Onur * Ozturk

Marie-Laure Espinouse
email: marie-laure.espinouse@g-scop.grenoble-inp.fr

Maria Di Mascolo

Alexia Gouin

Makespan minimization on parallel batch processing machines with non-identical job sizes and release dates

Keywords: Parallel batch scheduling, mixed integer linear programming, approximation algorithm, sterilization service

de l'Automatique) (v3.5 released

Introduction

Batch processing machines are encountered in many different industries. Some examples of such machines are diffusion or oxidation tubes in semiconductor wafer fabrication, burn-in ovens in semiconductor testing, etc.. The batch processing problem we treat has its origins from the washing step of hospital sterilization services. Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, Alexia Gouin A hospital sterilization service is responsible for sterilizing medical devices after utilization in surgical operations. A medical device is an instrument, apparatus, appliance, or any other article, which is used for medical purposes on patients, in diagnosis, therapy or surgery. In fact, it is more appropriate to refer to these instruments as reusable medical devices (or RMDs) as they are reused after sterilization. Note that all RMDs used in a surgical operation constitute the RMD set of this surgical operation.

After utilization for a surgical operation, RMDs are directly placed in a substance, allowing pre-disinfection, and are transferred to the sterilization service. There, they are firstly rinsed and washed in automatic washers. Rinsing is performed either manually or automatically in automatic washers. After washing, RMDs are checked and packed into appropriate boxes. All items must be packed individually or grouped into boxes prior to sterilization. They are then sterilized in so-called "autoclaves", transferred to operating theaters and stored before reutilization.

There can be a large number of different RMD sets in a hospital. Moreover, for a typical hospital, there may be hundreds of RMD references. Because each surgical operation may require different numbers and types of RMDs, RMD sets may be of different sizes. For different reasons (surgery start times and durations, pre-disinfection procedure, etc.), RMD sets are ready for washing at different moments within the same day. However, washing duration is the same for all RMD sets.

The washing step of a sterilization service is composed of automatic washers. These washers have a fixed capacity and they can handle more than one RMD set at the same time as long as their capacity is not exceeded. Note that in the washing step, RMD sets are not usually allowed to be split among several washers due to organizational and traceability reasons.

The washing steps of sterilization services are generally the bottleneck of the whole sterilization process [START_REF] Ngo Cong | Etude et amelioration de l'organisation de la production de dispositifs medicaux steriles[END_REF]). Thus, a good utilization of automatic washers is crucial in order to minimize the total washing time at this step and to increase the performance of the sterilization process. In this paper we thus address the problem of minimizing makespan (C max) on parallel batch processing machines in presence of nonidentical job sizes, different release dates and equal processing times. This problem has newly been investigated in the literature considering different job processing times. However, studying equal processing times provides us some interesting avenues. In this study, we first develop exact algorithms for two special cases of our problem where job sizes are not arbitrary. Afterwards for the general case, we present an approximation algorithm1 and show that it has a performance guarantee equal to 2. According to our knowledge, heuristics presented in the literature for the scheduling problem considering different job sizes, release dates and processing times do not have polynomial complexity due to batch creation procedures. Finally, we present an exact resolution method based on a MILP model. We test its efficiency in terms of resolution time and also compare it to another MILP model from the literature.

In the following section we present the basic assumptions and notations used throughout this paper. Section 3 reviews previous related work on scheduling batch processing machines. Section 4 presents two exact algorithms for two special cases. In section 5, we first give an algorithm having a polynomial complexity and prove its performance guarantee. Then, we propose a MILP model and test its efficiency for the resolution time on several instances.

Assumptions and notations

In this paper, we model the washing step of sterilization services as a parallel batch scheduling problem. Hence, automatic washers at the washing step are treated as batch processing machines and RMD sets as jobs. The assumptions we make are the following.

• There are N jobs to be processed. The release date and the size of a given job j are denoted by r j and w j , respectively. Job processing times are the same for all jobs and are denoted by p. • All machines have the same capacity B, and the size of a job cannot be greater than machine capacity. • Several jobs can be batched together, complying with the machine capacity constraint.

• Since all jobs have the same processing time, p, the processing time of any batch is p.

• We are not allowed to split a job into several batches.

Inspired by Graham's notation [START_REF] Graham | Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey[END_REF]), we propose the following notation for our problem: P |p -batch, r j , p j = p, w j , B|C max . In this notation, P stands for identical parallel machines, p -batch for parallel batching; r j and w j denote job release date and size, respectively, p j = p stands for equal processing time, and B for machine capacity. Finally, C max refers to makespan.

Previous related work

The batch processing literature is really vast. In this section, we will be mostly speaking about parallel batch processing problems where jobs have non-identical sizes and release dates. But first, let us give some explanations about parallel batch scheduling.

For parallel batching problems with different job sizes, the sum of job sizes which are put in a batch defines the size of that batch. Batch sizes should not exceed machine capacity. Each job should be assigned to just one batch. Moreover, the processing time of a batch is equal to the longest processing time of jobs in that batch [START_REF] Potts | Scheduling with batching: A review[END_REF]). If job families are considered, jobs are partitioned into different sets according to their processing times, machine setup times, etc. There are two types of family scheduling models: compatible and incompatible job families. In compatible job family model, jobs from different families may be batched together [START_REF] Neale | Control of a Batch Processing Machine Serving Compatible Job Families[END_REF]). If incompatible job families are considered however, only jobs from the same family can be batched together [START_REF] Azizoglu | Scheduling a batch processing machine with incompatible job families[END_REF]). Jobs within a family may have different sizes, release dates and processing times.

Papers on batch scheduling with non-identical job sizes can be classed in four groups as follows: 1-single machine and identical release dates, 2-parallel machines and identical release dates, 3-single machine and unequal release dates, 4-parallel machines and unequal release dates.

In table 1, we give a brief classification of the literature on parallel batch scheduling problems with non-identical job sizes. We see that most of the papers study the makespan minimization considering equal job release dates. According to our knowledge, Uzsoy (1994) is the first one who studied parallel batching considering different job sizes. He shows that minimizing makespan on a single machine with identical job processing times and equal release dates but different job sizes is strongly NP-hard. The NP-hardness of this special case implies that our problem is also NP-hard.

Table 1 shows that there are 8 articles considering unequal release dates and thus Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, Alexia Gouin more related to our problem. Among them, two papers work on minimizing makespan on a single machine where approximation algorithms are presented. Another paper takes into account job rejection penalty beside makespan minimization and develops also an approximation algorithm. The fourth group presented on table 1 contains papers closer to our study since we consider parallel machines and unequal job release dates. [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF] are the first ones who study the scheduling problem presented by the fourth group on table 1. They develop an exact method and two heuristic approaches. The exact method they propose is a MILP model. Because that MILP model requires long computation times, they proposed also heuristics inspired from the heuristic developed by [START_REF] Lee | Minimizing makespan on a single batch processing machine with dynamic job arrivals[END_REF]. The heuristics of [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF] are composed of two phases.

The first phase forms batches and the second phase schedules batches on machines. The first phase is common to both heuristics and is inspired from the "DELAY" algorithm presented in [START_REF] Lee | Minimizing makespan on a single batch processing machine with dynamic job arrivals[END_REF]. It uses two parameters: α, for determining the time window in which jobs are batched, β, for determining the fullness of batches. They run the algorithm with different combinations of parameter values and select the best solution. It is reported that the computational burden of batch creation procedure is low enough. But as cited in [START_REF] Lee | Minimizing makespan on a single batch processing machine with dynamic job arrivals[END_REF], the performance of batch formation is sensitive to the values of the parameters α and β (Note that Lee and Uzsoy (1999) consider equal job sizes). [START_REF] Damodaran | A GRASP approach for REFERENCES 17 makespan minimization on parallel batch processing machines[END_REF] develop a meta-heuristic called Greedy Randomized Adaptive Search Procedure (GRASP is a metaheuristic method introduced by [START_REF] Feo | A probabilistic heuristic for a computationally difficult set covering problem[END_REF]). They report that the GRASP approach guarantees the optimal solution for small instances and is more effective than the heuristics proposed by [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF]. [START_REF] Damodaran | Heuristics for makespan minimization on parallel batch processing machines with unequal job ready times[END_REF] propose a constructive heuristic. This heuristic operates first by determining a time horizon, after which it solves a 0-1 knapsack problem to select the jobs to be batched. It is compared to the MILP model and to the heuristics given by [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF] as well as to the GRASP approach developed by [START_REF] Damodaran | A GRASP approach for REFERENCES 17 makespan minimization on parallel batch processing machines[END_REF]. It is reported that their heuristic outperforms the heuristics of [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF] and gives similar results to those of the GRASP method. This heuristic is pseudo-polynomial, since it solves a 0-1 knapsack problem using the dynamic algorithm proposed by [START_REF] Martello | Knapsack problems: algorithms and computer implementations[END_REF]. [START_REF] Chen | Metaheuristics to minimise makespan on parallel batch processing machines with dynamic job arrivals[END_REF] develop a genetic algorithm and an ant colony optimization. For the batch assignment procedure, they propose a heuristic (ERT-LPT: earliest ready time-longest processing time) which is used in common in both meta-heuristics. For computational experimentations, they develop another heuristic considering the batch creation procedure proposed by [START_REF] Dupont | Minimizing makespan on a single batch processing machine with non-identical job sizes[END_REF] where ERT-LPT is applied afterwards. Their results indicate that both meta-heuristics outperform the heuristic approach. [START_REF] Wang | Solving the parallel batch-processing machines with different release times, job sizes, and capacity limits by metaheuristics[END_REF] consider machines with different capacities. They develop a genetic and a simulated annealing algorithm, and test their algorithms on the instances defined by [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF]. It is reported that the proposed meta-heuristics are more efficient than the heuristics of [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF].

Because we consider equal job processing times, our problem is a special case of the problem treated in the fourth group on table 1. However, our problem is also strongly NP-hard. Moreover, the consideration of equal job processing times allows us to develop exact algorithms for two special cases which are explained in the next section. Afterwards, we return to our original problem and propose a heuristic algorithm with performance guarantee. Finally, we develop an exact method, which is in fact a MILP model, and test its efficiency in terms of resolution time.

Polynomially solvable cases

In this section, we present polynomial time algorithms for two special cases. The first one, which we shall refer to as P |p -batch, r j , p j = p, w j (strongly divisible), B|C max , considers a special order for job sizes. In the second one, job splitting is allowed. That problem, which we shall refer to as P |p -batch, r j , p j = p, w j (split), B|C max , will be used in obtaining a lower bound on the optimal value for the original problem.

Case 1: Job sizes forming a strongly divisible sequence

This case is inspired from a special case of a bin-packing problem where job sizes form a strongly divisible sequence. The Grahams notation can be modified as follows in order to represent this special case: P |p -batch, r j , p j = p, w j (strongly divisible), B|C max .

In the standard one-dimensional bin packing problem, we are given a pair (J, B), more precisely, a capacity B and a list of items J = j 1 , j 2 , ..., j N , and are asked to partition the items into a minimum number of subsets such that the item sizes in each subset sum to no more than B. [START_REF] Coffman | Bin packing with divisible item sizes[END_REF] showed that if item sizes form a strongly divisible sequence, the algorithms first fit (FF) and the first fit decreasing (FFD) are optimal for the bin packing problem. Let us first remind these algorithms and give the definition for the strongly divisible sequence. Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, Alexia Gouin Algorithm First Fit (FF) [START_REF] Coffman | Approximation algorithms for bin packing: A survey[END_REF])

Step 1: Arrange items in some arbitrary order

Step 2: Select the item at the head of the list and place it in the first bin with enough space to accommodate it. If it fits in no existing bin, create a new bin. (The complexity of FF is 0(N logN))

Algorithm First Fit Decreasing (FFD) [START_REF] Coffman | Approximation algorithms for bin packing: A survey[END_REF] This algorithm sorts jobs in non-increasing order of sizes and then applies FF. The complexity of FFD is also 0(N logN).

Strongly divisible sequence [START_REF] Coffman | Bin packing with divisible item sizes[END_REF]) Let W be a list of item sizes such that w 1 > w 2 >... > w i > w i+1 >... The sizes of items form a divisible sequence if w i+1 exactly divides w i . This sequence is strongly divisible if in addition the largest item size, w 1 , exactly divides the batch capacity.

In analysis of our scheduling problem, let us give some properties about the job sizes forming a strongly divisible sequence, and about the processing time of batches, respectively.

Lemma 1. [START_REF] Coffman | Bin packing with divisible item sizes[END_REF]) In case of jobs forming a strongly divisible sequence, FFD starts a new bin only when all previous bins are completely full.

Lemma 2. For the strongly divisible pair (J, B), let b 1 be a partially filled batch. If a job j with size w j does not completely enter this batch, then in b 1 , there is at least one job whose size is smaller than w j .

Let b 1 be a partially filled batch. Suppose that there are only jobs whose sizes are bigger or equal to w j in batch b 1 . Let w sum be the sum of sizes of these jobs. Because each bigger job size can be expressed as a multiple of smaller job sizes with an integer number, then w sum = coef f 1 * w j where coef f 1 is an integer. Moreover, each job size can divide exactly the batch capacity. Let B be the batch capacity. Then, B = coef f 2 * w j where coef f 2 is an integer. Because,

w sum ≤ B, coef f 1 ≤ coef f 2 . Then, if coef f 1 = coef f 2 ,
the batch is full. Otherwise, there is enough space for job j in batch b 1 . Thus, if b 1 is a partially filled batch in which job j can not be accommodated, then there should be at least one job whose size is smaller then w j .

Lemma 3. The aforesaid batch, b 1 , in lemma 2, can be completely filled by removing some jobs having smaller sizes than w j in order to accommodate the job j in b 1 .

The jobs of b 1 can be divided into two groups according to their sizes: group 1 for jobs whose sizes are bigger or equal to w j and group 2 for jobs whose sizes are smaller than w j . These jobs can easily be arranged in non-increasing order of sizes. Then, the first group of jobs occupies a space which is an exact multiple of w j . Suppose that the batch b 1 is composed of sub-batches having sizes equal to w j . Regarding the second group, these jobs can be seen as a subgroup of the strongly divisible sequenced jobs for which the size of a batch is equal to w j . Moreover, arranging these jobs in non-increasing order of sizes is the same as applying FFD on these jobs where the batch capacity is equal to w j . Thus, according to lemma 1, only the last sub-batch is partially filled which is in fact the last part of the batch b 1 , equal to w j in size. Hence, removing the jobs of the partially filled sub-batch from the batch b 1 lets accommodate job j completely in batch b 1 which becomes completely filled. The lemma 3 is going to be used in the algorithm in order to have fully complete batches.

Lemma 4. If all batches have the same processing time, then in the optimal solution for the makespan criterion, batches are placed consecutively on machines in non-decreasing order of batch ready times where the ready time of a batch is equal to the greatest release date of jobs contained.

It is clear that batch assignment procedure given in lemma 4 yields to the optimal makespan since equal batch processing times are considered.

The notations used in the algorithm are: L: list containing jobs sorted in non-decreasing order of release dates nb old : minimum number of batches that can be formed with the jobs in L j f irst : first job in L b b : currently open batch nb new : the new minimum number of batches that can be formed with the jobs in L after removing j f irst from L space: in case a job does not entirely fit a non-full batch, space represents the space needed in order that the job can be fully put in the batch j last : last job in batch b b after sorting jobs in non-increasing according to their sizes w last : size of j last Algorithm for Strongly Divisible Sequence (SDS)

Step 1: Sort jobs in non-decreasing order of job release dates: L

Step 2: While L is not empty, apply FF to L in order to calculate the minimum number of batches to form: nb old . Put the first job, j f irst , of L into a new batch, b b . Erase that job from L and re-apply FF to L in order to calculate the new minimum number of batches: nb new . If nb old > nb new , close the batch. Else,

Step 2.1: While nb old = nb new , put the first job, j f irst , of L into the batch b b . Update L and re-apply FF to L in order to calculate nb new .

Step 2.1.1: If the job, j f irst , does not completely enter the batch, calculate the space needed: space to accommodate the job completely into the batch. Sort jobs in batch b b in non-increasing order of sizes.

Step 2.1.1.1: While space > 0, remove the last job, j last , from b b . Set space = space -w last . Put j last back into L.

Step 2.1.1.2: Put j f irst in b b and update L.

Step 2.1.1.3: Set nb new = nb new -1.

Step 2.1.1.4: Sort jobs of L in non-decreasing order of job release dates.

Step 2.2: Close the batch.

Step 3: Set ready times of batches equal to the greatest release date of jobs they contain. Sort batches consecutively on machines in non-decreasing order of ready times starting from the first machine.

The time complexity of SDS can be defined as 0(N 2 logN). In the worst case, a number of jobs, let us say q, is firstly placed in a batch then they all may be removed from the batch for a large size job (step 2.1.1). If q is sufficiently small according to the total number of jobs, N , the number of times that q jobs are put into a batch and then removed from that batch approaches to N . Each time a job is put in a batch, Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, Alexia Gouin the new minimum number of batches is calculated with the un-batched jobs by applying FF. Thus, the time complexity of SDS can be defined as 0(N 2 logN) for the worst case.

Theorem 1. SDS is optimal for the problem: P |p -batch, r j , p j = p, w j (strongly divisible), B|minimizing the number of batches Proof. The number of batches formed by SDS is equal to the number of batches formed by applying FF. As proven by [START_REF] Coffman | Bin packing with divisible item sizes[END_REF], FF minimizes the number of batches if job sizes form a strongly divisible sequence. Hence, SDS minimizes the number of batches.

Before showing the optimality of SDS for the makespan criterion, let us give another property about the minimum completion time of a problem.

Lemma 5. Consider a problem with N jobs. The minimum completion time after job j, where 1≤j≤N , is equal to the sum of the release date of j and the execution time for the minimum number of batches that can be created with jobs having release dates greater or equal to the release date of job j.

For any problem with N jobs and M machines, a lower bound on the number of batches, say nb, can be given by: nb = N j=1 w j /B . Without lost of generality, let jobs be sorted in non-decreasing order of release dates. Consider a job j such that 1 ≤ j ≤ N and r j ≤ r N . It is also possible to calculate a lower bound on the number of batches for jobs whose release dates are greater or equal to r j . Let nb j be a lower bound on the number of batches that can be formed with jobs whose release dates are greater or equal to r j . Then, nb j = k∈S w k /B where S = {k|r k ≥ r j }. This way, we do not take into account jobs which are released before job j.

Let M be the number of machines. We know by lemma 4 that these nb j batches should be placed consecutively on machines in non-decreasing order of batch ready times where the ready time of a batch is equal to the greatest release date of jobs contained. Then, the maximum number of batches placed on machines can be calculated as nb j /M . Thanks to placing batches consecutively on machines, each machine contains a minimum number of batches. Moreover, in the best case, the execution of the first batch can start at r j . Thus, the smallest completion time after job j can be given as: r j + nb j /M * p where p is the processing time of jobs. In other words, the minimum completion time after job j is equal to the sum of the release date of j and the execution time of the minimum number of batches that can be created with jobs whose release dates are greater or equal to r j .

Theorem 2. SDS is optimal for the problem: P |p -batch, r j , p j = p, w j (strongly divisible), B|C max Proof. SDS closes a batch if and only if, after placing a job in that batch, the total number of batches to form with the un-batched jobs decreases or the batch is completely full. In fact if a batch is completely full after the addition of a job, since the algorithm minimizes also the number of batches, the total number of batches to form with the unbatched jobs necessarily decreases by 1. Now, we would like to show that the minimum completion time stated in lemma 5 is reachable with the SDS algorithm.

Suppose that for a given problem with N jobs and M machines, the minimum number of batches is equal to nb. Let s m be the processing start time for batch b m . Let us denote by s nb the processing start time of the last batch and r N the release date of the last job. If s nb = r N , then the makespan is already optimal. But, if s nb > r N , then there is no idle time between batches b nb and the batch before b nb on the same machine. In fact, as batches are placed consecutively on machines according to ready times, the batch before the last one on the same machine is the batch b (nb-M) . Let us consider the maximal chain of batches without idle times on the machine that contains the last batch: b (nb-q * M) , ..., b nb where q ≥ 1. Now, consider a job k whose release date is equal to the processing start time of the batch b (nb-q * M) i.e. r k = s (nb-q * M) . We have seen by lemma 5 that the minimum completion time after any job, say j, could be r j + nb j /M * p.

Thanks to SDS, the condition to close a batch is that the total number of batches to form with the un-batched jobs should decrease. Thus, after the last job of each batch, the algorithm forms always a minimum number of batches. By construction, the minimum completion time after job k is reached and we have the optimal makespan:

C * max = r k + nb k /M * p.

Case 2: Job splitting is allowed

We develop here a polynomial time algorithm in case jobs are allowed to be split. Indeed, even if job splitting is not generally allowed, it may take place in some sterilization services. We show the problem by P |p -batch, r j , p j = p, w j (split), B|C max .

In fact, if a job can be split, it can then be considered as the composition of smaller jobs where the sum of their sizes is equal to the size of the original job. Or, it is possible to consider the job as if it is composed of jobs having very small and equal sizes. Thus, the problem becomes equivalent to the case where jobs have unit sizes, equal processing times and different release dates. [START_REF] Ikura | Efficient scheduling algorithms for a single batch processing machine[END_REF] study that case in presence of a single machine to minimize makespan. They develop an exact algorithm. We inspire from their algorithm and show that it is also optimal for the case of parallel machines.

The proposed algorithm starts by creating a list, L, of jobs sorted in non-increasing order of job release dates. Then, a lower bound on the number of batches is calculated and thanks to the job splitting property, the algorithm forms a minimum number of batches. As we are allowed to split jobs, the minimum number of batches is found by rounding up to the smallest integer value when dividing the sum of all job sizes by the machine capacity. After finding the minimum number of batches, we start filling the batches with the first job of the previously created list, L. A batch is closed when it is completely filled or when there are no more jobs to be batched. In case a job does not entirely fit a batch, then the job is split. The first part of the job is put into the batch and the second part is treated as a new job having the same release date as the original job. Finally, batches are sorted consecutively on machines in non-decreasing order of ready times.

The algorithm sorts jobs in non-increasing order of job release dates and then forms batches with successive jobs. Thus, the complexity of the algorithm can be defined as 0(N logN). Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, Alexia Gouin

Split Job algorithm

Step 1. Sort jobs in non-increasing order of job release dates r j : L

Step 2. Calculate the minimum number of batches needed: nb = Step 4. Set ready times of batches equal to the greatest release date of jobs they include. Sort batches consecutively on machines in non-decreasing order of ready times starting from the first machine.

Theorem 3. Split Job algorithm is optimal for the problem: P |p -batch, r j , p j = p, w j (split), B|C max Proof. We can give a proof similar to that of theorem 2. After assigning batches on machines, consider a chain of batches on the machine that sets the makespan value. The ready time of the first batch in that chain is equal to the release date of a job. Moreover, after closing each batch, we create always a minimum number of batches with the unscheduled job. Thus, the condition cited in lemma 5 is satisfied and the algorithm is optimal.

5. Solution approaches for P |p -batch, r j , p j = p, w j , B|C max

We now return to our original problem where jobs can not be split while having arbitrary sizes. In this section, we first define how a lower bound can be obtained for the problem. Then, we give an algorithm and prove that its performance guarantee is equal to 2. Afterwards, we propose a MILP model and test its efficiency on several instances.

Lower bound for the problem

In section 4.2, we treated the problem with job splitting and showed that in each batch there was always a last job after which a minimum number of batches were created. This way, the minimum completion time is obtained and the makespan value gets the best possible value. Therefore, we use the Split Job algorithm as a lower bound algorithm for our problem.

2-approximation algorithm

The proposed algorithm first finds the lower bound of the given problem, using the algorithm Split Job. Then, from each batch, the split jobs are removed and a list is created with these jobs sorted in non-increasing order of sizes. We try to accommodate these jobs into the previously formed batches respecting the batch ready times (i.e. if a job can be inserted into a batch, its release date must be smaller than the ready time of the batch). Finally, all un-batched jobs are batched using the FFD and scheduled after the previously formed batches. We name this algorithm as Combine Job.

Combine Job algorithm

Step 1. Apply the Split Job algorithm.

Step 2. Remove split jobs from the batches.

Step 3. Create a list, L, of jobs in non-increasing order of sizes with jobs found in step 2.

Step 4. For all previously created batches and for all jobs, j l , in L

Step 4.1. If j l can be accommodated in a batch and if the release date of j l is smaller than the ready time of the batch, place j l in the batch and erase it from L.

Step 5. For all the un-batched jobs, apply the FFD algorithm and schedule the soformed batches in non-decreasing order of ready times following the batches formed in step 1.

The time complexity of the algorithm depends on step 4. The number of batches created by the Split Job algorithm is bounded by the number of jobs which is N . If each batch contains a split job, we can have at most N -1 split jobs. Then, the number of iterations performed in step 4 is bounded by N 2 . Thus, the final complexity of Combine Job algorithm is 0(N 2).

Theorem 5. Combine Job is a 2-approximation algorithm for the problem P |p -batch, r j , p j = p, w j , B|C max .

Proof. Let us denote by C LB max the makespan found by Split Job algorithme (which is in fact the lower bound of the problem) and C * max the optimal solution. It is obvious that C LB max ≤ C * max . Let C max be the completion time found by Combine Job. Note that the algorithm finds first the lower bound of the problem, removes the split jobs from batches and tries to insert these jobs (without splitting) into the existing batches without changing the C LB max value. Then, if there are still un-batched jobs, they are batched using FFD and scheduled after the batches formed by Split Job algorithm.

Let us suppose that the lower bound algorithm forms nb batches. Then, in the worst case, each batch splits a job and there are nb-1 split jobs. Suppose that those split jobs have large sizes. Then, they can neither be inserted in any existing batch nor batched together. Hence, these nb -1 jobs are scheduled one by one following the batches created in step 1.

Let us suppose that there are M machines, and in the lower bound solution each machine handles nb m batches, where 1 ≤ m ≤ M . Then,

M max m=1 {nb m } * p ≤ C LB max .
Note that after scheduling the previously split nb-1 jobs one by one and consecutively following these batches, in the new schedule, each machine can have at most

M max m=1 {nb m } more batches.
Thus, the relation between C max and C LB max becomes:

C max ≤ C LB max + M max m=1 {nb m } * p. Moreover, C LB max + M max m=1 {nb m } * p ≤ 2C LB max ≤ 2C * max .
Thus, we get: C max ≤ 2C * max .

Mixed integer linear programming model (MILP model)

For the case where job processing times are different, [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF] proposed a MILP model. Thus, that MILP model could be used for our problem in order to find the optimal solution. However, considering equal job processing times allows us to formulate Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, Alexia Gouin another MILP model which can find the optimal solution faster than the MILP given by [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF]. Below, we explain our MILP model and test its efficiency in the next section.

Let us start by introducing the indexes, parameters and variables used in the model. Indexes: j : 1, ..., N for jobs k : 1, ..., N for batches (since at most N batches can be created) m : 1, ..., M for machines Parameters: w j : size of job j r j : release date of job j N : number of jobs M : number of machines B: machine capacity p: job processing time nb: lower bound on the number of batches (nb = N j=1 w j /B) Decision variables:

x jkm : 1 if job j is executed in batch k and on machine m, 0 otherwise b km : 1 if batch k is created on machine m, 0 otherwise S km : ready time of batch k on machine m C max : makespan Mathematical formulation:

Minimize C max subject to N k=1 M m=1 x jkm = 1 j = 1, ..., N (1)
N j=1 w j * x jkm ≤ B * b km k = 1, ..., N , m = 1, ..., M (2)
M m=1 b km ≤ 1 k = 1, ..., N (3)
S km ≥ x jkm * r j j = 1, ..., N , k = 1, ..., N , m = 1, ..., M (4)
S km ≥ S k-1,m + p * b k-1,m k = 2, ..., N ; m = 1, ..., M (5)
C max ≥ S N m + p * b N m m = 1, ..., M (6)
b k,(kmodM

)+1 ≥ 1 k = 1, ..., nb (7)
b km = 0 k = nb + 1, ..., N , ∀m = (k mod M) + 1 (8) x jkm ∈ {0, 1}, b km ∈ {0, 1}, S km ≥ 0, C max ≥ 0
Our objective is to minimize the makespan. Constraint set (1) ensures assignment of all jobs to a batch and to a machine. Constraint set (2) is the capacity constraint in case that batch k is created on machine m. Constraint set (3) assigns a batch at most to one machine. Constraint set (4) sets the ready time of a batch equal to the largest release date of jobs in that batch. In case more than one batch is assigned to a machine, constraint set (5) ensures a difference at least equal to the execution time p, between the processing of these batches. If b km is null, then batch k on machine m is a dummy batch, and its ready time is directly given to the next indexed batch on machine m and the processing time of batch k is 0 (i.e. p * b km = 0). Another function of constraint set (5) is to assign a ready time to all batches, from 1 to N , even if they are not created, i.e. dummy batches also obtain a ready time with (5). Finally, constraint set (6) sets the C max value. Constraint sets (7) and (8) are valid inequalities used to improve the resolution time of the model. With these constraints, we aim to reduce the number of equivalent solutions, and thus the resolution space of the MILP. To understand these constraints properly, let us now explain how we consider the assignment procedure of batches on machines. It is clear that a batch can be assigned to only one machine. We know that at least nb batches are created. We can thus pre-assign batches starting from any machine in the problem. Constraint set (7) places the first nb batches consecutively on machines. k mod M determines the machine on which batch k will be processed. We add 1 to (k mod M) to prevent having 0 as a machine index and, without loss of generality, we place the first batch on the second indexed machine. Since we have identical machines and equal batch processing times, this placement is acceptable. Once these batches have been assigned to the machines, we can continue pre-assignment starting from nb+1 up to N . However, we cannot be sure if these batches will be created. Thus, the binary variable b k[(kmodM)+1] (for k larger than nb) can be 0 or 1. As a batch can be assigned at most to one machine, the binary variables b km (for k larger than nb and m different from (k mod M) +1) are necessarily equal to zero. We thus introduce the constraint set (8) to define the binary variables which are equal to zero.

When M is equal to 1, constraint set (8) is replaced by:

b km ≥ b k+1,m k = nb + 1, ..., N -1 (9)
With this constraint set, we assume that low indexed batches have a higher priority than other batches.

The number of variables in the model is N 2 M + 2N M + 1. The number of constraints for the case where M > 1 is N 2 M +3N M +N +nb(2-M). If M = 1, the model contains N 2 + 5N -1 constraints.

Computational results for the MILP model

In this section, we test the effectiveness of the proposed MILP model and the behavior of the lower bound algorithm according to optimal solutions. We compare our MILP model to the MILP proposed by [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF].

Test instances

The test instances are inspired from real data given by a French private hospital that we refer to as the "real case". More precisely, the machine capacity, batch processing time, job sizes and arrival times are inspired from the real case. There are 4 automatic washers in the sterilization service. Washer capacities are the same and equal to 6 DIN (DIN is a standard measurement type for the volume of automatic washers), and washing time (i.e. batch processing time) is 60 minutes. In the hospital sterilization service investigated, RMD set sizes are multiples of 1/36 of machine capacity. There are thus 36 different RMD set sizes, ranging from 1/6 DIN to 6 DIN. We observed the occurrence frequencies of different RMD set sizes for data over a 5-day period, and noticed that they were uniformly distributed. Consequently, the job sizes in our problem are sampled from a Onur Ozturk, Marie-Laure Espinouse, Maria Di Mascolo, Alexia Gouin discrete uniform distribution, U[1;36], and are estimated by U[1;36]/6. Arrival times were also observed over a 5-day data period. We noticed that inter-arrival times between two RMD sets may take any value between 0 and 40 minutes. Therefore, we sampled job arrival times from a uniform distribution such that two consecutive arriving jobs may have an inter-arrival time equal to X minutes, where X∼U [0; 40]. We denote this type of arrival as a "random RMD arrival". However, in some other sterilization services, regular collection of RMD sets may take place in operating theaters. In this case, someone is in charge of collecting RMD sets from operating theaters at fixed intervals all day long, thus, RMD sets arrive at the sterilization service regularly. We consider 2 different values for the regular inter-arrival times: 20 minutes and 40 minutes, and assume that the number of jobs released in a collecting tour is sampled from a uniform distribution which is U[0;2] for 20 minutes of regular collecting and U[1;3] for 40 minutes of regular collecting. We thus define 3 instance types, according to RMD set arrivals. Let us refer to them as 1 st , 2 nd and 3 rd instance types for irregular arrivals, 20 minutes of regular collecting, and 40 minutes of regular collecting, respectively. We group our experiments according to the number of jobs and number of machines. The number of machines varies from 1 to 4 machines, while job numbers are 10, 15, 20 and 25. For each job number/machine number combination, we tested 90 different instances. Thus, for each type of instance, i.e. 1 st , 2 nd and 3 rd types, 30 instances are tested in any job number/machine number combination. An Intel Corel 2 Duo, 3 Ghz CPU computer with 3.25 GB Ram is used for all computational experiments. CPLEX version 10.2 is used to implement the MILP models. The resolution time limit with CPLEX is set to one hour.

Performance of the proposed MILP model and quality of the lower bound algorithm

We compare our MILP model to the model proposed by [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF]. However, in their problem, batch processing times are not equal. So, they have proposed a constraint set in order to calculate the batch processing times. Since all job/batch processing times are equal in our problem, we removed this constraint set from their MILP model in order to adapt it better to our problem. We refer to our MILP model as M ILP and to the MILP of [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF] as M ILP lit . In table 2, we show the average resolution times and the percentage of optimally solved instances for each of the machine number/job number combination.

It is clear that our MILP model is much more efficient than the other one in terms of resolution time. Starting from the 25 jobs/3-4 machines instances, we observe some instances for which our MILP model can not find the optimal solution in the given time limit. Thus, in order to have a better idea of the resolution limit with our MILP model, we tested some more instances containing more than 25 jobs. Numerical experiments show that some instances are not solved within one hour starting from instances containing 28 jobs for one machine case, and, 26 jobs for two machines case. For 3 and 4 machine cases, first instances which are not solved within one hour contain 23 (or more) jobs.

Remember that the last two constraint sets in our MILP are valid inequalities. If these constraints are removed, the optimal value will not change. But, the time needed to find the optimal solution may increase. For that purpose, we removed these constraints from the model and tested some instances containing 15 jobs. We saw that without these valid inequalities, computational times exceeded 1 hour for all 2, 3 and 4 machines instances. As for one machine instances, instances are optimally solved but the average resolution time increases to 300 seconds.

Concerning the quality of Split Job as a lower bound algorithm, we compare the optimal results to those found by the Split Job algorithm. Therefore, in table 3, we show the average difference between the solutions found by the lower bound algorithm (i.e. Split Job algorithm) and the optimal solutions for each job number/machine number combination. The reported gap is calculated by (C * max -C LB max) * 100/C LB max where C * max is the optimal solution and C LB max is the lower bound solution. We experimented until 25 jobs and 2 machines instances, because beyond this machine number/job number combination, the instances are not all optimally solved. Table 3 shows that the quality of the lower bound algorithm is quite good for 2, 3 and especially 4 machines instances. For the case of a single machine, job splitting property allows smaller number of batches which are sequenced consecutively on just one machine. Thus,

Conclusion

In this paper we modeled the washing step of a sterilization service as a batch scheduling problem. As the washing step is generally a bottleneck of the overall sterilization process, we aimed to minimize the total duration time of washing operations.

The batch scheduling problem we tackled has the following specifications: parallel batching machines, job release dates, job sizes, limited machine capacity and equal job processing times. First, we developed polynomial algorithms for two special cases where job sizes are not arbitrary. Afterwards, we gave an approximation algorithm for our original problem and showed that it has a performance guarantee equal to 2. Finally, we developed an exact resolution method which is a MILP model and tested its efficiency in terms of resolution time. Remember that a general case of our problem is obtained when job processing times are different. [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF] developed a MILP model for that general case. However according to numerical tests in the final section, consideration of equal processing times allowed us to develop a more efficient MILP model which runs faster than the MILP given by [START_REF] Chung | Minimizing makespan on parallel batch processing machines with non-identical ready time and arbitrary job sizes[END_REF]. In future work, this study can be extended considering uncertainties for RMD set/job arrivals. Moreover, some other objective functions (ex: sum of job completion times) may be studied.

N

 j=1 w j /B Step 3. While nb >0, open a batch: b b Step 3.1. Put the first job of L into the batch b b . Update L. If the batch is 100% filled or if there is no more elements in L, close the batch and set nb = nb -1. Step 3.1.1. If the job does not completely fit the batch, split the job. Put the first part of the job in order to fill the batch entirely, then close the batch and set nb = nb -1. Update the size of the split job.

Table 1 .

 1 Literature related to parallel batch scheduling problems with different job sizes

	Group	Reference	Solution approach	Criteria
		Uzsoy (1994)	Heuristics, B&B	Cmax, Cj
		Jolai Ghazvini and Dupont (1998)	Heuristics	Cj
		Dupont and Jolai Ghazvini (1998)	Heuristics	Cmax
		Kempf et al. (1998)	MILP, heuristics	Cmax, Cj
		Azizoglu and Webster (2000)	B&B	wjCj
	Single machine	Azizoglu and Webster (2001)	B&B	wjCj
	and	Zhang et al. (2001)	Approximation algorithm	Cmax
	identical release	Dupont and Dhaenens-Flipo (2002)	B&B	Cmax
	dates	Melouk et al. (2004)	MILP, Simulated annealing	Cmax
		Kashan et al. (2006)	Genetic algorithms	Cmax
		Zhang et al. (2007)	Approximation algorithms	Cj
		Kashan et al. (2009)	Approximation algorithms	Cmax
		Parsa et al. (2010)	Branch and price algorithm	Cmax
		Kashan et al. (2010)	Genetic algorithms	Cmax
	Parallel machines and	Chang et al. (2004)	Simulated annealing	Cmax
	identical release dates	Kashan et al. (2008)	Genetic algorithms	Cmax
	Single machine	Li et al. (2005)	Approximation algorithm	Cmax
	and unequal	Nong et al. (2008)	Approximation algorithm	Cmax
	release dates	Lu et al. (2010)	Approximation algorithm	Cmax+job rejection
		Chung et al. (2009)	MILP, heuristics	Cmax
	Parallel machines	Damodaran et al. (2011)	meta-heuristic	Cmax
	and	Damodaran and Velez Gallego (2010)	heuristics	Cmax
	unequal release	Chen et al. (2010)	Genetic algo, ant colony heuristic	Cmax
	release dates	Wang and Chou (2010)	Genetic algo, simulated annealing	Cmax

Table 2 .

 2 Resolution limits for the MILP models M ILP M ILP M ILP lit. M ILP lit. Nb. of jobs Nb. of mach. Av. Resol. time % of opt. sol. inst. Av. Resol. time % of opt. sol. inst.

	10	1	<1 sec	100%	232 sec	100%
	10	2	<1 sec	100%	341 sec	100%
	10	3	<1 sec	100%	473 sec	100%
	10	4	<1 sec	100%	178 sec	100%
	15	1	<1 sec	100%	> 3600 sec	0%
	15	2	<1 sec	100%	> 3600 sec	0%
	15	3	10 sec	100%	> 3600 sec	40
	15	4	7 sec	100%	711 sec	81
	20	1	1 sec	100%	> 3600 sec	0%
	20	2	242	100%	> 3600 sec	0%
	20	3	450	100%	> 3600 sec	0%
	20	4	341	100%	1379 sec	66
	25	1	4.5 sec	100%	> 3600 sec	0%
	25	2	568 sec	100%	> 3600 sec	0%
	25	3	1147 sec	89%	> 3600 sec	0%
	25	4	933 sec	88%	> 3600 sec	0%

Table 3 .

 3 Comparison between the lower bound and the optimal results Nb. of jobs Nb. of mach. Avg. gap in terms of solution

	10	1	13%
	10	2	4.5%
	10	3	4.5%
	10	4	0.6%
	15	1	19.5%
	15	2	9.3%
	15	3	3.17%
	15	4	0.45%
	20	1	14%
	20	2	6%
	20	3	3.5%
	20	4	0.6%
	25	1	14%
	25	2	6.3%

An approximation algorithm is a heuristic which has a performance guarantee and a polynomial complexity.