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UMR CNRS 5798, 351 cours de la Libération, 33405 Talence Cedex, France

Abstract

We experimentally investigate the thermocapillary migration induced by local laser heating of

the advancing front of a growing droplet confined in a microfluidic channel. When heating implies

an effective increase in interfacial tension, the laser behaves as a “soft door” whose stiffness can be

tuned via the optical parameters (beam power and waist). The light-driven thermocapillary velocity

of a growing droplet, which opposes to the basic flow, is characterized, for different types of fluid

injection, either pressure- or flow-rate-driven, and various channel aspect ratios. Measurements

are interpreted using a simplified model for the temperature gradient at the interface, based on a

purely diffusive, three-layer system. Considering the mean temperature gradient, we demonstrate

that the classical large-scale temperature gradient behavior is retrieved in the opposite case when

the thermal gradient length scale is smaller than the droplet size. We also demonstrate that

the thermocapillary velocity is proportional to the smallest droplet curvature imposed by the

channel confinement. This suggests that the thermocapillary velocity is in fact proportional to

the mean temperature gradient and to the largest interface curvature radius, which both coincide

with the imposed one and the spherical droplet radius in large-scale and unconfined situations.

Furthermore, as used surfactant concentrations are largely above the critical micelle concentration

(CMC), we propose a possible explanation, relying on state-of-the-art considerations on high-

concentration surfactant-covered interfaces, for the observed effective increase in interfacial tension

with temperature. We also propose a mechanism for explaining the blocking effect at the scaling-

law level. This mechanism involves the temporal evolution of hydrodynamic and thermocapillary

forces, based on experimental observations. We finally show that this opto-capillary interaction

with a microfluidic droplet generator allows for controlling either the flow rate (valve) or the droplet

size (sampler), depending on the imposed fluid injection conditions.
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I. INTRODUCTION

Using light to set micro-scale fluid elements in motion is attractive since optical actuation

can be totally disconnected to the fluidic system. The very weak amplitude of optical forces

[1], typically in the pN range, nevertheless limits the manipulation capabilities for high-speed

microfluidic applications. For instance, optical tweezers [2] have recently been proposed

to actuate micropumps composed of optically trapped particles [3, 4], with flow velocities

in the µm s−1 range. On the other hand, radiation pressure [5] allows for direct optical

manipulation of liquid interfaces, but observation of significant deformations is only possible

when interfacial tensions are very small [6] due to the weakness of the photon momentum.

An alternative consists in producing hydrodynamic forces by light rather than using

optical forces themselves. Let us consider a bubble, immersed in a viscous light-absorbing

fluid. As surface tension depends on temperature, heating locally the interface creates

a surface tension gradient that produces a stress (called Marangoni, or thermocapillary)

along the interface. This stress induces an interfacial flow, directed toward the region of

highest surface tension (generally, the colder), which diffuses in both side of the interface.

The motion of the surrounding bulk fluid finally leads to the migration of the bubble in

the opposite direction. In a pioneering work, Young et al. [7] gave an expression for the

migration velocity (hereafter called “thermocapillary velocity”), and showed that it scales

as the bubble radius and the temperature gradient. This expression agrees quantitatively

with experiments for bubbles suspended in an infinite medium. These investigations have

then been extended to droplets, and the scaling predicted by Young et al. was retrieved in

spite of a quantitative discrepancy attributed to the convective transport of heat [8]. The

influence of boundaries, considering bubbles squeezed between two parallel plates [9, 10], or

embedded in long capillaries of various shapes [11–13], were also analyzed. A qualitative

difference appears in the case of elongated bubbles, for which the thermocapillary velocity

no longer depends on the bubble size.

Later, quantitative discrepancies with Young’s results raised the question of impurities

influence at interfaces on the thermocapillary migration. Barton and Subramanian [14] ob-

served experimentally that a controlled amount of surfactant inhibits the Marangoni effect.

Kim and Subramanian [15, 16] theoretically described this inhibition, for insoluble surfac-

tants, in the two extreme cases corresponding to weak and strong interfacial advection.
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The main feature is that surfactant molecules tend to gather onto a stagnant cap, which

increases the stiffness of the interface. The inhibiting effect was also observed with soluble

surfactants [17]. More recently, Khattari et al. [18] accounted for the dilatational proper-

ties of the interface and the diffusive transport of surfactant molecules along the interface.

They showed that the presence of surfactant globally leads to (i) a decrease in amplitude

of the thermocapillary migration velocity, and (ii) a coupling between the temperature and

the interfacial concentration of surfactant molecules. Therefore, the coefficient of interfacial

tension variation with temperature, ∂σ/∂T , can be written as an “effective” one, accounting

for both temperature and concentration effects, including temperature-induced surfactant

transport. This effective variation (∂σ/∂T )eff can be either positive or negative, depending

on the relative strength of the coupling effects.

In the scope of micro-scale fluid manipulation, most studies involve a temperature gra-

dient produced by integrated sources [19–21]. This approach can be seen as the natural

scale-reduction of Young’s experiment since the temperature gradient remains larger than

the typical droplet size. On the other hand, recent works proposed optically-induced ther-

mocapillary approaches to move liquid droplets [22] or even solids [23] floating on a liquid

surface. The main advantage is that, as typical radii of laser beams of 1− 10 µm are simple

to implement, producing a large temperature gradient with a weak increase in temperature

becomes easy. In a microfluidic environment, we have shown that this method suits well for

the realization of an “optical lab on a chip” [24, 25], in which light blocks or deviates [26]

the motion of individual water droplets flowing in hexadecane. Applications such as valve,

merger, switch, or sorter, have thus been reported. Since the equilibrium interfacial tension

is expected to decrease with temperature for a water-hexadecane interface with surfactants

[27], droplets should be attracted toward the hot spot. However, experiments [24–27] show a

repulsive effect. Verneuil et al. attributed this anomalous behavior to an out-of-equilibrium

solutocapillary effect, due to the sudden local depletion of surfactant on the water-oil inter-

face in the vicinity of the laser beam, which opposes and overcomes pure thermocapillarity

[27]. The net force resulting from this laser interaction is theoretically [24, 28] and exper-

imentally [27] estimated to be in the range of 0.1 µN. The laser-induced force equilibrates

the force resulting from the upstream fluid, which is experimentally evaluated in an elegant

way by introducing a bypass on the relevant part of the microchannel to determine the cor-

responding hydrodynamic resistance [27]. This estimate, however, does not link the blocking
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force to the main laser input parameters, and therefore cannot quantify the physical effects

involved in the blocking of a droplet in a microchannel. On the other hand, in Ref. [24] this

force is calculated from the flow field induced, in a depth-averaged Hele-Shaw geometry, by

Marangoni stresses, assuming a given analytical temperature distribution.

In fact, contrary to the case of a droplet submitted to an uniform temperature gradient

of length scale much larger than the droplet size, where the “effective” temperature gradient

experienced by the droplet is obviously the imposed one, in the laser-heating case, the

temperature distribution is not uniform, and furthermore its spatial extent is usually smaller

than the droplet size. These features raise the question of the temperature gradient seen by

the drop to quantitatively study the thermocapillary migration. Moreover, the velocity of a

laser-induced thermocapillary migration of a free droplet cannot be directly measured owing

to the locality of the laser-fluid interaction. Thus, the purpose of the present investigation is

to implement a new way to measure this migration velocity from the competition with the

bulk main flow. Indeed, variations in the bulk flow allow for fine scanning of thermocapillary

velocities, particularly during the droplet formation.

This paper is organized as follows. The experimental setup is presented in Section II.

The fluid properties, geometry of the microchannel and beam characteristics are also sum-

marized. In Section III, we demonstrate how the laser beam is able to slow down or block

the advance of the front of a droplet in formation. We measure the velocity of succes-

sive droplet fronts, and use this general method to deduce the thermocapillary migration

velocity. For a quantitative understanding of the laser-fluid interaction, we also need to

characterize the temperature distribution; it is calculated in Section IV. We develop for

this purpose an analytical model, which is based on purely diffusive heat transfer and an

idealized 2D geometry. The temperature field at the interface is estimated by considering a

virtual interface. We finally demonstrate that the thermocapillary velocity can be related to

an averaged temperature gradient, and we discuss the influence of the confining geometry.

As an application of the blocking effect, we present in Section V how the laser beam can

influence the characteristics (size, frequency of emission) of the emitted droplets, leading to

a caliper- or a valve-like behavior depending on the nature of the initial flow, either flow

rate- or pressure-driven.
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II. EXPERIMENTAL SETUP

Experiments are performed in polydimethylsiloxane (PDMS) microchannels, molded by

the standard soft lithography technique [29] and cast onto microscope glass slides. The

channels are cross-shaped, with a rectangular cross-section of variable height (h ≃ 30 or

50 µm) and width (w ≃ 200 or 100 µm). As represented in Fig. 1, a continuous Argon-ion

laser (Coherent Innova 300C), operating in the TEM00 Gaussian mode at the wavelength in

vacuum λ0 = 514.5 nm, is focused inside the microchannel by different microscope objectives

(Olympus), with magnification ranging from ×2.5 to ×20. This leads to values of the beam

waist ω0 comprised between 10.3 and 1.4 µm. The same objective is also used to image the

microchannel on a CMOS fast camera (Lightning RTD 16000). A red-pass filter is added in

front of the camera to prevent it from any damage due to the laser irradiance.

Water and hexadecane (hereafter called “oil”) are pumped in the microchannel. The

injection can be controlled at constant flow rate (pipes represented by solid lines in Fig.

1) using syringe pumps, or at constant pressure, by hanging reservoirs at a given altitude

(pipes in dashed lines in Fig. 1). A surfactant, the commonly-used sorbitan monooleate

(Span 80), is added to the oil phase to avoid wetting of the water phase on the glass slide

[30], at a concentration of 2% in weight. This concentration, quite classical in microfluidics,

is more than 30 times the critical micelle concentration (CMC) [27, 31]. The resulting

interfacial tension is σ ≃ 5 mN m−1. As previously reported, for this concentration range

the interfacial flow is directed toward the hot spot [24], reflecting a positive value of the

“effective” variation of interfacial tension with temperature, (∂σ/∂T )eff , which leads to a

repulsing thermocapillary effect. This point will be detailed below (Section V).

As both fluids are transparent at the laser wavelength, a dye, uranine (disodium fluores-

cein), is added in water at 0.1% in weight. This fluorescent dye has a quantum yield of 50%:

half of the absorbed energy is restored as light, allowing for visualizing the spot position, and

the other part is dissipated as heat. The resulting optical absorption of the solution at 514.5

nm was measured to be α = (1.764± 0.010) mm−1. Additionally, several experiments were

performed with a commercial Food Red 3 dye solution (E122: azorubine, Vahiné, France).

Therefore, water is the only fluid which is directly heated by the laser beam. Furthermore,

water has a refractive index (n = 1.33) lower than the hexadecane one (1.43), so the laser

light is totally reflected in hexadecane by the curved menisci at high values of the incidence
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Figure 1. Schematics of the experimental setup.

angle. Finally, the dye and surfactant concentration are sufficiently weak to consider fluids

as homogeneous from the point of view of thermodynamics and heat transfer.

III. THERMOCAPILLARY VELOCITY MEASUREMENTS

Water drops are emitted in the oil phase by hydrodynamic focusing [32, 33]. Water is

injected by the central main channel, and oil by the two lateral ones. Figure 2 (a) shows

the droplet formation in the cross region. The advance of the water front, initially slow,

accelerates when the front overtakes the intersection. At the same time, at the back of the

droplet the interface forms a neck, which thins and eventually breaks up. A drop is thus

released, and the same process repeats. For the chosen couple of imposed pressures, the

whole process typically lasts ∼ 2 s.

Beam axis is then set up in the centerline of the main channel, downstream from the

microchannel cross, and the laser is turned on. As shown in Fig. 2 (b), the laser has no

effect on the advance of the interface before it reaches the spot position, hexadecane being

optically transparent. Then, if the beam power is high enough, the interface may be blocked

during several seconds, and finally released.

The video frames allow us to determine the instantaneous velocity of the front interface

of successive droplets. When the interface is submitted to the laser, the measured velocity

is the sum of the velocity resulting from the basic flow, u0, imposed by the syringe pumps
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Figure 2. Superposition of successive frames illustrating the advance of a droplet front at constant

pressure during the formation process, (a) without and (b) with laser. The beam is located at

the white dot. Time delay between the first and the last frames are respectively 1.04 s (laser off)

and 4.72 s (laser on), with a time increment of 0.08 s between two successive frames. The channel

width is w ≃ 200 µm; the imposed pressures are 1835 Pa (oil) and 1875 Pa (water).

or the hydrostatic pressure, and the velocity resulting from the laser-droplet interaction (as

previously defined, the “thermocapillary velocity”, uth). The three following cases should

be considered:

i. uth < u0: The interface is slowed down, and overtakes the laser beam without being

blocked;

ii. uth = u0: Corresponds to the equilibrium;

iii. uth > u0: The interface should move backward to an equilibrium position, where it

turns to case ii. This position is far enough from the beam axis for equating the

velocities, and close enough for light being still refracted.

We propose to deduce the thermocapillary velocity from the measurement of the velocity of

the front interface at the beam location. The blocking of a first droplet can strongly modify

the flow conditions, thus inducing fluctuations in the front velocity of the following droplets

in formation. This velocity can range, successively, from below to above the thermocapillary

velocity, which is assumed to depend on laser parameters (beam power and waist) only.

We measure the instantaneous velocity of the front interface of successive droplets during

the formation process, as plotted by solid lines in Fig. 3. Each solid line represents an

individual droplet, the line being broken when the droplet advancing front leaves the field
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Figure 3. Velocity of 21 successive droplet fronts, for a pressure-driven flow. Each solid line

segment represents one individual droplet. The laser is turned on at t ≃ 6.5 s. Symbols indicate

the velocity at the beam position. Top: full acquisition, bottom: close-up corresponding to the

(6 − 16) s interval. Dashed lines correspond to the velocities of the slowest unblocked (top) and

the fastest blocked (bottom) drops. Beam power is P = 49 mW, and ω0 = 2.85 µm.

of view, prior to the detection of the following droplet front. To illustrate the method, let

us consider the velocity at the beam location, represented by the symbols. The laser is

turned on at t ≃ 6.5 s. The interface is blocked, the water volume grows, clogs the oil flow,

and a drop is eventually released. Due to interface blocking, fluid obstruction, and drop

generation, the flows are strongly disturbed and thus produce large velocity fluctuations of

the front interface of the following droplet in formation. We note that the blocked droplets

are the slowest ones: a maximal blocking velocity can be determined (lower dashed line on

the bottom plot of Fig. 3). On the other hand, the fastest droplets may feel the laser but are

never blocked: a minimum non-blocking velocity is also reported (upper dashed line on the

same plot). From this velocity range, we can confidently define a thermocapillary velocity

as the mean of these two extreme values. In the case represented in Fig. 3, thermocapillary

velocity is thus comprised between 1.07 and 1.16 mm s−1, i.e. 1.12 mm s−1.

This measurement is repeated for a wide range in beam power (between the blocking

threshold and the boiling point of the aqueous solution), and for different beam waists. As

illustrated in the inset of Fig. 4, pressure-driven and rate-driven flows lead to very close

values of the thermocapillary velocity, which is totally consistent with the fact that thermo-

capillary velocities are not related to the injection method. The average value between them

is thus considered hereafter. The so-determined thermocapillary velocities are represented
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Figure 4. Thermocapillary velocity deduced from the successive droplet front velocity, for 4 different

values of the beam waist. Data corresponding to pressure-driven and rate-driven flows are mixed.

The channel is 200 µm wide and 30 µm high. Inset: data corresponding to ω0 = 5.52 µm, for the

pressure-driven (filled symbols) and flow-rate-driven (open symbols) cases.

by symbols in Fig. 4, where the error bars give the interval between the slowest unblocked

and the fastest blocked drops. We can see a linear increase of this velocity with beam power,

the slope of which increasing weakly when decreasing the beam waist. This behavior should

be understood by calculating the distribution of temperature. Note the strength of this

method in the sense that flow rate or pressure values are not important as far as some drops

may be blocked and others not, in the accessible beam power range.

IV. THERMOCAPILLARY VELOCITY BEHAVIOR

A. Temperature gradient at the interface

To interpret the velocity variations presented in Fig. 4 within the framework of ther-

mocapillary actuation, we need to determine the temperature distribution at the interface,

and thus calculate the laser-heating of a thin liquid layer sandwiched between two solids

(Fig. 5). We deduce the values of the temperature field, and the temperature gradient,

on a virtual meniscus located at the place of the real one. The so-calculated temperature

gradient is finally averaged.

A side view of the droplet front is represented in Fig. 5 (a). The beam crosses successively
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Figure 5. (a) Side view of the laser-meniscus interaction. Glass and PDMS layers are assumed

transparent and semi-infinite; optical absorption only occurs in water (α = 1.764 mm−1 with

uranine). Thermal conductivities are, in W K−1 m−1, 1.38 (glass), 0.6 (water), 0.14 (oil, based on

the value of pure hexadecane), and 0.15 (PDMS). (b) Idealization of the geometry. The dashed

line represents the virtual meniscus (see text).

a glass slide, an ultra-thin layer of oil, a thin layer of water (absorbing part of the energy),

another ultra-thin layer of oil, and finally a thick layer of PDMS—thick glass and PDMS

layers are considered as semi-infinite. In order to keep the cylindrical symmetry of the

heating beam, the section is idealized as represented in Fig. 5 (b). The quasi-matching

in thermal conductivities between oil and PDMS allow us to assimilate the oil phase and

the side walls of the microchannel. Furthermore, the lubrication oil film between water

and glass, which should reduce the heat transfer, is not taken into account, owing to its

small thickness. This approximation is discussed in the Appendix A. Finally, our idealized

situation neglects the presence of the water-oil interface by considering a virtual meniscus

in a pure water layer. As illustrated in the Appendix B, this approximation leads to a 10%

overestimation of the calculated laser overheating compared to the experimental situation.

Since (i) the width of the channel is larger than its height, and (ii) thermal boundary

conditions apply at the bottom glass slide and the top PDMS roof, the height will define

the characteristic thermal length scale and the lateral walls can be ignored.

From an optical point of view, the Rayleigh length λR = nπω2
0/λ0 is larger than the

channel height, so the beam can be considered as cylindrical along its propagation through

the channel [34]. The calculation is thus made in the cylindrical system of coordinates

attached to the laser beam, with a symmetry of revolution as stated above. Moreover, the

absorption of the water layer is weak, αh≪ 1, so the vertical dependance of light intensity
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over the channel height can be neglected. The laser intensity profile can thus be written as

I(r) = 2P/(πω2
0)G(r), where G(r) = e−2r2/ω2

0 is the Gaussian enveloppe.

The thermal length scale, ℓT ∼ h/2, and the typical fluid velocities in the mm s−1 range,

lead to a thermal Péclet number Pe ∼ uℓ/DT of the order of 0.1 (the thermal diffusivity of

water being DT = 1.4× 10−7 m2 s−1), allowing to neglect the convective transport of heat.

Furthermore, the characteristic heating time ℓ2T/DT is in the millisecond range, which is very

small compared to the time scales relevant in our experiments (0.1 to several seconds). We

can thus consider steady-state heat diffusion equations in the three-layer system (subscripts

w, g and p denote, respectively, water, glass, and PDMS),
(

∇2
r +
∂2

∂z2

)

Tg = 0 (1)
(

∇2
r +
∂2

∂z2

)

Tw +
2P
πω2

0

α

Λw
G(r) = 0 (2)

(

∇2
r +
∂2

∂z2

)

Tp = 0. (3)

Here ∇2
r = (1/r)(∂/∂r)(r∂/∂r) is the radial part of the Laplacian operator, and Λ the

thermal conductivity. Considering the cylindrical symmetry, classical resolution methods

use Fourier-Bessel decomposition [35]. In the Fourier-Bessel space, the temperature field is

defined as

T̃ (k, z) =
∫ ∞

0
T (r, z)J0(kr) r dr, (4)

with J0(kr) the zero-th order Bessel’s function of the first kind. Heat diffusion equations

become
(

∂2

∂z2
− k2

)

T̃w +
2P
πω2

0

α

Λw
G̃(k) = 0 (5)

in water, and
(

∂2

∂z2
− k2

)

T̃g,p = 0 (6)

elsewhere. The variables marked with a tilde are the Fourier-Bessel transforms of the un-

marked ones. Especially, we notice that G̃(k) = (ω0/2)2 e−k
2ω2

0
/8 [36].

We impose the following interfacial boundary conditions: continuity of the temperature

fields,

T̃w(k, z = 0) = T̃g(k, z = 0) (7)

T̃w(k, z = h) = T̃p(k, z = h), (8)
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and of the heat fluxes,

Λw

(

∂T̃w
∂z

)

(k,z=0)

= Λg

(

∂T̃g
∂z

)

(k,z=0)

(9)

Λw

(

∂T̃w
∂z

)

(k,z=h)

= Λp

(

∂T̃p
∂z

)

(k,z=h)

, (10)

across the interfaces.

Solutions of eqs. 5 and 6 are

T̃g(k, z) = Ag(k) ekz (11)

T̃w(k, z) = Aw(k) ekz +Bw(k) e−kz +
α

Λw

Ĩ(k)
k2

(12)

T̃p(k, z) = Bp(k) e−kz, (13)

with Ĩ(k) = 2P/(πω2
0) G̃(k). The constants of integration A(k) and B(k) are determined

from the boundary conditions:

Ag(k) = − α
Λw

Ĩ(k)
k2
F(k) (14)

Aw(k) = − α
2Λw

Ĩ(k)
k2
F+(k) (15)

Bw(k) = − α
2Λw

Ĩ(k)
k2
F−(k) (16)

Bp(k) =
α

2Λp

Ĩ(k)
k2

(

F+(k) e2kh −F−(k)
)

, (17)

with (we set Λij = Λi/Λj)

F(k) =
(1− Λpw) e−2kh + 2Λpw e−kh − (1 + Λpw)

(1 + Λpw) (1 + Λgw)− (1− Λpw) (1− Λgw) e−2kh
(18)

and

F±(k) = 1 + (1± Λgw)F(k). (19)

We deduce the temperature field in real space by computing the inverse Fourier-Bessel

transform. In water, we get

Tw(r, z) =
αP

2πΛw

∫ ∞

0

e−k
2ω2

0
/8

k
(20)

×
(

1− F+(k)
2

ekz − F−(k)
2

e−kz
)

J0(kr) dk.

13



In-plane, z= const.

x

y

0 z

w/2

– w/2

x R (z)
h

Cross-section, x = 0
y

0

R (z)
r

φ

w/2

– w/2

z
laser

z = const.
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views.

This expression is numerically computed with Matlab
R©, for successive z = const. slices,

giving the temperature rise at any radial distance from the beam axis. In a second step we

must determine the temperature at each point of a virtual interface located in place of the

real one.

The interface can be schematized as represented in Fig. 6. In a given z = const. plane,

the front of the droplet draws a half-circle of radius R(z). A polar system of coordinates

(R(z), φ) is attached to its center. Neglecting the lubrication films, the channel geometry

leads to

R(z) =
w − h

2
+
√

z(h− z) (21)

φ = arccos

(

w2/4− r2 +R2(z)
wR(z)

)

. (22)

We can now determine, for each z = const. slice, both the temperature distribution Tz(φ)

and the azimuthal temperature gradient 1/R(z) (∂T/∂φ)z, along the virtual interface.

The rise in temperature, represented in Fig. 7 (a) for the z = h/2 plane, decreases sharply

with the polar angle. A small dependance in beam waist can be noticed at small polar

angles. Moreover, the radial distribution of temperature deviates from a purely Gaussian

form, imposed by the beam shape, after a distance of about ω0, as illustrated in the right

inset of Fig. 7 (a). The largest amplitude of the heating on the beam axis, normalized

to the beam power, ranges from 0.85 to 1.72 K mW−1 for decreasing beam waists. The

boiling point of water should be reached for a temperature rise of about 80 K, i.e. for beam

powers between 47 mW (for ω0 = 1.42 µm) and 95 mW (for ω0 = 9.61 µm), which are

very close to experimental observations (respectively 51 and 91 mW). At higher powers, we
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Figure 7. (a) Mid-plane distribution of the laser-induced temperature rise on the meniscus, for

the 4 beam waists considered. Data are normalized by the beam power. Left inset shows the

vertical evolution of interfacial temperature, at φ = 0, for ω0 = 2.85 µm. Right inset: mid-plane

temperature plotted in logarithmic scale against the square of the distance to the beam axis.

(b) Mid-plane values of the azimuthal temperature gradient on the meniscus. Data are normalized

by the beam power. Inset is a close-up view of the near-axis values plotted against the distance to

the beam axis. Geometrical parameters are w = 200 µm, h = 30 µm.

observed the repeated nucleation of bubbles near the beam axis. This observation supports

the relevance of the used approximations. Despite its simplicity, this model catches quite

well the experimental features. Even if a more refined numerical calculation could have

been very accurate, we highlight the fact that an analytical calculation scheme is essential

to provide a simple and accurate estimate of the temperature gradient, and predict some

expected behaviors.

The left inset of Fig. 7 (a) shows the predicted vertical dependance of the rise in interfacial

temperature, in the (x, z) plane. The temperature distribution varies smoothly in the vicinity

of the midplane, but decreases sharply near the up (PDMS) and down (glass) boundaries.

This vertical dependance mainly results from the variation in radial distance to the beam
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axis. Moreover, the vertical temperature distribution has an asymmetric shape, with higher

values in the upper part of the channel. This part is bounded by PDMS, which has a thermal

conductivity smaller than glass (bounding the down part of the liquid layer). Thermal losses

are thus less important at the upper boundary than at the bottom one.

The distribution of the azimuthal temperature gradient, represented in Fig. 7 (b) for

the z = h/2 plane, presents a peak, inversely proportional to the beam waist, at a distance

from beam axis of the order of ω0 [see inset of Fig. 7 (b)]. At larger distances, the gradient

strongly attenuates, with the same shape whatever the beam waist, and rapidly tends to

zero, justifying by the way the fact that lateral channel boundaries can be neglected. Local

values as high as several Kµm−1 can be reached for the typical involved intensities. These

features imply that thermally-induced interfacial flows should be very strong, and localized

close to the beam axis.

In a third step we calculate the mean temperature gradient on the meniscus interface.

In each plane z = const., the averaging should be performed on a path corresponding to

the whole set of points lying to the interface up to the thermal length scale, i.e., such as

r 6 ℓT ∼ h/2. This leads to

〈∇T 〉z =
1

2φmax

∫ φmax

−φmax

(∇T )z dφ (23)

≃ 1
2φmax

φmax
∑

−φmax

(∇T )z∆φ(z), (24)

with φmax = φ(z, r = h/2) the polar angle corresponding to the largest distance to beam

axis to be considered. The discrete summation is used since we numerically computed the

temperature field (∆φ is the corresponding angle step).

The mean value of the temperature gradient, 〈∇T 〉 = ‖〈∇T 〉 ‖, is finally given by the

average of the mean values calculated in each plane, each being weighted by the number of

terms of the sum in eq. 24. Table I summarizes the values obtained for the investigated

channel aspect ratio. A weak dependance in beam waist can be observed, which weakens

for increasing channels heights as h/2 fixes the thermal characteristic length.

B. Temperature gradient dependance of the thermocapillary velocity

Having characterized the temperature field produced by optical absorption of a laser

beam, we can now represent the experimental data of Fig. 4 versus the temperature gra-
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Table I. Mean temperature gradient per unit of optical power, 〈∇T 〉1 /P and 〈∇T 〉2 /P , for the

two considered geometries. Subscript 1 corresponds to a channel of width w = 200 µm and height

h = 30 µm; subscript 2 corresponds to w = 100 µm and h = 50 µm.

ω0 (µm) 1.42 2.85 5.52 9.61

〈∇T 〉1 /P
(

Kµm−1 W−1
)

3.03 2.89 2.58 2.01

〈∇T 〉2 /P
(

Kµm−1 W−1
)

6.09 5.97 5.69 5.13
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Figure 8. Data of Fig. 4, rescaled in terms of mean temperature gradient on the interface.

dient instead of beam power (Fig. 8). All data points fall onto a single master curve,

illustrating a linear behavior. The thermocapillary velocity is thus proportional to the mean

temperature gradient. This result could seem expectable as it was already demonstrated

when the temperature gradient length scale is large compared to the drop size. However,

the major difference here is the fact that laser heating occurs on a length scale that can be

much smaller than the drop. We can therefore conclude that, whatever the locality or the

non-locality of the heating, the resulting thermocapillary stresses are driven by the mean

temperature gradient felt by the droplet interface.

C. Geometrical dependance of the thermocapillary velocity

Previous studies [9–13] have considered thermocapillary migration in confined geometries.

One the one hand, for bubbles squeezed between two parallel plates, Bratukhin et al. [9, 10]
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showed that the thermocapillary velocity remains proportional to the bubble radius, as

in the unconfined case. On the other hand, Mazouchi and Homsy [12] and Lajeunesse

and Homsy [13] demonstrated that, for elongated bubbles (i.e., confined both horizontally

and vertically), the thermocapillary migration mainly results from the flow of the external

fluid through the channel corners. In this case, the thermocapillary velocity depends on

the smallest dimension of the channel, here its height h, but not on the bubble size. In our

microchannel, the confinement is also two dimensional. However, we have just demonstrated

that the value of a laser-induced temperature gradient is only significant at small polar angles

[typically for φ < 20◦, see Fig. 7 (b)], so the thermally-induced external flow through the

corners can be neglected. The thermocapillary migration should thus be mainly driven by

the flow near the droplet front. To check this hypothesis, we measured the thermocapillary

velocity of droplets in microchannels of different aspect ratios.

These experiments were performed with water solution containing E122 food dye. Two

reasons motivated this dye choice: (i) the demonstration of the versatility of the method

by the use of a food dye, and (ii) a significant reduction of the fluorescence compared to

uranine (note that Rhodamine 6G also works but is recognized as a mutagen molecule).

The purchased solution was diluted in the water phase at a concentration of 5.5% in weight.

Experiments were performed for three different beam waists, in a range of beam powers

comprised between 70 and 230 mW. The lower and upper bounds, which depend on the

waist considered, correspond to the blocking and boiling thresholds, respectively.

Since we do not know the absorption of the solution, the measurements performed with

E122 are plotted against the mean temperature gradient per unit optical absorption, as

represented in the inset of Fig. 9. We can see that the temperature gradient required to

reach a given thermocapillary velocity in the (100×50) channel is twice that of the (200×30)

one. Therefore, the thermocapillary velocity should be proportional to w 〈∇T 〉, as plotted

in Fig. 9. As the radius of curvature of the meniscus in the plane of observation is imposed

by the channel width, R = w/2, this scaling suggests that the thermocapillary velocity

is proportional to the droplet radius. Once again, the behavior expected in unconfined

environment is retrieved. This robustness was already demonstrated by Bratukhin et al.

[9, 10] for squeezed drops in Hele-Shaw cells and we show here that it is still valid in the

presence of lateral walls for a local laser heating. The role of the confinement being to reduce

the thermocapillary velocity amplitude due to wall friction [9, 10], it is not surprising that
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Figure 9. Thermocapillary velocity of E122 food dye droplets in two microchannels, for three

distinct beam waists, plotted against the channel half width times the mean temperature gradient

per unit optical absorbtion. Inset: same data plotted against the mean temperature gradient per

unit optical absorbtion only.

the drop radius dependance is preserved with addition of lateral walls. More surprising is

the robustness of this dependance in presence of a local laser heating of length scale smaller

than the drop size. This suggests that the important feature is not the droplet size itself but

the radius of curvature that drives the thermocapillary migration, as all mechanical effects

take place in the vicinity of the beam axis.

Finally, the present results agree well with previous investigations of droplet switching

in enlarged (Hele-Shaw-like) channels [26]. Using the uranine solutions we previously found

uth/(RP ) ≃ 0.11 mJ−1, with a beam waist close to 10 µm and a 30-µm-high channel. This

value can be compared to the slope of the plot in Fig. 4 obtained at an identical beam waist.

Taking R ∼ w/2 = 100 µm, we get uth/(RP ) ≃ 0.16 mJ−1.

V. APPLICATION TO OPTOFLUIDIC DROP DISPENSING

A direct application of the thermocapillary actuation is the interface blocking phe-

nomenon. As shown in Figs. 2 and 3, the motion of the droplet front is interrupted during

a defined interval of time, which we call blocking time τb. During the blocking process, all
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Figure 10. Representation of the main forces acting on a droplet during the blocking process.

Channel width and height are 200 µm and 30 µm, respectively.

forces applying on the meniscus equilibrate. These forces may be time-dependant due to the

presence of various flows. Therefore, we understand the blocking time as the time at which

the front meniscus loses its rest position imposed by the laser beam. In this section, we

thus propose a possible mechanism, based on this time-dependant mechanical equilibrium,

to describe the experimentally-measured blocking time. The present section is organized

as follows. First, we define the system, and the externally applied forces. Their temporal

dependance is also estimated from experimental observations, distinguishing when required

the pressure-driven and flow-rate-driven cases. The time-dependant equilibrium of forces

leads to a relationship between the blocking time and the temperature gradient, which will

be compared to measurements. Finally, we show that the opto-capillary blocking is an

appealing way of controlling either the droplet volume or the flow rate.

A. Forces involved in the blocking process

We consider a droplet, blocked during its formation process. As represented in Fig. 10,

a neck forms upstream from the beam axis, which eventually (after the end of the blocking

process) breaks up. Therefore, this neck represents a relevant limit for the volume of fluid

that will further constitute a droplet. This is the reason why hereafter we abusively call

“droplet” this volume of fluid. During the blocking process, the oil phase continues to flow

around the droplet, through two lateral interstices of width δ. We neglect the top and

bottom very thin lubrication films.

The main external forces acting on the droplet are (i) the thermocapillary force, Fth, (ii)

the viscous force, Fvisc, resulting from the shear of the interface by the external phase, (iii)

the force Fobs resulting from the increase of hydrodynamic resistance due to the obstruction
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of the channel, and (iv) the capillary force, Fcap, associated with the difference between

upstream and downstream capillary pressure.

1. Thermocapillary force

The thermocapillary force is driven by laser-induced Marangoni flows, which is at the

origin of the thermocapillary migration. As seen in Ref. [28], and quantitatively demon-

strated in the previous section, this force, oriented upstream, is proportional to the apparent

interfacial tension gradient. We can thus write the thermocapillary force as

Fth ∝ −
(

∂σ

∂T

)

eff

〈∇T 〉 (25)

with 〈∇T 〉 the mean temperature gradient calculated in the previous section. We should

look at any possible time-dependance of this force. As previously stated, the temperature

distribution is stationary during the blocking process, so the mean temperature gradient is

constant. Any temporal variation should thus result from the term (∂σ/∂T )eff .

According to Khattari et al. [18], for an interface covered with an insoluble surfactant

at interfacial concentration Γ, the effective variation of interfacial tension with temperature

expresses as
(

∂σ

∂T

)

eff

=

(

∂σ

∂T

)

Γ

+

(

∂σ
∂Γ

)

T
(

∂2σ
∂Γ2

)

T

[

1
T

(

∂σ

∂Γ

)

T

− ∂
2σ

∂T∂Γ

]

. (26)

The relationship between interfacial tension (or surface pressure, Π = σ0 − σ, with σ0

the interfacial tension of a clean interface) and interfacial concentration is usually given at

equilibrium by a surface equation of state, such as Langmuir, Frumkin, or van der Waals

equations [37, 38]. However, these commonly-used equations of state apply for dilute solu-

tions and therefore cannot be invoked for describing an interface well above the CMC. On

the other hand, Wang et al. [39] measured the surface pressure of a monolayer of Span 80

covering a free surface of phosphate-buffered saline solution (σ0 = 73 mN m−1), in which

the surfactant is insoluble. The experimental plot (Ref. [39], Fig. 5) exhibits an inflexion

point at a molecular area of 44 Å2 per molecule (corresponding to Γ = 3.8 µmol m−2). From

these data, we deduce a σ(Γ) plot, represented in Fig. 11. At high interfacial concentra-

tions, i.e. above 4 µmol m−2, the surface tension decays to an asymptotic value σ∞, close

to 25 mN m−1, definitely ruling out the usual equations of state which all diverge. Since,
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Figure 11. Variation of surface tension at air-water interface with surface concentration of Span

80, deduced from the isotherm measured at 23◦C by Wang et al. (Figure 5 in Ref. [39]). Solid line,

eq. 27, fits the data at high concentrations. Inset: Same data, the surface tension being rescaled

by subtracting the asymptotic value σ∞ ≃ 25 mN m−1, plotted in logarithmic scale.

to the best of our knowledge, no theoretical background exist for describing high interfacial

concentrations, we look for a simple empirical law. As suggested by the inset of Fig. 11,

the actual surface tension corrected by its asymptotic value can reasonably be fitted by a

simple Γ−2 power law, yielding

σ = σ∞ +
ξ

Γ2
, (27)

with σ∞ ≃ 25 mN m−1 the equilibrium surface tension at CMC.

From eqs. 26 and 27, we get
(

∂σ

∂T

)

eff

=
∂σ∞
∂T

+
1
Γ2

(

2
3
ξ

T
+

1
3
∂ξ

∂T
+ 2
ξ

Γ
∂Γ
∂T

)

, (28)

which can be positive, providing that the Γ−2 term is positive and greater than −∂σ∞/∂T .

While the above analysis is based on insoluble surfactants, we will extend it to our

hexadecane-water system, and assume that the expression 28 remains qualitatively valid.

We can thus expect that the thermocapillary force depends strongly on the interfacial

concentration.

In a previous work [26], we estimated (∂σ/∂T )eff to be in the mN m−1 K−1 range. On the

other hand, the value of ∂σ∞/∂T ≃ −0.055 mN m−1 K−1 measured in Ref. [27] means that

this term can be neglected in eq. 28. Furthermore, the variation of temperature in our case

is relatively small: the maximum temperature rise expected along the beam axis represents
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about 25% of the ambiant temperature. As a result, we consider that the thermocapillary

force approximately scales as Γ−2, independently from the temperature rise.

Is the surfactant coverage likely to vary during the blocking? Even though we are not able

to measure directly the concentration, several remarkable features can be observed, which

lead us to think it does. Figure 12 is a series of frames representing the oil phase, downstream

from the laser beam, during the blocking process. We especially focus on the channel

centerline. Immediately after the blocking starts, we observe a thin trail downstream from

the laser beam (underlined by the dashed line on the second frame), composed of unresolved

objects advected by the oil flow. This trail lasts during the whole blocking, suggesting that

it is composed of excess surfactant molecules which are ejected from the droplet front as

the Marangoni flow continuously brings additional molecules. After about 5 s, several dark

objects (indicated by the arrows in the third frame) are also emitted and flow downstream

along the channel centerline. We suppose that these objects are microdroplets, ejected as

the interface is locally saturated by the surfactant. Progressively, more and more objects

are formed: as can be seen on the two last frames, they accumulate at the stagnant point

near the beam, forming a tip, and then eject on the channel centerline.

The observation of discrete microdroplets after several seconds suggests that the surfac-

tant interfacial concentration increases and reaches a threshold packing value above which

the interface folding and microdroplet ejection occurs. This increase in concentration results

from the balance between (i) the observed flux of ejection (desorbing flux), and (ii) a fast

adsorption on the highly strained interface. However, the physical mechanisms driving these

fluxes, and therefore the temporal evolution of the surfactant coverage, are not identified.

We thus need a simple expression describing a saturated increase in interfacial concentration.

We choose

Γ(t) = Γ∞ − Γ0 e−t/τs , (29)

where Γ∞ and (Γ∞ − Γ0) are the largest-packing and initial interfacial concentrations, re-

spectively. The characteristic time τs would reasonably be the time at which the first

microdroplets appear, i.e. τs ∼ 5 s for the experimental conditions of Fig. 12.

Considering the above expression, the time-dependant thermocapillary force could finally

be written as

Fth(t) ≃ − β

(Γ∞ − Γ0 e−t/τs)2 〈∇T 〉, (30)
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Figure 12. Visualization of the ejection of excess surfactant during the blocking process. Pressure-

driven case (∆po = 3928 Pa and ∆pw = 3897 Pa), P = 127 mW, and ω0 = 2.58 µm.

with β a constant of proportionality.

2. Viscous force

The shear stress exerted by the oil phase on a surface S by a velocity gradient Uo/ℓ

is given by Fvisc ∼ ηoUoS/ℓ. Here we consider the force exerted on the rear face of the

droplet, which makes a mean angle θ with the direction of the main flow (see Fig. 10). This

force applies on a surface S ≃ 2hw sin θ (the factor 2 accounting for the two sides). The

characteristic length defining the velocity gradient is typically the orifice width δ, and the

characteristic velocity is given by the flow rate through the section 2hδ of the interstice,

Qint, divided by this section. Therefore we get

Fvisc ∼ ηo
w

δ2
Qint sin θ, (31)

as previously reported by Garstecki et al. [40].
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3. Obstruction force

When a droplet partly fills the microchannel, it increases its hydrodynamic resistance.

For a rectangular interstice of section hδ, with δ ≪ h, through which oil flows at a rate

Qint/2, the pressure drop over the droplet length L is given by [41]

∆p ≃ 12 ηo
L

hδ3
Qint

2
, (32)

where the pressure-to-(mass)-flow rate ratio defines the hydrodynamic resistance. Our ge-

ometry consists of two parallel obstructions, whose length is of the order of w. The force

exerting on the surface S ≃ 2hw sin θ is therefore

Fobs ∼ 12 ηo
w2

δ3
Qint sin θ. (33)

The pressure-driven and flow-rate-driven cases should be distinguished here. If the flow

is imposed at constant pressure, an increase in hydrodynamic resistance will result in a

decrease in flow rate, keeping the obstruction force constant. Conversely, when the oil flow

rate is imposed, this force should vary with the hydrodynamic resistance. In this last case

we get Qint = Qo.

This force plays a major role in confined geometries due to its δ−3 scaling. It has pre-

viously been invoked for explaining droplet formation in such configurations [40, 42]. We

note indeed that this force is larger, by at least one order of magnitude, than the viscous

force, and the ratio diverges as δ vanishes. Therefore, we will neglect the viscous force in

the following.

4. Capillary force

The Laplace pressure jump across the interface ∆pL is given by ∆pL ≃ σ
(

R−1
‖ +R−1

⊥

)

,

R‖ and R⊥ being the in-plane and out-of-plane algebraic radii of curvature, respectively.

At the front of the droplet, the interface exerts on the water phase the pressure ∆pdown
L ≃

−σ (2/h+ 2/w). At the neck, the Laplace pressure jump between oil and water is given by

∆pup
L ≃ −σ (2/h− 1/w). The total pressure difference across the droplet is therefore

∆pL = ∆pdown
L −∆pup

L ≃ −3
σ

w
, (34)
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(a) (b) Flow ratePressure

200 µm

Figure 13. Overlay of successive frames illustrating the evolution of the droplet shape during

the blocking process. The white arrows indicate the direction of the temporal evolution. Flow

is imposed at constant (a) pressure (∆po = 3928 Pa and ∆pw = 3897 Pa) or (b) rate (Qo =

0.6 µL min−1 and Qw = 0.12 µL min−1); in both case P = 87 mW, and ω0 = 2.58 µm.

the minus sign indicates that this stress is oriented upstream. The corresponding force is

obtained by multiplying this pressure by the droplet cross-sectional area at the neck, wnh,

Fcap ≃ −3σ
h

w
wn, (35)

with wn the neck width. This force opposes to the increase in interfacial area, and therefore

has a stabilizing effect.

We finally get a simplified balance composed of three forces: the capillary and thermo-

capillary forces, which retain the droplet, and the obstruction force, which promotes release.

Let us turn to their temporal evolution.

B. Temporal evolution of the droplet shape during blocking

As seen above, the thermocapillary force is assumed to vary with surfactant coverage

during the blocking process. The two other forces strongly depend on the droplet shape.

Figure 13 represents the temporal evolution of the interface during the blocking process. At

imposed pressure [Fig. 13 (a)], the neck globally thins, whereas it grows at imposed flow

rate [Fig. 13 (b)]. We shall thus consider separately the pressure and flow rate cases.

1. Pressure-imposed flow

When the flow is imposed at constant pressure, the obstruction force is assumed to be

constant, as discussed above. On the other hand, the temporal evolution of the capillary force

can be deduced from the thinning dynamics of the neck, which is presented in Fig. 14 for four

different droplets at fixed pressure drop values at the microchannel inlets (∆po = 3928 Pa
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and ∆pw = 3897 Pa). The thinning, initially fast, slows down after about 1 s, and saturates

at longer times (after 4 s). This dynamics does not depend on the beam power. As pointed

out in the inset of Fig. 14, such an evolution can be described, from an empirical point of

view, by an exponential law like

wn(t) = w0
n e−t/τn + w∞n , (36)

with w0
n + w∞n = wn(t = 0) = 110 µm, w∞n = 63 µm, and τn ≃ 0.8 s. Therefore, we can

write the time-dependant capillary force as

Fcap(t) ≃ −3
h

w
σ
(

w0
n e−t/τn + w∞n

)

. (37)

Note that this force no longer varies after 4 s, as the droplet shape steadies. Therefore,

beyond this saturation the blocking time should be infinite if the thermocapillary force

would not decrease with time, suggesting that a mechanism independent from the droplet

shape must also be advanced.

The force balance at t = τb leads to a relationship between the blocking time and the

mean temperature gradient,

〈∇T 〉 =

(

Γ∞ − Γ0 e−τb/τs
)2

β

×
[

Fobs − 3
h

w
σ
(

w0
n e−τb/τn + w∞n

)

]

, (38)

which is compared to experimental data in the next section.

2. Rate-imposed flow

When the flow is imposed at constant rate, both capillary and obstruction forces should

vary. As observed on Fig. 13 (b), the evolution of the droplet shape is composed of both a

growth of the neck and a thinning down of the interstice δ. These dynamics are measured,

and represented in Fig. 15 for four different droplets, at a given couple of flow rates (Qo =

0.6 µL min−1 and Qw = 0.12 µL min−1). In spite of strong variations in the measurements,

the same trend is shared by all the droplets. These dynamics all evidence a linear growth

of the droplet volume, as expected when the water flow is fixed. We thus describe both the
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pressures as in Fig. 13 (a)]. The continuous line is a fit with eq. 36. The beam waist is ω0 =

2.58 µm. Inset: same data, the neck width being corrected by its asymptotic value, in linear-
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evolution of the neck and interstice width, wn(t) and δ(t), respectively by

δ(t) = δ0 − γt (39)

wn(t) = w0
n + vt, (40)

with δ0 ≃ 10 µm and γ comprised between 4 and 15 µm s−1 for the droplets considered here.

Moreover w0
n ≃ 110 µm and v is in the 20 − 50 µm s−1 range. Thus we can rewrite the

capillary and obstruction forces, respectively, as

Fcap ≃ −3σ
h

w

(

w0
n + vt

)

(41)

Fobs ≃
K

(δ0 − γt)3 (42)

with K ∼ 12 ηow2Qo sin θ. The constant K should not be strictly equal to 12 ηow2Qo sin θ

since the latter expression corresponds to a rectangular interstice of homogeneous cross sec-

tion, which does not match to our experimental situation due to the drop interface curvature.
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At t = τb, the force balance leads to

〈∇T 〉 =

(

Γ∞ − Γ0 e−τb/τs
)2

β

×
[

12 ηow2Qo sin θ

(δ0 − γτb)3 − 3σ
h

w

(

w0
n + vτb

)

]

. (43)

C. Comparison with experiments

We measured the blocking time on several successive droplets, produced either by a

pressure difference or an imposed flow rate, for a range in beam power comprised between

the blocking threshold and the water boiling point, and for three different values of the beam

waist. Note that the beam powers involved here are higher than in Sec. III; this can result

from the use of uranine coming from another batch, whose optical absorption is lower than

the measured value given previously. These data are plotted in Fig. 16.

As represented in the insets of Fig. 16, the blocking time increases with beam power,

all the more so the beam waist is small, above a threshold value of the beam power close

to 50 mW, for both the pressure [Fig. 16 (a)] and flow rate [Fig. 16 (b)] cases. When
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plotted against the mean temperature gradient, all the data sets fall onto a single behavior,

depending only on the fluid injection conditions. As the volume of the drops produced

by thermocapillary blocking varies with the incident beam power (see below), this rescaling

corroborates the relevance of a local description of opto-capillary actuation. As the produced

drops are confined by the channel walls, the curvature of the front interface during the

blocking is governed by the channel cross-section independently from the beam power, and

then the blocking only depends on the mean temperature gradient.

Experimental data corresponding to the pressure-driven case were fitted by eq. 38,

imposing Fobs = 0.5 µN, a realistic value according to previous measurements [27]. On

the other hand, we fixed Γ∞ = 13 µmol m−2, which is the maximum value reached by

Wang et al. [39] on an air-water interface (see Fig. 11). The characteristic times τn and

τs have been set, from the experimental considerations discussed above, at 0.8 and 5 s, re-

spectively. We considered Γ0 and β as adjustable parameters, and get Γ0 = 5.15 µmol m−2

30



and β = 1.32 × 10−16 µN mol2 m−3 K−1, yielding a thermocapillary force of the order of

several 10−7 N in our experimental conditions. On the one hand, the value of Γ0 means

that the initial interfacial concentration of surfactant is about 8 µmol m−2. The interfacial

concentration therefore increases by about 60% during the blocking. On the other hand,

the initial area per molecule is 21 Å2. Peltonen et al. measured a molecular area of 37 Å2

for Span 80 at CMC, on unstrained dodecane-water interfaces [43]. This significantly higher

value can result from the fact we base our interpretation on measurements performed at the

air-water interface. In air, one can reasonably assume that, for steric reasons, surfactant

hydrophobic tails can be packed more closely than in alcane. However, these values remain

in the same order of magnitude, and eq. 38 therefore describes very well the experiments at

the scaling-law level.

Data corresponding to the flow-rate-driven case were then fitted by eq. 43, with the

values of Γ0 and β previously determined. We imposed the geometrical parameters (see Fig.

15) in the measured range: v = 40 µm s−1, w0
n = 110 µm, γ = 2 µm s−1, and δ0 = 20 µm.

The values of γ and δ0 we used are therefore different from those measured, but remain

in the same order of magnitude. Indeed, to write the obstruction force we considered the

hydrodynamic resistance of an idealized plane-parallel channel of cross-section h × δ, with

δ ≪ h. The real corresponding channel has a larger mean cross section, owing to the local

curvature of the meniscus close to the lateral wall. Thus, the cross-section of the interstice

is not constant. Furthermore, its mean aspect ratio δ/h is too large to allow the use of the

simplified expression 32, which is valid as long as δ/h ≪ 1 [41]. Nevertheless, using values

of γ and δ0 slightly different from those measured does not jeopardize the simplified above

analysis.

The mean angle θ, considered as an adjustable parameter, is found to be 14.6◦, which is

compatible with the experimental observations.

In this section, we proposed a possible mechanism for explaining the opto-capillary block-

ing of droplets during their formation. This mechanism involves both the droplet shape,

through hydrodynamic forces, and the evolution of surfactant coverage, which influences the

thermocapillary blocking force. Moreover, our observation of a positive (∂σ/∂T )eff may rely

on the simple fact that surfactant is present at a concentration well above the CMC, as usu-

ally done in digital microfluidics. This behavior should therefore be qualitatively retrieved

with any experiment involving a liquid interface submitted to a temperature gradient, with
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Figure 17. Superposition of two frames comparing blocked (length L) and unblocked (length L0)

droplets, for the cases where the flow is imposed at constant (a) pressure or (b) rate; in both case

P = 87 mW, and ω0 = 2.58 µm.

a high concentration of surfactant.

D. Droplet size after release

As shown above (Figs. 3 and 16), interrupting the imposed flow decreases the frequency

of droplet production. Moreover, we observe that the size of the emitted droplets is also

modified by the thermocapillary blocking. Figure 17 shows this behavior, by comparing the

droplet length in presence (L) and in absence (L0) of laser, in the pressure [Fig. 17 (a)] and

flow rate [Fig. 17 (b)] cases. The experimental conditions of flow allow for the formation of

droplets of comparable volume in both case (here L0 = 355 µm in pressure, 334 µm in flow

rate). However, it can be noted that the blocking effect results in opposite features: blocked

pressure-driven droplets are smaller than the unblocked ones (here L = 240 µm), whereas

blocked rate-driven droplets are longer (here L = 480 µm).

We measured the droplet length for the studied range of laser power: these data are

represented in Fig. 18. As observed in the inset, below a threshold power of about 50

mW, corresponding to the blocking threshold, the laser heating has no significant effect on

the emitted droplets. Above this threshold, shorter droplets are emitted in pressure-driven,

and longer in rate-driven flows. Moreover, qualitative behaviors are also different: pressure-

driven blocked droplets are about 30% shorter than those produced without laser, whatever

the beam power and waist, while rate-driven blocked droplet size depends on both, growing

with power, all the more so the waist is small. This trend should be compared to that

observed for the blocking time. At constant flow rate, mass conservation,

L = L0 +
Qw
wh
τb, (44)
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leads to a linear increase in droplet volume during the blocking time.

The droplet length is thus plotted against the blocking time (Fig. 18). The linear

behavior expected for data at constant flow rate (open symbols) is qualitatively retrieved.

However, the slope of the straight line is smaller than Qw/(whL0), which means that a part

of the added volume is excluded from the droplet before its release. Data corresponding to

constant pressure experiments (filled symbols) show a fast narrowing of the size at short

time droplet blocking (1 s or less), followed by a saturation. This dynamics remind that of

the neck width: the decrease in volume can be viewed as resulting from the neck thinning.

These data are indeed well fitted by the empiric exponential law used to quantify the neck

thinning dynamics (eq. 36).

To conclude this section, we showed that the opto-capillary blocking of drops produced

in a confined channel leads to two different behaviors. For a pressure-driven flow, both the

volume and the frequency of emission are reduced. The water flow rate is therefore reduced:

the device, in this case, behaves as a valve. Conversely, for a rate-driven flow the reduction

in frequency of emission is balanced by an increase in droplet volume. As the water flow

rate is not modified, this is the droplet size which becomes tunable: such a device can be

viewed as a droplet sampler.
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VI. CONCLUDING REMARKS

We experimentally investigated the laser-induced thermocapillary interaction with a mi-

crofluidic droplet generator. This study aims at understanding the specificities linked to

strongly localized temperature gradients, and comparing the related behaviors to more clas-

sical studies involving large scale uniform temperature gradients to manipulate unconfined

droplets. In order to quantitatively investigate the thermocapillary velocity driven by a

localized temperature gradient, we considered the case where heating implies an effective

increase of the interfacial tension with temperature. Indeed, such a situation is particularly

advantageous in the sense that the induced Marangoni streams oppose to the main flow im-

posed in the microchannel, leading to the possible tuning of the drop velocity down to total

blocking, the laser beam behaving as a sort of “soft door” of tunable stiffness. Using this

approach, the thermocapillary velocity was characterized as a function of the beam power

and waist. Experimental results were then interpreted using the calculated mean tempera-

ture gradient imposed by the beam profile and the channel geometry. A single linear master

behavior of the measured velocity versus the temperature gradient is raised whatever the

beam waist value. The interesting point here is that an analogous behavior is obtained in

large-scale temperature gradients while laser-induced temperature gradients are not spatially

uniform over the drop size. This strongly suggests that the thermocapillary velocity is in fact

proportional to the mean value of the temperature gradient, which obviously coincides to

the temperature gradient in the large-scale situation. The channel cross-section dependence

was also characterized. Beyond wall friction effects due to the confinement, we showed that

the radius of curvature of the front interface also plays a major role, generalizing again the

unconfined large-scale gradient situation in which the thermocapillary velocity is known to

vary as the droplet radius.

Considering the reverse nature of the optocapillary migration due to (∂σ/∂T )eff > 0, and

the possibility to slow down the droplet formation in a microchannel, we then characterized

this blocking effect, by measuring the blocking time before droplet release and the corre-

sponding droplet size for several experimental conditions. A simplified force balance gave

a possible interpretation, at the scaling-law level, of our measurements. For instance, we

noticed a qualitative difference, in the time-dependant forces, between pressure-driven and

rate-driven flows, due to a different evolution of the shape of a forming droplet. Moreover,
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the order of magnitude of the physical quantities involved are realistic compared to those

previously reported in the literature. A full understanding of the involved processes would

nevertheless require a more complete description of the hydrodynamic and physicochemi-

cal processes, which to date represents a numerical challenge. This task also depends on

probably an even more difficult challenge, a general understanding, beyond our empirical

interpretations, of the temperature variation of the interfacial tension in presence of soluble

surfactants, including dynamical tension effects as interface blocking occurs in a few mil-

liseconds. Pure thermal variations and Marangoni-driven surfactant concentration variations

clearly couple together, and interfacial physical-chemistry studies, including the dynamical

behavior of surfactant molecules under strong stresses, are clearly missing.

From an applied point of view, we demonstrated the relevance of this technique for

handling droplets flowing at velocities up to the mm s−1 range, which is comparable to

other techniques involving external fields (e.g. electroosmosis [44, 45], or (di)electrophoresis

[46, 47]). More interestingly, the optocapillary interaction with a droplet generator can lead

either to a valve, or to a droplet sampler, depending on the fluid injection conditions which

are imposed.
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Appendix A: Thermal transfer through wetting oil film

In order to calculate the temperature field due to the laser heating (Sec. IV), we assumed

that thermal transfers through the hexadecane wetting films could be neglected. To estimate

the error resulting from this simplification, we consider here a thin film of hexadecane, of

thickness ε, sandwiched between water and glass layers (see Fig. 19). Since the thickness

of this film is very small compared to the channel height, ε≪ h, and even smaller than the
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Figure 19. Schematical side view of the meniscus: detail of the wetting oil film.

glass substrate, the two bounding water and glass layers can be considered as semi-infinite.

Moreover, as hexadecane and PDMS have similar thermal conductivities, we can also assume

the upper film to be thermally matched with the PDMS layer.

As previously detailed (see Sec. IV), we get, in water,

T̃w(k, z) = Cw(k) e−kz +
α

Λw

Ĩ(k)
k2
, (A1)

with (subscripts w, o, and g denote water, oil, and glass, respectively, and Λij = Λi/Λj)

Cw(k) =
α

Λw

Ĩ(k)
k2

(A2)

× (1− Λgo) e−2kε − (1 + Λgo)
(1 + Λgo) (1 + Λwo)− (1− Λgo) (1− Λwo) e−2kε

.

A development at first order in kε leads to

Cw(k) =
Ĩ(k)
k2

2αΛgw
(1− Λgo) (1− Λwo)− (1 + Λgo) (1 + Λwo)

(A3)

×
[

1
Λo

+

(

1
Λg
− 1

Λo
− (1− Λgo) (1− Λwo)

Λg + Λw

)

kε

]

+O
(

k2ε2
)

.

Since Λgo ≃ 10 and Λwo ≃ 4, we can write

T̃w(k, z) ≃ α
Λw

Ĩ(k)
k2

(

1− 5
7

e−kz +
15
7
kε e−kz

)

. (A4)

The thermal transfer through the wetting film corresponds to the term in kε in eq. A4. In

the real space, it can be written as

T εw(r, z) ≃ αP
2πΛw

∫ ∞

0

15
7
ε e−k

2ω2

0
/8−kzJ0(kr) dk, (A5)
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which reduces, along the beam axis (r = 0) and for z > 0, to

T εw(0, z) ≃ 15
4

√

2
π

αP

Λw

ε

ω0

e2z2/ω2

0 erfc
(√

2
z

ω0

)

, (A6)

with erfc(x) = 2/
√
π
∫∞
x e−t

2

dt the complementary error function. This expression is plotted

in Fig. 20 together with the vertical temperature dependance calculated in Sec. IV, for

ω0 = 2.85 µm and ε = ω0/10. Neglecting transfers through the wetting films leads to

a significant error in the close vicinity of the boundary, which rapidly decays after a few

microns, preventing by the way from a 5 layer-calculation.

Appendix B: Thermal influence of a water-oil interface

When calculating the temperature field produced by laser heating (Section IV), we have

considered a channel filled with water, neglecting the presence of the water-oil interface [see

Fig. 5 (b)]. Taking into account the experimental lack of common symmetry between the

laser heating and the two-fluid flow separated by the interface [Fig. 5 (a)], and thus the

difficulty in getting an analytical expression of the temperature distribution in the present

configuration, we estimate the corresponding error using a slightly different solvable, but
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realistic, situation that allows evaluating the influence of the interface on the heat transfer.

For the homogeneous situation, we simply consider a water layer of length L sandwiched

by semi-infinite solid layers [Fig. 21 (a)]. The corresponding temperature field is described

by eq. 20 and, for the sake of simplicity, we can assume that water is sandwiched left and

right by the same material, let us say PDMS which constitute three of the four channel

boundaries, since this calculation is supposed to bring insights on the temperature along

the flow axis. The length L represents here a distance along the flow direction and then

is supposed to be much larger than the channel height h, let us say a millimeter, which is

large enough compared to the beam waist and keeps the condition αL < 1; formally, the

axial length scale should be more in the centimeter range (the length of the channel), but

the presence of side walls in the real situation [Fig. 5 (a)] necessarily imposes a cutoff in

the sub-millimeter range. In presence of an interface, we consider instead a water-oil layer

in the same geometrical conditions [Fig. 21 (b)], each layer being characterized by a length

L/2 (i.e. half a millimeter). The corresponding four-layer situation is almost equivalent to

a three-layer case as thermal conductivities of hexadecane and PDMS are very close (see

caption of Fig. 5) and hexadecane and PDMS are both transparent at the used optical

wavelength. Consequently, both situations can be described by eq. 20, and similarly by

eqs. 13 and 17 in oil, the water layer thickness being twice smaller in presence of the water-

hexadecane interface. Note finally that the origin of the x-axis is different in the two cases

of Fig. 21. These choices enable to use directly eqs. 13 and 17 (in oil) and 20 (in water)

while keeping the boundaries at x = 0 and x = L, and x = 0 and x = L/2, respectively.

Moreover, as we a looking for an evaluation of the temperature difference due to the

presence of the interface, we compare T (r = 0, x)/P for both cases, i.e. along x-axis which

is here supposed to mimic the flow direction, and at r = 0 where the temperature variation

should be the largest at the interface location. Results are presented in Fig. 22 for a beam

waist ω0 = 2.85 µm and L = 1 mm; we shifted the x-axis in the pure water case [Fig. 21 (a)]

to match the position of the center of the water layer with that of the water-oil interface in

the other case. Figure 22 shows that the idealized pure water case overestimates the mean

temperature by 10% compared to the real water-oil case.
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