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The problem we study in this paper arises from the washing step of hospital
sterilization services. Washers at the washing step are capable of handling
more than one medical device set as long as their capacity is not exceeded.
The medical device set sizes and arrival times to the sterilization service may
be different, but they all have the same washing duration. Thus, we model
the washing step as a batch scheduling problem where medical device sets are
treated as jobs with non-identical sizes and release dates, but equal processing
times. The main findings we present in this paper are the following: First,
we study two special cases for which polynomial algorithms are presented.
Afterwards, we develop a 2-approximation algorithm for the general problem.
Finally, we develop a MILP model and compare it to another MILP model from
the literature. Computational results show that our MILP model outperforms
the other MILP model.

Keywords: Parallel batch scheduling; mixed integer linear programming; approximation
algorithm; sterilization service

1. Introduction

Batch processing machines are encountered in many different industries. Some examples
of such machines are diffusion or oxidation tubes in semiconductor wafer fabrication,
burn-in ovens in semiconductor testing, etc.. The batch processing problem we treat has
its origins from the washing step of hospital sterilization services.
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A hospital sterilization service is responsible for sterilizing medical devices after utiliza-
tion in surgical operations. A medical device is an instrument, apparatus, appliance, or
any other article, which is used for medical purposes on patients, in diagnosis, therapy or
surgery. In fact, it is more appropriate to refer to these instruments as reusable medical
devices (or RMDs) as they are reused after sterilization. Note that all RMDs used in a
surgical operation constitute the RMD set of this surgical operation.

After utilization for a surgical operation, RMDs are directly placed in a substance,
allowing pre-disinfection, and are transferred to the sterilization service. There, they are
firstly rinsed and washed in automatic washers. Rinsing is performed either manually or
automatically in automatic washers. After washing, RMDs are checked and packed into
appropriate boxes. All items must be packed individually or grouped into boxes prior to
sterilization. They are then sterilized in so-called ”autoclaves”, transferred to operating
theaters and stored before reutilization.

There can be a large number of different RMD sets in a hospital. Moreover, for a typical
hospital, there may be hundreds of RMD references. Because each surgical operation may
require different numbers and types of RMDs, RMD sets may be of different sizes. For
different reasons (surgery start times and durations, pre-disinfection procedure, etc.),
RMD sets are ready for washing at different moments within the same day. However,
washing duration is the same for all RMD sets.

The washing step of a sterilization service is composed of automatic washers. These
washers have a fixed capacity and they can handle more than one RMD set at the same
time as long as their capacity is not exceeded. Note that in the washing step, RMD
sets are not usually allowed to be split among several washers due to organizational and
traceability reasons.

The washing steps of sterilization services are generally the bottleneck of the whole
sterilization process (Ngo Cong (2009)). Thus, a good utilization of automatic washers
is crucial in order to minimize the total washing time at this step and to increase the
performance of the sterilization process. In this paper we thus address the problem of
minimizing makespan (Cj,qz) on parallel batch processing machines in presence of non-
identical job sizes, different release dates and equal processing times. This problem has
newly been investigated in the literature considering different job processing times. How-
ever, studying equal processing times provides us some interesting avenues. In this study,
we first develop exact algorithms for two special cases of our problem where job sizes are
not arbitrary. Afterwards for the general case, we present an approximation algorithm?!
and show that it has a performance guarantee equal to 2. According to our knowledge,
heuristics presented in the literature for the scheduling problem considering different job
sizes, release dates and processing times do not have polynomial complexity due to batch
creation procedures. Finally, we present an exact resolution method based on a MILP
model. We test its efficiency in terms of resolution time and also compare it to another
MILP model from the literature.

In the following section we present the basic assumptions and notations used through-
out this paper. Section 3 reviews previous related work on scheduling batch processing
machines. Section 4 presents two exact algorithms for two special cases. In section 5,
we first give an algorithm having a polynomial complexity and prove its performance
guarantee. Then, we propose a MILP model and test its efficiency for the resolution time
on several instances.

L An approximation algorithm is a heuristic which has a performance guarantee and a polynomial complexity.
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2. Assumptions and notations

In this paper, we model the washing step of sterilization services as a parallel batch
scheduling problem. Hence, automatic washers at the washing step are treated as batch
processing machines and RMD sets as jobs. The assumptions we make are the following.

e There are N jobs to be processed. The release date and the size of a given job j are
denoted by r; and wj, respectively. Job processing times are the same for all jobs and
are denoted by p.

e All machines have the same capacity B, and the size of a job cannot be greater than
machine capacity.

e Several jobs can be batched together, complying with the machine capacity constraint.

e Since all jobs have the same processing time, p, the processing time of any batch is p.

e We are not allowed to split a job into several batches.

Inspired by Graham’s notation (Graham et al. (1979)), we propose the following nota-
tion for our problem: P|p — batch,rj,pj = p, wj, B|Cpae. In this notation, P stands for
identical parallel machines, p — batch for parallel batching; r; and w; denote job release
date and size, respectively, p; = p stands for equal processing time, and B for machine
capacity. Finally, C},,. refers to makespan.

3. Previous related work

The batch processing literature is really vast. In this section, we will be mostly speaking
about parallel batch processing problems where jobs have non-identical sizes and release
dates. But first, let us give some explanations about parallel batch scheduling.

For parallel batching problems with different job sizes, the sum of job sizes which are
put in a batch defines the size of that batch. Batch sizes should not exceed machine
capacity. Each job should be assigned to just one batch. Moreover, the processing time
of a batch is equal to the longest processing time of jobs in that batch (Potts and
Kovalyov (2000)). If job families are considered, jobs are partitioned into different sets
according to their processing times, machine setup times, etc. There are two types of
family scheduling models: compatible and incompatible job families. In compatible job
family model, jobs from different families may be batched together (Neale and Duenyas
(2003)). If incompatible job families are considered however, only jobs from the same
family can be batched together (Azizoglu and Webster (2001)). Jobs within a family
may have different sizes, release dates and processing times.

Papers on batch scheduling with non-identical job sizes can be classed in four groups as
follows: 1- single machine and identical release dates, 2- parallel machines and identical
release dates, 3- single machine and unequal release dates, 4- parallel machines and
unequal release dates.

In table 1, we give a brief classification of the literature on parallel batch scheduling
problems with non-identical job sizes. We see that most of the papers study the makespan
minimization considering equal job release dates. According to our knowledge, Uzsoy
(1994) is the first one who studied parallel batching considering different job sizes. He
shows that minimizing makespan on a single machine with identical job processing times
and equal release dates but different job sizes is strongly NP-hard. The NP-hardness of
this special case implies that our problem is also NP-hard.

Table 1 shows that there are 8 articles considering unequal release dates and thus
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more related to our problem. Among them, two papers work on minimizing makespan
on a single machine where approximation algorithms are presented. Another paper takes
into account job rejection penalty beside makespan minimization and develops also an
approximation algorithm. The fourth group presented on table 1 contains papers closer
to our study since we consider parallel machines and unequal job release dates. Chung
et al. (2009) are the first ones who study the scheduling problem presented by the fourth
group on table 1. They develop an exact method and two heuristic approaches. The
exact method they propose is a MILP model. Because that MILP model requires long
computation times, they proposed also heuristics inspired from the heuristic developed by
Lee and Uzsoy (1999). The heuristics of Chung et al. (2009) are composed of two phases.
The first phase forms batches and the second phase schedules batches on machines. The
first phase is common to both heuristics and is inspired from the "DELAY” algorithm
presented in Lee and Uzsoy (1999). It uses two parameters: «, for determining the time
window in which jobs are batched, 3, for determining the fullness of batches. They
run the algorithm with different combinations of parameter values and select the best
solution. It is reported that the computational burden of batch creation procedure is
low enough. But as cited in Lee and Uzsoy (1999), the performance of batch formation
is sensitive to the values of the parameters o and § (Note that Lee and Uzsoy (1999)
consider equal job sizes). Damodaran et al. (2011) develop a meta-heuristic called Greedy
Randomized Adaptive Search Procedure (GRASP is a metaheuristic method introduced
by Feo and Resende (1989)). They report that the GRASP approach guarantees the
optimal solution for small instances and is more effective than the heuristics proposed
by Chung et al. (2009). Damodaran and Velez Gallego (2010) propose a constructive
heuristic. This heuristic operates first by determining a time horizon, after which it solves
a 0-1 knapsack problem to select the jobs to be batched. It is compared to the MILP model
and to the heuristics given by Chung et al. (2009) as well as to the GRASP approach
developed by Damodaran et al. (2011). It is reported that their heuristic outperforms
the heuristics of Chung et al. (2009) and gives similar results to those of the GRASP
method. This heuristic is pseudo-polynomial, since it solves a 0-1 knapsack problem using
the dynamic algorithm proposed by Martello and Toth (1990). Chen et al. (2010) develop
a genetic algorithm and an ant colony optimization. For the batch assignment procedure,
they propose a heuristic (ERT-LPT: earliest ready time-longest processing time) which
is used in common in both meta-heuristics. For computational experimentations, they
develop another heuristic considering the batch creation procedure proposed by Dupont
and Jolai Ghazvini (1998) where ERT-LPT is applied afterwards. Their results indicate
that both meta-heuristics outperform the heuristic approach. Wang and Chou (2010)
consider machines with different capacities. They develop a genetic and a simulated
annealing algorithm, and test their algorithms on the instances defined by Chung et
al. (2009). It is reported that the proposed meta-heuristics are more efficient than the
heuristics of Chung et al. (2009).

Because we consider equal job processing times, our problem is a special case of the
problem treated in the fourth group on table 1. However, our problem is also strongly
NP-hard. Moreover, the consideration of equal job processing times allows us to develop
exact algorithms for two special cases which are explained in the next section. Afterwards,
we return to our original problem and propose a heuristic algorithm with performance
guarantee. Finally, we develop an exact method, which is in fact a MILP model, and test
its efficiency in terms of resolution time.
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Table 1. Literature related to parallel batch scheduling problems with different job sizes
Group Reference Solution approach Criteria
Uzsoy (1994) Heuristics, B&B Crmaz, .Cj
Jolai Ghazvini and Dupont (1998) Heuristics >C;
Dupont and Jolai Ghazvini (1998) Heuristics Crmaz
Kempf et al. (1998) MILP, heuristics Crmaz, 2.Cj
Azizoglu and Webster (2000) B&B > w;Cy
Single machine Azizoglu and Webster (2001) B&B > w;C;
and Zhang et al. (2001) Approximation algorithm Cmax
identical release Dupont and Dhaenens-Flipo (2002) B&B Cmac
dates Melouk et al. (2004) MILP, Simulated annealing Chrnaz
Kashan et al. (2006) Genetic algorithms Cmac
Zhang et al. (2007) Approximation algorithms >C;
Kashan et al. (2009) Approximation algorithms Crmagz
Parsa et al. (2010) Branch and price algorithm Cmag
Kashan et al. (2010) Genetic algorithms Crmac
Parallel machines and Chang et al. (2004) Simulated annealing Crmaz
identical release dates Kashan et al. (2008) Genetic algorithms Cmaz
Single machine Li et al. (2005) Approximation algorithm Cmaz
and unequal Nong et al. (2008) Approximation algorithm Crnaz

release dates

Lu et al. (2010)
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4. Polynomially solvable cases

In this section, we present polynomial time algorithms for two special cases. The first
one, which we shall refer to as P|p — batch,r;,p; = p,w;(strongly divisible), B|Cpaq,
considers a special order for job sizes. In the second one, job splitting is allowed. That
problem, which we shall refer to as P|p—batch,r;,p; = p, w;(split), B|Cpaz, will be used
in obtaining a lower bound on the optimal value for the original problem.

4.1. Case 1: Job sizes forming a strongly divisible sequence

This case is inspired from a special case of a bin-packing problem where job sizes form
a strongly divisible sequence. The Grahams notation can be modified as follows in order
to represent this special case: P|p — batch,rj,p; = p, w;(strongly divisible), B|Cpaq.

In the standard one-dimensional bin packing problem, we are given a pair (.J, B), more
precisely, a capacity B and a list of items J = ji, jo, ..., jn, and are asked to partition
the items into a minimum number of subsets such that the item sizes in each subset
sum to no more than B. Coffman et al. (1987) showed that if item sizes form a strongly
divisible sequence, the algorithms first fit (FF) and the first fit decreasing (FFD) are
optimal for the bin packing problem. Let us first remind these algorithms and give the
definition for the strongly divisible sequence.
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Algorithm First Fit (FF) (Coffman et al. (1997))
Step 1: Arrange items in some arbitrary order
Step 2: Select the item at the head of the list and place it in the first bin with enough

space to accommodate it. If it fits in no existing bin, create a new bin.
(The complexity of FF is 0(NlogN))

Algorithm First Fit Decreasing (FFD) (Coffman et al. (1997))
This algorithm sorts jobs in non-increasing order of sizes and then applies FF. The
complexity of FFD is also O(NlogN).

Strongly divisible sequence (Coffman et al. (1987))
Let W be a list of item sizes such that wy > wg >... > w; > w;y1 >... The sizes of items
form a divisible sequence if w;4+1 exactly divides w;. This sequence is strongly divisible
if in addition the largest item size, wy, exactly divides the batch capacity.

In analysis of our scheduling problem, let us give some properties about the job
sizes forming a strongly divisible sequence, and about the processing time of batches,
respectively.

Lemma 1. (Coffman et al. (1987)) In case of jobs forming a strongly divisible
sequence, FFD starts a new bin only when all previous bins are completely full.

Lemma 2. For the strongly divisible pair (J, B), let b; be a partially filled batch. If a
job j with size w; does not completely enter this batch, then in by, there is at least one
job whose size is smaller than w;.

Let by be a partially filled batch. Suppose that there are only jobs whose sizes
are bigger or equal to w; in batch by. Let wsyum be the sum of sizes of these jobs.
Because each bigger job size can be expressed as a multiple of smaller job sizes with
an integer number, then wsum = coef fi *x w; where coef fi is an integer. Moreover,
each job size can divide exactly the batch capacity. Let B be the batch capacity. Then,
B = coef fo x wj where coef f2 is an integer. Because, wsym < B, coef fi < coef fa.
Then, if coef fi = coef fa, the batch is full. Otherwise, there is enough space for job j in
batch b1. Thus, if by is a partially filled batch in which job j can not be accommodated,
then there should be at least one job whose size is smaller then w;.[J

Lemma 3. The aforesaid batch, b1, in lemma 2, can be completely filled by removing
some jobs having smaller sizes than w; in order to accommodate the job j in b;.

The jobs of by can be divided into two groups according to their sizes: group 1 for jobs
whose sizes are bigger or equal to w; and group 2 for jobs whose sizes are smaller than
w;. These jobs can easily be arranged in non-increasing order of sizes. Then, the first
group of jobs occupies a space which is an exact multiple of w;. Suppose that the batch
by is composed of sub-batches having sizes equal to w;. Regarding the second group,
these jobs can be seen as a subgroup of the strongly divisible sequenced jobs for which
the size of a batch is equal to w;. Moreover, arranging these jobs in non-increasing order
of sizes is the same as applying FFD on these jobs where the batch capacity is equal to
w;. Thus, according to lemma 1, only the last sub-batch is partially filled which is in
fact the last part of the batch by, equal to w; in size. Hence, removing the jobs of the
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partially filled sub-batch from the batch b; lets accommodate job j completely in batch
b1 which becomes completely filled. (I
The lemma 3 is going to be used in the algorithm in order to have fully complete batches.

Lemma 4. If all batches have the same processing time, then in the optimal
solution for the makespan criterion, batches are placed consecutively on machines in
non-decreasing order of batch ready times where the ready time of a batch is equal to
the greatest release date of jobs contained.

It is clear that batch assignment procedure given in lemma 4 yields to the optimal
makespan since equal batch processing times are considered. [J

The notations used in the algorithm are:
L: list containing jobs sorted in non-decreasing order of release dates
nbyq: minimum number of batches that can be formed with the jobs in L
Jfirst: first job in L
by: currently open batch
Nbpew: the new minimum number of batches that can be formed with the jobs in L after
removing jfirst from L
space: in case a job does not entirely fit a non-full batch, space represents the space
needed in order that the job can be fully put in the batch
Jiast: last job in batch by after sorting jobs in non-increasing according to their sizes
Wiast: Size of Jiast

Algorithm for Strongly Divisible Sequence (SDS)
Step 1: Sort jobs in non-decreasing order of job release dates: L
Step 2: While L is not empty, apply FF to L in order to calculate the minimum
number of batches to form: nbyq. Put the first job, jri s, of L into a new batch, b,
Erase that job from L and re-apply FF to L in order to calculate the new minimum
number of batches: nbyeqy. If by > Nbyew, close the batch. Else,
Step 2.1: While nb,iq = nbpew, put the first job, jtirs, of L into the batch by.
Update L and re-apply FF to L in order to calculate nb,ey.
Step 2.1.1: If the job, jr;rst, does not completely enter the batch, calculate the
space needed: space to accommodate the job completely into the batch. Sort
jobs in batch by in non-increasing order of sizes.
Step 2.1.1.1: While space > 0, remove the last job, jius, from b.
Set space = space — wiqst- Put jiqst back into L.
Step 2.1.1.2: Put jt;rs in by and update L.
Step 2.1.1.3: Set nbyew = Nbpew — 1.
Step 2.1.1.4: Sort jobs of L in non-decreasing order of job release dates.
Step 2.2: Close the batch.
Step 3: Set ready times of batches equal to the greatest release date of jobs they
contain. Sort batches consecutively on machines in non-decreasing order of ready times
starting from the first machine.

The time complexity of SDS can be defined as 0(N2logN). In the worst case, a
number of jobs, let us say ¢, is firstly placed in a batch then they all may be removed
from the batch for a large size job (step 2.1.1). If ¢ is sufficiently small according to
the total number of jobs, N, the number of times that ¢ jobs are put into a batch and
then removed from that batch approaches to N. Each time a job is put in a batch,
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the new minimum number of batches is calculated with the un-batched jobs by apply-
ing FF. Thus, the time complexity of SDS can be defined as 0(N2logN) for the worst case.

Theorem 1. SDS is optimal for the problem:
Plp — batch,rj,pj = p, w;(strongly divisible), Blminimizing the number of batches

Proof. The number of batches formed by SDS is equal to the number of batches
formed by applying FF. As proven by Coffman et al. (1987), FF minimizes the number
of batches if job sizes form a strongly divisible sequence. Hence, SDS minimizes the
number of batches. [J

Before showing the optimality of SDS for the makespan criterion, let us give another
property about the minimum completion time of a problem.

Lemma 5. Consider a problem with N jobs. The minimum completion time after job
j, where 1<j<N, is equal to the sum of the release date of j and the execution time
for the minimum number of batches that can be created with jobs having release dates
greater or equal to the release date of job j.

For any problem with N jobs and M machines, a lower bound on the number of
batches, say nb, can be given by: nb = {Z;V: Lwj/ B-‘ . Without lost of generality, let jobs
be sorted in non-decreasing order of release dates. Consider a job j such that 1 < j7 < N
and r; < ry. It is also possible to calculate a lower bound on the number of batches

for jobs whose release dates are greater or equal to 7;. Let nb; be a lower bound on the
number of batches that can be formed with jobs whose release dates are greater or equal

to ;. Then, nb; = {Zkes wk/B—‘ where S = {k|r;, > r;}. This way, we do not take into

account jobs which are released before job j.

Let M be the number of machines. We know by lemma 4 that these nb; batches should
be placed consecutively on machines in non-decreasing order of batch ready times where
the ready time of a batch is equal to the greatest release date of jobs contained. Then,
the maximum number of batches placed on machines can be calculated as [nb;/M].
Thanks to placing batches consecutively on machines, each machine contains a minimum
number of batches. Moreover, in the best case, the execution of the first batch can start
at 7;. Thus, the smallest completion time after job j can be given as: r; + [nb; /M| * p
where p is the processing time of jobs. In other words, the minimum completion time
after job j is equal to the sum of the release date of j and the execution time of the
minimum number of batches that can be created with jobs whose release dates are
greater or equal to r;. [J

Theorem 2. SDS is optimal for the problem:
Plp — batch,rj,p; = p, wj(strongly divisible), B|Cpaq

Proof. SDS closes a batch if and only if, after placing a job in that batch, the total
number of batches to form with the un-batched jobs decreases or the batch is completely
full. In fact if a batch is completely full after the addition of a job, since the algorithm
minimizes also the number of batches, the total number of batches to form with the un-
batched jobs necessarily decreases by 1. Now, we would like to show that the minimum
completion time stated in lemma 5 is reachable with the SDS algorithm.
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Suppose that for a given problem with N jobs and M machines, the minimum number
of batches is equal to nb. Let s, be the processing start time for batch b,,. Let us
denote by s,; the processing start time of the last batch and ry the release date of the
last job. If s,, = ry, then the makespan is already optimal. But, if s,;, > ry, then
there is no idle time between batches b,;, and the batch before b,;, on the same machine.
In fact, as batches are placed consecutively on machines according to ready times, the
batch before the last one on the same machine is the batch b(,,— ). Let us consider the
maximal chain of batches without idle times on the machine that contains the last batch:
O(nb—qsM)s -+» by Where ¢ > 1. Now, consider a job k whose release date is equal to the
processing start time of the batch bip—genr) 1-€. Tk = S(np—gsnr)- We have seen by lemma

5 that the minimum completion time after any job, say j, could be r; + [nbj/M-| * P.

Thanks to SDS, the condition to close a batch is that the total number of batches to
form with the un-batched jobs should decrease. Thus, after the last job of each batch, the
algorithm forms always a minimum number of batches. By construction, the minimum
completion time after job k is reached and we have the optimal makespan:

O = T + [nbk /M] «p. O

4.2. Case 2: Job splitting is allowed

We develop here a polynomial time algorithm in case jobs are allowed to be split. Indeed,
even if job splitting is not generally allowed, it may take place in some sterilization
services. We show the problem by P|p — batch,r;,p; = p,w;(split), B|Craz-

In fact, if a job can be split, it can then be considered as the composition of smaller
jobs where the sum of their sizes is equal to the size of the original job. Or, it is possible
to consider the job as if it is composed of jobs having very small and equal sizes. Thus,
the problem becomes equivalent to the case where jobs have unit sizes, equal processing
times and different release dates. Tkura and Gimple (1986) study that case in presence
of a single machine to minimize makespan. They develop an exact algorithm. We inspire
from their algorithm and show that it is also optimal for the case of parallel machines.

The proposed algorithm starts by creating a list, L, of jobs sorted in non-increasing
order of job release dates. Then, a lower bound on the number of batches is calculated and
thanks to the job splitting property, the algorithm forms a minimum number of batches.
As we are allowed to split jobs, the minimum number of batches is found by rounding
up to the smallest integer value when dividing the sum of all job sizes by the machine
capacity. After finding the minimum number of batches, we start filling the batches with
the first job of the previously created list, L. A batch is closed when it is completely filled
or when there are no more jobs to be batched. In case a job does not entirely fit a batch,
then the job is split. The first part of the job is put into the batch and the second part
is treated as a new job having the same release date as the original job. Finally, batches
are sorted consecutively on machines in non-decreasing order of ready times.

The algorithm sorts jobs in non-increasing order of job release dates and then forms
batches with successive jobs. Thus, the complexity of the algorithm can be defined as
O0(NlogN).
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Split Job algorithm
Step 1. Sort jobs in non-increasing order of job release dates r; : L

Step 2. Calculate the minimum number of batches needed: nb = [Z;V: Lw;/ B1

Step 3. While nb >0, open a batch: b,
Step 3.1. Put the first job of L into the batch b,. Update L. If the batch
is 100% filled or if there is no more elements in L, close the batch and set
nb=nb— 1.
Step 3.1.1. If the job does not completely fit the batch, split the job. Put the
first part of the job in order to fill the batch entirely, then close the batch and
set nb = nb — 1. Update the size of the split job.
Step 4. Set ready times of batches equal to the greatest release date of jobs they
include. Sort batches consecutively on machines in non-decreasing order of ready times
starting from the first machine.

Theorem 3. Split Job algorithm is optimal for the problem:
P|p — batch,rj,p;j = p,w;(split), B|Cpmax

Proof. We can give a proof similar to that of theorem 2. After assigning batches on
machines, consider a chain of batches on the machine that sets the makespan value. The
ready time of the first batch in that chain is equal to the release date of a job. Moreover,
after closing each batch, we create always a minimum number of batches with the un-
scheduled job. Thus, the condition cited in lemma 5 is satisfied and the algorithm is
optimal. [

5. Solution approaches for P|p — batch,r;,p; = p, wj, B|Cpnaq

We now return to our original problem where jobs can not be split while having arbitrary
sizes. In this section, we first define how a lower bound can be obtained for the problem.
Then, we give an algorithm and prove that its performance guarantee is equal to 2.
Afterwards, we propose a MILP model and test its efficiency on several instances.

5.1. Lower bound for the problem

In section 4.2, we treated the problem with job splitting and showed that in each batch
there was always a last job after which a minimum number of batches were created. This
way, the minimum completion time is obtained and the makespan value gets the best
possible value. Therefore, we use the Split Job algorithm as a lower bound algorithm for
our problem.

5.2. 2-approximation algorithm

The proposed algorithm first finds the lower bound of the given problem, using the
algorithm Split Job. Then, from each batch, the split jobs are removed and a list is
created with these jobs sorted in non-increasing order of sizes. We try to accommodate
these jobs into the previously formed batches respecting the batch ready times (i.e. if a
job can be inserted into a batch, its release date must be smaller than the ready time of
the batch). Finally, all un-batched jobs are batched using the FFD and scheduled after
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the previously formed batches. We name this algorithm as Combine Job.

Combine Job algorithm
Step 1. Apply the Split Job algorithm.
Step 2. Remove split jobs from the batches.
Step 3. Create a list, L, of jobs in non-increasing order of sizes with jobs found in
step 2.
Step 4. For all previously created batches and for all jobs, j;, in L
Step 4.1. If j; can be accommodated in a batch and if the release date of j; is
smaller than the ready time of the batch, place j; in the batch and erase it from L.
Step 5. For all the un-batched jobs, apply the FFD algorithm and schedule the so-
formed batches in non-decreasing order of ready times following the batches formed
in step 1.

The time complexity of the algorithm depends on step 4. The number of batches
created by the Split Job algorithm is bounded by the number of jobs which is N. If each
batch contains a split job, we can have at most N — 1 split jobs. Then, the number of
iterations performed in step 4 is bounded by N?2. Thus, the final complexity of Combine
Job algorithm is 0(N?).

Theorem 5. Combine Job is a 2-approximation algorithm for the problem
P|p — batch,r;,p; = p, wj, B|Cpnaz-

Proof. Let us denote by CLB the makespan found by Split Job algorithme (which is
in fact the lower bound of the problem) and C}, . the optimal solution. It is obvious
that CLB < O .. Let Cpuax be the completion time found by Combine Job. Note that
the algorithm finds first the lower bound of the problem, removes the split jobs from
batches and tries to insert these jobs (without splitting) into the existing batches without
changing the CLB value. Then, if there are still un-batched jobs, they are batched using
FFD and scheduled after the batches formed by Split Job algorithm.

Let us suppose that the lower bound algorithm forms nb batches. Then, in the worst
case, each batch splits a job and there are nb-1 split jobs. Suppose that those split jobs
have large sizes. Then, they can neither be inserted in any existing batch nor batched
together. Hence, these nb— 1 jobs are scheduled one by one following the batches created
in step 1.

Let us suppose that there are M machines, and in the lower bound solution each

machine handles nb,,, batches, where 1 <m < M. Then, mﬂg¥{nbm}*p < CLEB  Note that
me

max-*

after scheduling the previously split nb-1 jobs one by one and consecutively following these

. . M
batches, in the new schedule, each machine can have at most ma:i({nbm} more batches.
m=

M
Thus, the relation between Cpnae and CLE becomes: Chae < CLB 4 ma>1<{nbm} * .
m=

max — max

. Thus, we get: Cioe < 2CF .00

max max max max*

Moreover, CLB 4+ m%)lc{nbm} xp < 2C0LB < o0
m=

5.3. Mized integer linear programming model (MILP model)

For the case where job processing times are different, Chung et al. (2009) proposed a
MILP model. Thus, that MILP model could be used for our problem in order to find the
optimal solution. However, considering equal job processing times allows us to formulate



October 3, 2011

15:17 International Journal of Production Research Onur*Ozturk

12 Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, Alexia Gouin

another MILP model which can find the optimal solution faster than the MILP given
by Chung et al. (2009). Below, we explain our MILP model and test its efficiency in the

next section.

Let us start by introducing the indexes, parameters and variables used in the model.

Indexes:

j7:1,...,N for jobs

k:1,...,N for batches (since at most N batches can be created)
m : 1,..., M for machines

Parameters:

wj: size of job j

rj: release date of job j

N: number of jobs

M: number of machines

B: machine capacity

p: job processing time

nb: lower bound on the number of batches (nb = [Zj\;l wj/B-|)

Decision variables:

Zjkm: 1 if job j is executed in batch k& and on machine m, 0 otherwise
bim: 1 if batch k is created on machine m, 0 otherwise

Sim: ready time of batch k& on machine m

Cinaz: makespan

Mathematical formulation:

Minimize Cigs

subject to
sz]km_1 j=1,..,N
=1m=1
Zw]*x]kmSB*bkm k=1,..Nm=1,.. M

7j=1
Zbkm <1 k=1,..,N
Sim > Tjem * 11 j=1,. N, k=1,...N,m=1,...M
Skm = Sk—1,m + P *bp—1.m k=2,..Nym=1,... M
Crmaz > SNm +D*bym  m=1,...,. M
Dk (kmodaryr1 =1 k=1,...,nb
bm =0  k=nb+1,...N,Vm # (kmod M)+ 1

:L'jkm S {07 1}7bkm S {07 1}7Skm Z 07 Cmax Z 0

Our objective is to minimize the makespan. Constraint set (1) ensures assignment of
all jobs to a batch and to a machine. Constraint set (2) is the capacity constraint in
case that batch k is created on machine m. Constraint set (3) assigns a batch at most
to one machine. Constraint set (4) sets the ready time of a batch equal to the largest
release date of jobs in that batch. In case more than one batch is assigned to a machine,
constraint set (5) ensures a difference at least equal to the execution time p, between the
processing of these batches. If by, is null, then batch k on machine m is a dummy batch,
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and its ready time is directly given to the next indexed batch on machine m and the
processing time of batch & is 0 (i.e. p* bgy,, = 0). Another function of constraint set (5) is
to assign a ready time to all batches, from 1 to IV, even if they are not created, i.e. dummy
batches also obtain a ready time with (5). Finally, constraint set (6) sets the Cy,qq value.
Constraint sets (7) and (8) are valid inequalities used to improve the resolution time of
the model. With these constraints, we aim to reduce the number of equivalent solutions,
and thus the resolution space of the MILP. To understand these constraints properly,
let us now explain how we consider the assignment procedure of batches on machines.
It is clear that a batch can be assigned to only one machine. We know that at least nb
batches are created. We can thus pre-assign batches starting from any machine in the
problem. Constraint set (7) places the first nb batches consecutively on machines. k mod
M determines the machine on which batch k will be processed. We add 1 to (k mod M)
to prevent having 0 as a machine index and, without loss of generality, we place the first
batch on the second indexed machine. Since we have identical machines and equal batch
processing times, this placement is acceptable. Once these batches have been assigned to
the machines, we can continue pre-assignment starting from nb+1 up to N. However, we
cannot be sure if these batches will be created. Thus, the binary variable by((kmodnr)+1]
(for k larger than nb) can be 0 or 1. As a batch can be assigned at most to one machine,
the binary variables by, (for k larger than nb and m different from (k mod M) +1) are
necessarily equal to zero. We thus introduce the constraint set (8) to define the binary
variables which are equal to zero.
When M is equal to 1, constraint set (8) is replaced by:

brm > bk+1,m k=nb+1,...,.N -1 (9)

With this constraint set, we assume that low indexed batches have a higher priority than
other batches.

The number of variables in the model is N2M + 2N M + 1. The number of constraints
for the case where M > 1is N2M +3NM + N +nb(2—M). If M = 1, the model contains
N2 + 5N — 1 constraints.

5.4. Computational results for the MILP model

In this section, we test the effectiveness of the proposed MILP model and the behavior of
the lower bound algorithm according to optimal solutions. We compare our MILP model
to the MILP proposed by Chung et al. (2009).

5.4.1.  Test instances

The test instances are inspired from real data given by a French private hospital that we
refer to as the "real case”. More precisely, the machine capacity, batch processing time,
job sizes and arrival times are inspired from the real case. There are 4 automatic washers
in the sterilization service. Washer capacities are the same and equal to 6 DIN (DIN is a
standard measurement type for the volume of automatic washers), and washing time (i.e.
batch processing time) is 60 minutes. In the hospital sterilization service investigated,
RMD set sizes are multiples of 1/36 of machine capacity. There are thus 36 different
RMD set sizes, ranging from 1/6 DIN to 6 DIN. We observed the occurrence frequencies
of different RMD set sizes for data over a 5-day period, and noticed that they were
uniformly distributed. Consequently, the job sizes in our problem are sampled from a
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discrete uniform distribution, U[1;36], and are estimated by U[1;36]/6. Arrival times
were also observed over a 5-day data period. We noticed that inter-arrival times between
two RMD sets may take any value between 0 and 40 minutes. Therefore, we sampled job
arrival times from a uniform distribution such that two consecutive arriving jobs may
have an inter-arrival time equal to X minutes, where X~U [0; 40]. We denote this type of
arrival as a "random RMD arrival”. However, in some other sterilization services, regular
collection of RMD sets may take place in operating theaters. In this case, someone is in
charge of collecting RMD sets from operating theaters at fixed intervals all day long, thus,
RMD sets arrive at the sterilization service regularly. We consider 2 different values for
the regular inter-arrival times: 20 minutes and 40 minutes, and assume that the number
of jobs released in a collecting tour is sampled from a uniform distribution which is U[0;2]
for 20 minutes of regular collecting and U[1;3] for 40 minutes of regular collecting. We
thus define 3 instance types, according to RMD set arrivals. Let us refer to them as
1%, 274 and 3"? instance types for irregular arrivals, 20 minutes of regular collecting,
and 40 minutes of regular collecting, respectively. We group our experiments according
to the number of jobs and number of machines. The number of machines varies from 1
to 4 machines, while job numbers are 10, 15, 20 and 25. For each job number/machine
number combination, we tested 90 different instances. Thus, for each type of instance,
i.e. 1%, 2" and 3" types, 30 instances are tested in any job number/machine number
combination. An Intel Corel 2 Duo, 3 Ghz CPU computer with 3.25 GB Ram is used
for all computational experiments. CPLEX version 10.2 is used to implement the MILP
models. The resolution time limit with CPLEX is set to one hour.

5.4.2.  Performance of the proposed MILP model and quality of the lower bound
algorithm

We compare our MILP model to the model proposed by Chung et al. (2009). How-
ever, in their problem, batch processing times are not equal. So, they have proposed a
constraint set in order to calculate the batch processing times. Since all job/batch pro-
cessing times are equal in our problem, we removed this constraint set from their MILP
model in order to adapt it better to our problem. We refer to our MILP model as MILP
and to the MILP of Chung et al. (2009) as MILP;;. In table 2, we show the average
resolution times and the percentage of optimally solved instances for each of the machine
number/job number combination.

It is clear that our MILP model is much more efficient than the other one in terms
of resolution time. Starting from the 25 jobs/3-4 machines instances, we observe some
instances for which our MILP model can not find the optimal solution in the given time
limit. Thus, in order to have a better idea of the resolution limit with our MILP model, we
tested some more instances containing more than 25 jobs. Numerical experiments show
that some instances are not solved within one hour starting from instances containing
28 jobs for one machine case, and, 26 jobs for two machines case. For 3 and 4 machine
cases, first instances which are not solved within one hour contain 23 (or more) jobs.

Remember that the last two constraint sets in our MILP are valid inequalities. If these
constraints are removed, the optimal value will not change. But, the time needed to find
the optimal solution may increase. For that purpose, we removed these constraints from
the model and tested some instances containing 15 jobs. We saw that without these valid
inequalities, computational times exceeded 1 hour for all 2, 3 and 4 machines instances.
As for one machine instances, instances are optimally solved but the average resolution
time increases to 300 seconds.

Concerning the quality of Split Job as a lower bound algorithm, we compare the
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Table 2. Resolution limits for the MILP models

10
10
10
10
15
15
15
15
20
20
20
20
25
25
25

MILP MILP MILP;. MILP;;.
Nb. of jobs Nb. of mach. Av. Resol. time % of opt. sol. inst. ~ Av. Resol. time % of opt. sol. inst.
1 <1 sec 100% ~232 sec 100%
2 <1 sec 100% ~341 sec 100%
3 <1 sec 100% ~473 sec 100%
4 <1 sec 100% ~178 sec 100%
1 <1 sec 100% > 3600 sec 0%
2 <1 sec 100% > 3600 sec 0%
3 ~10 sec 100% > 3600 sec ~40
4 ~7 sec 100% ~711 sec ~81
1 ~1 sec 100% > 3600 sec 0%
2 ~242 100% > 3600 sec 0%
3 ~450 100% > 3600 sec 0%
4 ~341 100% ~1379 sec ~66
1 ~4.5 sec 100% > 3600 sec 0%
2 ~568 sec 100% > 3600 sec 0%
3 ~1147 sec ~89% > 3600 sec 0%
4 ~933 sec ~88% > 3600 sec 0%

25

Table 3. Comparison between the lower bound and the optimal re-
sults

Nb. of jobs Nb. of mach. Avg. gap in terms of solution quality

10 1 ~13%

10 2 ~4.5%
10 3 ~4.5%
10 4 ~0.6%
15 1 ~19.5%
15 2 ~9.3%
15 3 ~3.17%
15 4 ~0.45%
20 1 ~14%

20 2 ~6%

20 3 ~3.5%
20 4 ~0.6%
25 1 ~14%

25 2 ~6.3%

optimal results to those found by the Split Job algorithm. Therefore, in table 3, we show
the average difference between the solutions found by the lower bound algorithm (i.e.
Split Job algorithm) and the optimal solutions for each job number/machine number
combination. The reported gap is calculated by (Cp. — CLEB ) % 100/CLB . where C;,,.
is the optimal solution and CLB is the lower bound solution.

We experimented until 25 jobs and 2 machines instances, because beyond this machine
number/job number combination, the instances are not all optimally solved. Table 3
shows that the quality of the lower bound algorithm is quite good for 2, 3 and especially
4 machines instances. For the case of a single machine, job splitting property allows

smaller number of batches which are sequenced consecutively on just one machine. Thus,
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the makespan value for the lower bound is much smaller than the optimal one.

6. Conclusion

In this paper we modeled the washing step of a sterilization service as a batch scheduling
problem. As the washing step is generally a bottleneck of the overall sterilization process,
we aimed to minimize the total duration time of washing operations.

The batch scheduling problem we tackled has the following specifications: parallel
batching machines, job release dates, job sizes, limited machine capacity and equal job
processing times. First, we developed polynomial time algorithms for two special cases
where job sizes are not arbitrary. Afterwards, we gave an approximation algorithm for
our original problem and showed that it has a performance guarantee equal to 2. Finally,
we developed an exact resolution method which is a MILP model and tested its efficiency
in terms of resolution time. Remember that a general case of our problem is obtained
when job processing times are different. Chung et al. (2009) developed a MILP model for
that general case. However according to numerical tests in the final section, consideration
of equal processing times allowed us to develop a more efficient MILP model which runs
faster than the MILP given by Chung et al. (2009).

In future work, this study can be extended considering uncertainties for RMD set/job
arrivals. Moreover, some other objective functions (ex: sum of job completion times) may
be studied.
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