control problem is described in Fig. 1. The plant and the controller are connected through a network which induces additional dynamics. It is assumed that the time synchronization of the process and controller clocks is not achieved. Then the time t p given by the plant's clock and the time t c delivered by the controller's clock do not have the same sense. The reference time is given by the plant clock. It means that t c = t p + (t) where corresponds to a timevarying error of synchronization. The features of the plant and the assumptions on the network are described in the following.

Definition of the plant

Consider the uncertain systems:

ẋ(t) = (A + ∆ γ A)x(t) + (B + ∆ γ B)u(t), y(t) = (C + ∆ γ C)x(t). ( 1 
)
where x ∈ R n , u ∈ R m and y ∈ R p are, respectively, the state, input and output vectors. The constant and known matrices A, B and C correspond to the
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Sensors Network Network Fig. 1: Plant controller through a network nominal behavior of the plant. The (time-varying) uncertainties are given in a polytopic representation:

∆ γ A = γ N i=1 λ i (t)A i , ∆ γ B = γ N i=1 λ i (t)B i ∆ γ C = γ N i=1 λ i (t)C i
where N corresponds to the numbers of vertices. The matrices A i , B i and C i are constant and known. The scalar γ ∈ R characterizes the size of the uncertainties. Note that when γ = 0, no parameter uncertainty is disturbing the system. However the greater the γ, the greater the disturbances. The functions λ i (.) are weighted scalar functions which follow a convexity property, ie. for all i = 1, .., N and for all t ≥ 0: λ i (t) ≥ 0 and N i=1 λ i (t) = 1. It is also assumed that the computation power is low on the plant and its functions are limited to receive control packets, to apply control and to send output measurement data. The computation thus is removed in a centralized controller.

Synchronization and delays models

In addition to parameter uncertainties, the stability of the closed-loop system must be ensured whatever the delays, the possible aperiodicity of the real-time sampling processes and synchronization error. Concerning the transmission delays, the delays are assumed to be non-symmetric but have known minimal and maximal bounds h m and h M , so that:

A1 (maximal allowed delay) : h m ≤ h i (t) ≤ h M .
(

Since we aim at limiting the value of h m , the use of the User Datagram Protocol (UDP) is preferred to Transmission Control Protocol (TCP), the reliability mechanisms of which may needlessly slow down the feedback loop. Another feature of UDP is that the packets do not always arrive in their chronological emission order. The reception function will be added a re-ordering mechanism thanks to some "time-stamps" added in packets. This can be expressed as:

A2 (packet reordering) : ḣi (t) < 1. ( 3 
)
Another disturbance implied by the network comes from the samplers and zero-holders. Following the lines of [START_REF] Fridman | Robust Sampled-Data Stabilization of Linear Systems: An Input Delay Approach[END_REF], we consider they produce an additional variable delay t -t k , where t k is the k th sampling instant. Moreover, because of
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Observer Sensors Controller Fig. 2: Architecture of the networked controller the operating system, the sampling is generally not periodic. So, we only assume there exists a known maximum sampling interval T so that:

A3 (max. sampling interval) : 0 ≤ t k+1 -t k ≤ T. ( 4 
)
Assume the function is time-varying and there exists a known constant ¯ such that:

A4 : | (t)| ≤ ¯ (5)
3 Observer-based networked control

The system architecture is exposed in Fig. 2. The controller has to estimate present state of plant, using output measurements, and to compute the control value which will be sent to the plant.

D1

The control law: The controller computes a control law which considers some set-values to be reached. The static state feedback control u(t) = K x(t) is defined considering the state estimate x given by the observer. The difficulty is to determine a gain K guaranteeing stability despite the delay δ 1 (t). D2 Transmission of the control u: The k th packets sent by the controller to the process includes the designed control u(t 1,k ) and a sampling time t 1,k when it was produced. The plant receives this information at time t r 1,k . This time does not have the same meaning for both parts. The term t r 1,k -t 1,k , corresponding to the transmission delay, corrupted by , is estimated by the plant once the packet has reached it. D3 Receipt and processing of the control data: The control, sent at time t 1,k , is received by the process at time t r 1,k ≥ t 1,k + h m . There is no raison that the controller also knows the time t r 1,k when the control u(t 1,k ) will be injected into the plant input. Finally, there exists k such that h m ≤ t 1,k ≤ h M + T and the process is governed by:

ẋ(t) = (A + ∆ γ A)x(t) + (B + ∆ γ B)u(t 1,k ) (6) 
D4 Transmission of the output information: The process have access to its output y only in discrete-time. A packet contains the output y(t 

ẋ(t) = Ax(t) + Bu(t 1, k + ) -L(y(t 2,k ) -ŷ(t 2,k -)), ŷ(t) = C x(t). ( 7 
)
The design of an observer gain L ensuring stability is not straightforward.

Note that the observation is based on the nominal values of the system definition.

No assumption is introduced to estimate the uncertainties and the λ i functions.

The time stamp t 1, k corresponds to the time where the control input is assumed to be implemented into the plant input. The index k corresponds to the most recent output information the controller has received. The time t r 1,k and the control u(t 1,k ) (see D2) are not known from the observer.

An improve with respect to [START_REF] Seuret | Networked Control using GPS Synchronization[END_REF] is that no buffers are required in the controller. This allows considering the input packets as soon as they arrive.

Stabilization under synchronization error

This section focusses on developing asymptotic stability of the networked control architecture detailed in Fig. 2.

Closed-loop system

The input delay approach to sampled-data signals allows a homogenized definition of the delays δ 1 (t) t -t 1,k where k corresponds to the real sampling implemented in the plant, δ1 (t) t -t 1, k and δ 2 (t) t -t 2,k to be considered. The observer dynamics are then driven by:

ẋ(t) = Ax(t) + Bu(t -δ1 (t) + ) -L(y(t -δ 2 (t)) -ŷ(t -δ 2 (t) -)), ŷ(t) = C x(t), (8) 
where the features of the system lead to

h m ≤ δ i (t) ≤ h M + T for i = 1, 2. Equivalently, if the average delay δ(h m , h M , T ) = (h M + T + h m )/2 and the maximum delay amplitude µ(h m , h M , T ) = (h M + T -h m )/2 is used, then: δ -µ ≤ δ i (t) ≤ δ + µ, ∀i = 1, 2. ( 9 
)
According to ( 6) and ( 7) and for given k and any t ∈ [t r 1,k + h m , t r 1,k+1 + h m [, there exist k and k such that the global remote system is governed by:

ẋ(t) = (A + ∆ γ A)x(t) + (B + ∆ γ B)K x(t 1,k ), ẋ(t) = Ax(t) + BK x(t 1, k -) -∆ γ LCx(t 2,k ) -LC(x(t 2,k ) -x(t 2,k + )). ( 10 
)
Rewriting the equations with the error e(t) = x(t) -x(t), the dynamics become:

ẋ(t) = (A + ∆ γ A)x(t) + (B + ∆ γ B)K(x(t 1,k ) -e(t 1,k )) ė(t) = Ae(t) + LCe(t 2,k ) + ∆Ax(t) + ∆BK(x(t 1,k ) -e(t 1,k )) + ∆ γ LCx(t 2,k ) -BK t 1, k + t 1,k [ ẋ(s) -ė(s)]ds + LC t 2,k t 2,k -[ ẋ(s) -ė(s)]ds.
Applying the input delay representation [START_REF] Fridman | Robust Sampled-Data Stabilization of Linear Systems: An Input Delay Approach[END_REF] yields:

ẋ(t) = (A + ∆ γ A)x(t) + (B + ∆ γ B)Kx(t -δ 1 ) -∆ γ BKe(t -δ 1 ) ė(t) = Ae(t) + ∆ γ Ax(t) + ∆ γ BK(x(t -δ 1 ) -e(t -δ 1 )) + L∆ γ Cx(t -δ 2 ) +LCe(t -δ 2 ) -BK t-δ1+ t-δ1 [ ẋ(s) -ė(s)]ds + LC t-δ2 t-δ2-[ ẋ(s) -ė(s)]ds. ( 11 
) with δ 1 (t) = t -t 1,k and δ 2 (t) = t -t 2,k .
From the fact that the communication delays belong to the interval [h m , h M ] where h m and h M are given by the network properties. Then the condition (9) on the delays still holds.

In an ideal case, ie. = 0 (from A2, synchronized case), the C2P delays are assumed to be well known, ie. δ 1 (t) = δ1 (t) (see [START_REF] Seuret | Networked Control using GPS Synchronization[END_REF]) and the model is assumed to be perfectly known and constant (γ = 0). For this ideal case, Theorem 2 and 3 from [START_REF] Seuret | Networked Control using GPS Synchronization[END_REF] deliver controller and observer gains, since the global system is rewritten using the error vector e(t) = x(t) -x(t) as:

ẋ(t) = Ax(t) + BKx(t -δ 1 (t)) -BKe(t -δ 1 (t)) ė(t) = Ae(t) + LCe(t -δ 2 (t))

Stability Criteria

It is now accepted that δ 1 (t) = δ1 (t) and = 0. The stability of the controller and of the observer is not ensured anymore by Theorem 2 and 3 in [START_REF] Seuret | Networked Control using GPS Synchronization[END_REF], as = 0 leads error in the delay measurement. As in equation [START_REF] Richard | Time delay systems: an overview of some recent advances and open problems[END_REF], there are interconnection terms between the two variables x and e, a separation principle is no longer applicable to prove the global stabilization. The stability proof requires to consider now both variables simultaneously.

Theorem 1. For given K and L, suppose that, there exists for q representing the subscript x or e, positive definite matrices : P q1 , S q , R qa , R q , S xe , Q xe and R b and matrices of size n × n: P q2 , P q3 , Z ql for l = 1, 2, 3, Y ql for l = 1, 2 such that the following LMI's hold :

   Θ i x Θ i x12 µP T x A i K P T x A i K µP T x A i K * -Sx + 2R b 0 0 0 * * -µRxa 0 0 * * * -S xe 0 * * * * -µR b    < 0, (12) 
    Π i P T e 0 γA i 0 αP T e 0 γB i K 0 (1 + µ)P T e 0 γLC i 0 * -Qxe 0 0 * * -αR b 0 * * * -(1 + µ)R b     < 0, ( 13 
) Rq Yq1 Yq2 * Z q1 Z q2 * * Z q3 ≥ 0, q ∈ {x, e}, ( 14 
)
where α = (1 + 2µ), β = 2(µ + ¯ ), P q = P q1 0 Pq2 Pq3 and

Π i =      Θe Θ i e12 µP T e A L ¯ P T e A L ¯ P T e A L βP T e A K βP T e A K * -Se + Sxe 0 0 0 0 0 * * -µR ea 0 0 0 0 * * * -¯ R e 0 0 0 * * * * -¯ R x 0 0 * * * * * -βRe 0 * * * * * * -βRx      Θ x12 = P T x A i K -Y T x1 Y T x2 , Θ e12 = P T e 0 LC -γBiK -Y T e1 Y T e2 , Θ i x = Θ ni x + Qxe 0 0 2βRx + 4µR b , Θ e = Θ n e + 0 0 0 2βRe + 4µR b , Θ ni x = P T x 0 I Āi -I + 0 I Āi -I T P x + Sx + Yx1 + Y T x1 + δZx1 Yx2 + δZx2 * δRx + 2µRxa + δZx3 , Θ n e = P T e 0 I A -I + 0 I A -I T P e + Se + Ye1 + Y T e1 + δZe1 Ye2 + δZe2 * δRe + 2µRea + δZe3 ,
and where

A K = 0 BK , A i K = 0
BiK and A L = 0 LC . Then, the NCS ( 10) is asymptotic stable.

The proof of Theorem 3 is given in the appendix.

Remark 1. Theorem 1 guarantees the robust stability of the global remote to be guaranteed system with respect to the synchronization error and for observer and controller gains given in [START_REF] Seuret | Networked Control using GPS Synchronization[END_REF]. Since the problems of designing observer and controller gains are dual, to develop constructive LMI's is not straightforward.

Application to a mobile robot

This study is illustrated on the model of a mobile robot (Slave) which can move in one direction. The identification phase gives the following dynamics:

ẋ = 0 1 0 -11, 32 -ζγ x + 0 -11, 32 + ζγ u(t -δ 1 ), y = [ 1 + ζγ/10 0 ] x, ( 15 
)
where the scalar function ζ(t) lies in [-1, 1] and is taken as

ζ(t) = sin(6t).
The characteristics of transmission delays in a classical network (between Lens and Lille in France (50km)) allows h m = 0, 1s and h M = 0.4s. Consider now that the bandwidth of the network allows the sampling period as T = 0.1s to be defined. For these values, Theorems 2 and 3 in [START_REF] Seuret | Networked Control using GPS Synchronization[END_REF] produce the following gains L = [ -0.9119 -0.0726 ] T and K = [ -0.9125 -0.0801 ]. This gains ensures that, in the ideal case the remote system is α-stable for α x = α e = 1.05. Theorem 1 ensures that, with these features, the global system is asymptotically stable and robust without any time-varying synchronization error less than ¯ = 0.04s in [START_REF] Freris | Fundamental Limits on Synchronization of Affine Clocks in Networks[END_REF] for γ = 0. Figure 3 shows the the maximal admissive ¯ for greater values Figure 4a shows the simulation results for γ = 0.1 and = 0.03 (point (2) in Figure 3). The state of the process and the sampled input and output are provided. It can be seen that the state convergence to the reference. The stability of the system despite the synchronization error and the parameters uncertainties is ensured.

Figure 4b present simulations for γ = 0 and = 0 (point ( 1)) and for γ = 1.5 and = 0.03 (point (3)). In comparison to Figure 4a, the results for (1) are closed to the ones obtained for [START_REF] Azorin | Dynamic analysis for a teleoparation system with time delay[END_REF]. Concerning (3), Theorem 1 does not ensure the stability. However the controller still stabilize the system. It means that the conditions from Theorem 1 are conservative. Further results would investigate in reducing the conservativeness of the stability conditions.

Concluding remarks

This paper presents a strategy for an observer-based control of a networked controlled systems under synchronization erros. No buffering technique was involved, which allows using the available information as soon as received. Various perturbations were dealt with jittery, non-symmetric and unpredictable delays, synchronization error, aperiodic sampling (real-time) and uncertainties in the model. A remaining assumption in [START_REF] Seuret | Networked Control using GPS Synchronization[END_REF] which is that the clocks have to be synchronized is not required anymore.

A characteristic feature of this control strategy is to consider that the observer based controller runs in continuous time (i.e., with small computation step) whereas the process provides discrete-time measurements. Thus, the observer keeps on providing a continuous estimation of the current state, even if the data are not sent continuously. 
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Fig. 4: Simulation results

The proposed conditions are conservative. New and less conservative results which guarantee stability of system with sampled-data control recently appears and might help in reducing the conservativeness. It would be interesting to apply these new technics on the present system.

A Proof of Theorem 1

To analyze the asymptotic stability property of such a system, equations [START_REF] Richard | Time delay systems: an overview of some recent advances and open problems[END_REF] are rewritten by using the descriptor representation [START_REF] Fridman | A descriptor system approach to H ∞ control of linear time-delay systems[END_REF] with x(t) = col{x(t), ẋ(t)}, ē(t) = col{e(t), ė(t)}. In this section, when there is no confusion, any function considered at time 't' will be written without '(t)'. Consider the Lyapunov-Krasovskii (LK) functional: [START_REF] Zampieri | A survey of recent results in Networked Control Systems[END_REF] where the sub-LK functionals are, for q representing the subscript of the variables 'x' and 'e': V qn = qT EP q q + 0 -δ t t+θ qT (s)R q q(s)dsdθ + t t-δ q T (s)S q q(s)ds,

V = V xn + V xa + V x + V en + V ea + V e + V xe
V qa = µ -µ t t+θ-δ qT (s)R qa q(s)dsdθ, V q = 2 µ+¯ -µ-¯ t t+θ-δ qT (s)R q q(s)dsdθ V qb = 2 µ -µ t t+θ-δ qT (s)R b q(s)dsdθ
with E = diag{I n , 0} and P x , P e defined in Theorem 1.

The signification of each sub-LK functional has to be explain. The first functionals V xn and V en deal with the stability of the Slave and the observer systems subject to the constant delay δ while V xa and V ea refer to the disturbances due to the delay variations. Even if the functionals do not explicitly depend on each time varying delay, it will be considered both different delays δ 1 and δ 2 . The functionals V q are concerned with synchronization errors. The last functionals V qb deals with the interconnection between the variables x and e. Consider as a first step, the polytopic representation of the dynamics in x:

ẋ = N i=1 λ i Āi x + Bi K(x(t -δ 1 ) -e(t -δ 1 )) (17) 
where Āi = A + γA i and Bi = B + γB i . According to Theorem 2 in [START_REF] Seuret | Sampled-data exponential stabilization of neutral systems with input and state delays[END_REF], if LMI ( 14) holds for q = x and for all vertices of the polytopic system, the following inequality holds:

Vxn + Vxa ≤ N i=1 λ i ξ T x Ψ i x1 Θ i x12 * -S x ξ x + η i x ( 18 
)
where ξ x = col{x, ẋ, x(t -δ)} and:

η i x = -2x T P T x A i K e(t -δ 1 ), Ψ i x1 = Θ ni x + µP T x A i K R -1 xa A iT K P x .
Using the Leibnitz formula and a classical LMI bounding, it yields, for i = 1, 2:

η i x ≤ xT P T x A i K (S -1 xe + µR -1 b )A iT K P x x +e T (t -δ)S xe e(t -δ) + | t-δ t-δ1 ėT (s)R b ė(s)ds| (19) 
where S xe and R b are positive definite matrices which represent the presence of the error vector in the state equation. Then, the following inequality holds:

Vxn + Vxa ≤ N i=1 λ i ξ T x Ψ ni x2 Θ i x12 * -S x ξ x +e T (t -δ)S xe e(t -δ) + | t-δ t-δ 1 ėT (s)R b ė(s)ds|, (20) 
where

Ψ ni x2 = Θ ni x + P T x A i K (S -1 xe + µR -1 xa + µR -1 b )A iT K P x .
Concerning the errors dynamics, differentiating V en + V ea along the trajectory of [START_REF] Richard | Time delay systems: an overview of some recent advances and open problems[END_REF] and assuming that LMI [START_REF] Witrant | Remote output stabilization via communication networks with a distributed control law[END_REF] holds with q = e yields:

Ven + Vea ≤ N i=1 λ i {ξ T e Ψe1 P T e A L -Y T e * -Se ξ e -η x e1 +η e e1 -η x e2 + η e e2 + η xi ∆A + η xi ∆B + η ei ∆B + η xi ∆C , (21) 
where ξ e = col{e, ė, e(t -δ)} and where

Ψ e1 = Θ n e + µP T e A L R -1 ea A iT L P e , η q e1 = 2ē T P T e A K t 1, k + t 1,k q(s)ds, η q e2 = -2ē T P T e A L t 2,k t 2,k -q(s)ds, η xi ∆A = 2ē T P T e [ 0 γA T i ] T x, η xi ∆B = 2ē T P T e [ 0 γ(B i K) T ] T x(t -δ 1 ), η ei ∆B = -2ē T P T e [ 0 γ(B i K)T ] T e(t -δ 1 ), η xi ∆C = 2ē T P T e [ 0 γ(LC i ) T ] T x(t -δ 1 ),
with q representing either x or e. Note that the functions η q ei , for q ='x','e' and i = 1, 2 correspond to the disturbance due to the synchronization error. Consider i = 1: Noting that from assumption A4, inequality t 1, k + -t 1,k ≤ ¯ + 2µ holds, then a classical bounding leads to:

η x q1 ≤ (¯ + 2µ)ē T P T e A K R -1 q A T K P e ē + t 1, k + t 1,k qT (s)R q q(s)ds. ( 22 
)
By the same way, the following inequalities hold:

η q e2 ≤ ¯ ēT P T e A L R -1 q A T L P e ē + t 2,k t 2,k -
qT (s)R q q(s)ds.

(23)

Following the same method as in (19), the following inequalities hold: Differentiating V x , V e , V xb and V eb leads to: Vq = 2β qT R q q -2 t-δ+µ+¯ t-δ-µ-¯ qT (s)R x q(s)ds Vqb = 4µ qT R b q -2 t-δ+µ t-δ-µ qT (s)R b q(s)ds,

Combining (20), ( 25) and (26) and noting that the sum of the negative integrals in (26) with the integrals from (23) is negative, the following inequality holds: Then the Schur complement leads to the LMI's given in [START_REF] Seuret | Sampled-data exponential stabilization of neutral systems with input and state delays[END_REF] and [START_REF] Seuret | Networked Control using GPS Synchronization[END_REF]. Then LMI's from Theorem 1 are satisfied, the system (11) is asymptotically stable.

V ≤ N i=1 λ i ξ T x Ψ i x Θ xi
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  2,k ) and the sampling time t 2,k . The controller receives the output packet at time t r 2,k . D5 Observation of the process: For a given k and any t ∈ [t 1, k + (h Mh m )/2, t 1, k+1 + (h M -h m )/2[, there exists a k such that:
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