
HAL Id: hal-00677077
https://hal.science/hal-00677077v1

Submitted on 7 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AnKLe: Detecting Attacks in Large Scale Systems via
Information Divergence

Emmanuelle Anceaume, Yann Busnel, Sébastien Gambs

To cite this version:
Emmanuelle Anceaume, Yann Busnel, Sébastien Gambs. AnKLe: Detecting Attacks in Large Scale
Systems via Information Divergence. Ninth European Dependable Computing Conference (EDCC
2012), May 2012, Sibiu, Romania. pp.12. �hal-00677077�

https://hal.science/hal-00677077v1
https://hal.archives-ouvertes.fr

AnKLe: Detecting Attacks in Large Scale Systems via Information
Divergence

Emmanuelle Anceaume
IRISA / CNRS
Rennes, France

emmanuelle.anceaume@irisa.fr

Yann Busnel
LINA / Université de Nantes

Nantes, France
Yann.Busnel@univ-nantes.fr

Sébastien Gambs
IRISA / Université de Rennes 1

INRIA – Rennes Bretagne Atlantique
Rennes, France

sebastien.gambs@irisa.fr

Abstract—In this paper, we consider the setting
of large scale distributed systems, in which each
node needs to quickly process a huge amount of
data received in the form of a stream that may
have been tampered with by an adversary. In this
situation, a fundamental problem is how to detect
and quantify the amount of work performed by
the adversary. To address this issue, we propose
AnKLe (for Attack-tolerant eNhanced Kullback-
Leibler divergence Estimator), a novel algorithm
for estimating the KL divergence of an observed
stream compared to the expected one. AnKLe com-
bines sampling techniques and information-theoretic
methods. It is very efficient, both in terms of space
and time complexities, and requires only a single
pass over the data stream. Experimental results show
that the estimation provided by AnKLe remains
accurate even for different adversarial settings for
which the quality of other methods dramatically
decreases.

Keywords-Data Stream; Kullback-Leibler Diver-
gence; Sampling; Byzantine Adversary; Scalability;
Performance Analysis.

I. INTRODUCTION

The main objective of this paper is to propose
an algorithm for estimating the similarity between
an observed data stream and the expected (i.e.
idealized) one in the context of massive data
streams. More precisely, we consider the setting
of large scale distributed systems, in which each
node needs to quickly process a huge amount
of data. Typically, this data corresponds to IP
network traffic, sensors readings, nodes identifiers
or any other data issued from distributed applica-
tions. For instance, in IP network management,
the analysis of the stream may be used to de-
tect the presence of outliers or intrusions when
changes in the communication patterns occur [1],
to estimate the heaviest users or the more popular
sites [2], or to dynamically dimension routers.
In sensors networks, probabilistic laws modeling
data streams are used in tracking applications
for estimating the position of target sensors [3],

or for correlating geographical or environmental
informations [4], [5]. Finally, in large scale and
dynamic systems, uniform sampling is one of the
fundamental primitive [6] that allows for instance,
by analyzing the information gathered across the
network, to estimate the size of the system, its
topological organization, or its available resources
so that efficient dissemination, load-balancing or
data-caching algorithms can be designed and im-
plemented [7], [8].

In the context of massive data streams, nodes
need to quickly process on the fly the flow of data.
Moreover, nodes can only locally store very lim-
ited data and perform few operations on this data.
Additionally, it is often the case that if some data
has not been locally stored for further processing,
once it has been read, it cannot be read anymore
(this refers to the one-pass data streaming model).
The problem of detecting changes or outliers in a
data stream is similar to the problem of identifying
patterns that do not conform to the expected
behavior, which has been an active area of research
for many decades. For instance, depending on
the specificities of the domain considered and
the type of outliers considered, different meth-
ods have been designed, namely classification-
based, clustering-based, nearest neighbor based,
statistical, spectral, and information theory. A
comprehensive survey of these techniques, their
advantages and their drawbacks is given in [9]. A
common feature of these techniques is their space
complexity and their computational cost, as they
rely on full space algorithms for analyzing their
data.

Given our constraint settings — one-pass anal-
ysis of a huge amount of data with limited re-
sources, both in space and time— we propose an
algorithm to detect changes in the observed stream
with respect to an expected behavior by relying
on sampling techniques and information-theoretic
methods. More precisely, by adequately sampling

the observed data stream, we estimate with high
accuracy the distance between the expected stream
and the observed one, and this even if the stream
has been tampered with by an adversary. The
metric, we use in our context is the Kullback-
Leibler (KL) divergence, which can be viewed
as an extension of the Shannon entropy and is
often referred to as the relative entropy [10].
Citing Chakrabarti et al., [11], “[...] rationale of
estimating entropy-based distances is that there
are intimate connections between the randomness
of traffic sequences (formalized as the entropy)
and the propagation of malicious events. Indeed,
detecting sudden changes in a stream may be a
good indicator of attacks”.

Our main contribution is the proposition of An-
KLe (Attack-tolerant eNhanced Kullback-Leibler
divergence Estimator), an algorithm that estimates
the relative entropy between the observed stream
and the expected ones in the context of massive
data streams. As introduced above, AnKLe com-
bines information-theoretic and sampling tech-
niques to estimate accurately the relative entropy,
while using only a memory of small size to cope
with the very strict space constraint. Extensive
simulations indicate that while AnKLe rely on
sampling techniques, the accuracy of the estima-
tion is very high. AnKLe, as a data streaming algo-
rithm, benefits from their desired properties such
as low computational and storage costs and one-
pass processing of the stream. Therefore, AnKLe
is perfectly adapted to the setting in which data
must be read and process quickly. Finally, AnKLe
is versatile enough to cope with any type of
input distribution, including distribution that have
been generated by an adversary. To the best of
our knowledge, an algorithm combining all these
strengths for the estimation of relative entropy has
never been published before in the literature.

The paper is organized as follows. First, Sec-
tion II reviews the related work on the estimation
of the relative entropy of data streams while Sec-
tion III-A describes the data stream model as well
as the adversary model considered. Section III-B
briefly introduces the concepts of information the-
ory that we intensively use in this work. Sec-
tion IV-A presents the different buildings blocks of
our algorithm and finally Section IV-B describes
AnKLe, our data streaming algorithm for estimat-
ing the relative entropy of a stream. In Section V,
we empirically evaluate the accuracy of the esti-
mation provided by AnKLe by comparing it to the
exact value of the KL divergence on different data
streams and also to adapted versions of state-of-

the-art estimator-based algorithms, namely, Alon
et al. [12] and Chakrabrti et al. [13]. Finally, we
conclude in Section VI.

II. RELATED WORK

In this paper, we consider the Kullback-Leibler
(i.e., the relative entropy) estimation problem. In
information theory, the concept of entropy corre-
sponds to the uncertainty of a random variable,
and as a special case, the entropy of a stream
quantifies the randomness of a data stream. On the
other hand, relative entropy measures the differ-
ence between two distributions, and therefore the
data stream relative entropy quantifies the amount
of information separating one specific observed
stream from expected ones.

Previous works have proposed efficient algo-
rithms (in sublinear space, and sometimes even
polylogarithmic space, in the size of the stream)
to accurately estimate the entropy of a data stream.
Most of these works rely on the seminal algorithm
designed by Alon, Matias and Szegedy [12]. In
their work, the authors estimate the k-th frequency
moment Fk of a data stream, a statistic directly
related to the input stream (cf., Section III-B). For
instance, the frequency moment F0 corresponds to
the number of distinct items in a stream while F1

represents the size of the stream. Subsequently to
this work, Guha et al. [14] have considered the
entropy estimation problem in the random stream
model, in which items are randomly distributed in
the stream. Chakrabarti et al. [11] have studied
the same problem but assuming the adversarial
stream model, in which the items are ordered
according to an adversarial strategy. Furthermore,
Chakrabarti et al. [11], [13] and Lall et al. [15]
have considered the challenging issue of estimat-
ing the entropy accurately when the entropy is
strictly less than one. Such streams have a few
items with a high occurrence frequency while all
the other items appear approximately with the
same low frequency. In order to guarantee a small
relative estimation error in this setting, one needs
to decompose the analysis of the stream into two
parts, one part keeping the highly frequent items
and the other part comprising the items with the
same low frequency. More details will be given in
Section IV-B.

Estimating the relative entropy of data streams
has also been shown to be an interesting tool
in the security and dependability community. For
instance, Cachin [16] defines the security of a
steganographic system in terms of the Kullback-
Leibler entropy between the distributions of the

covertext and the stegotext. Specifically, if the
relative entropy is less than or equal to a given
parameter ε then the stegosystem is considered
ε-secure, while if the relative entropy is equal
to zero (i.e., ε = 0), then the stegosystem is
perfectly secure. Anceaume et al. [17] have pro-
posed a characterization of the adversarial power
to bias uniform and ergodic sampling in large scale
system. This characterization is done in terms of
the relative entropy between a stream composed
of node identifiers and a uniform stream. More
precisely, the authors have derived lower bounds
on the work that an adversary has to exert to
bias this input stream so that uniform and ergodic
sampling does not hold.

A fundamental issue is to derive efficient al-
gorithms both in space and time to estimate the
relative entropy in presence of huge amount of
data.

III. SYSTEM MODEL AND BACKGROUND

A. System Model

We consider a system in which a node P
receives a large data stream σ = a1, a2, . . . , am,
where the i-th element ai of the stream is called
an item. This node P might be a router that
watches TCP/IP packets [2], a stegosystem [16] or
a peer sampling component [17]. In the following,
we describe a single instance of P , but clearly
multiple instances of P may co-exist in a system.
The value u of an item is assumed to be drawn
from a large universe N and the length of the
stream m is very high (e.g., 232). Moreover, items
can be repeated multiple times in the stream. The
number of distinct items in the stream is denoted
by n, and thus, we have n ≤ m. We suppose
that items arrive regularly and quickly, and due
to memory constraints, need to be processed se-
quentially and in an online manner. Therefore,
node P can locally store only a small fraction
of the items and perform simple operations on
them. The algorithms we consider in this work are
characterized by the fact that they can approximate
some function on σ with a very limited amount of
memory (typically sublinear or polylogarithmic in
the size of the data stream m). We refer the reader
to [18] for a detailed description of data streaming
models and algorithms.

Adversary Model: We suppose that the adver-
sary is omnipotent in the sense that it may actively
tamper with the data stream of any node by
observing, inserting, dropping or re-ordering items
of their input stream. The activity of the adversary
can be detected by an honest node provided that it

can accurately estimate the divergence between the
observed stream and the ideal one. The presence of
such a divergence is important as it may be a good
indicator of attacks. For instance, in large scale
systems, it might be used as an alarm to prevent
the adversary from poisoning routing tables (also
called eclipse attacks [19]) by freezing routing
tables updates as long as the relative entropy is
too high. We suppose that the algorithm used
by a node to estimate the divergence is public
knowledge (i.e., to avoid some kind of security by
obscurity), however the adversary has not access
to the local random coins used in the algorithm (if
any).

B. Preliminaries

Prior to describing our algorithm for estimating
the KL divergence of a stream in a single pass
using sublinear space, we first present notations
and background on data streams analysis that
make this paper self-contained.

1) Entropy: Intuitively, the entropy is a mea-
sure of the randomness of a data stream σ. The
entropy Hσ is minimum (i.e., equal to zero) when
all the items in the stream are the same, and it
reaches its maximum (i.e., equal to logm)1 when
all the items in the stream are distinct. Specifically,
we have

Hσ = −
∑
u∈N

pu log pu,

where pu = mu/m, for each u ∈ N , with mu =
|{j : aj = u}| representing the number of times
the value u appears in the stream σ (by convention,
0 log 0 = 0). It is commonly called the frequency
of the item u. The norm of the entropy is defined
as FH =

∑
u∈N mu logmu.

2) Kullback-Leibler divergence: The Kullback-
Leibler (KL) divergence [20], also called the rel-
ative entropy, is a robust metric for measuring
the statistical difference between two data streams.
The KL divergence is a member of a larger class of
distances known as the Ali-Silvey distances [21].
Given two probability distributions on events p =
{p1, . . . , pn} and q = {q1, . . . , qn}, the Kullback-
Leibler divergence between pu relative to qu is
defined as the expected value of the likelihood
ratio with respect to qu:

D(p||q) =
∑
u∈N

pu log
pu
qu

= H(p, q)−H(p),

where H(p) = −
∑
pu log pu is the (empirical)

entropy of p and H(p, q) = −
∑
pu log qu is the

1Thereafter, we will denote by log the logarithm in base 2.

cross entropy of p and q. As we use a logarithm
in base 2, the divergence is measured in bits.
When pn = qn, the KL divergence is minimal
and is equal to zero. Let p(U) be the uniform
distribution corresponding to a uniform stream
(i.e., ∀u ∈ σ, p(U)u = 1

n), and q be the probability
distribution corresponding to the input stream. In
the rest of this paper and according to the classical
use of the KL-divergence, we consider D(q||p(U))
as a measure of the divergence of the current
stream from the ideal one. While all the distance
measures in the Ali-Silvey distances are applicable
to quantifying statistical differences between data
streams, the KL divergence is particularly suited
to our context since it gives rise to a small number
of false positives when the two data streams are
not significantly different.

3) Frequency moments: Frequency moments
are important statistical tools that have been intro-
duced by Alon et al. [12]. Computing frequency
moments Fk allows to quantify the amount of
skew in a data stream. Among the remarkable
moments, F0 represents the number of distinct
elements in a stream (in our case, F0 = n) while
F1 corresponds to the size m of the stream. For
each k ≥ 0, the k-th frequency moment Fk of σ
is defined as

Fk =
∑
u∈N

mk
u,

where mu represents the number of occurrences
of u in the stream (c.f. the definition of mu above).

4) 2-universal Hash Functions: In the follow-
ing, we intensively use hash functions randomly
picked from a 2-universal hash family. A col-
lection H of hash functions h : {1, . . . ,M} →
{0, . . . ,M ′} is said to be 2-universal if for every
two different items x, y ∈ [M],

Ph∈H{h(x) = h(y)} ≤ 1

M ′
,

which is exactly the probability of collision ob-
tained if the hash function assigned truly random
values to any x ∈ [M].

5) Randomized (ε, δ)-approximation Algorithm:
A randomized algorithm A is said to be an (ε, δ)-
approximation of a function φ on σ if for any
sequence of items in the input stream σ, A
outputs φ̂ such that P{| φ̂−φ |> εφ} < δ, where
ε, δ > 0 are given as parameters of the algorithm.

IV. DETECTING ADVERSARIAL BEHAVIORS
VIA KL DIVERGENCE ESTIMATION

A. Building Blocks
In this section, we describe three algorithms that

form the building blocks of the AnKLe algorithm.

The first one, due to Alon et al. [12] estimates
the k-th frequency moment of a stream. Although
we do not need such a quantity, we adopt the
structure of their algorithm to estimate the relative
entropy of a stream. The second algorithm due
to Bar-Yossef et al. [22] estimates the number
of distinct items in a stream (i.e., F1 = n).
Finally the third algorithm, proposed by Misra and
Gries [23], estimates the k most frequent items of
a stream. All these algorithms have been designed
in the stream data model (cf. Section III-A). For
self-containment reasons, we briefly review these
building blocks and describe their theoretical guar-
antees.

1) Estimating the kth Moment of a Stream:
The AnKLe algorithm is inspired from the method
of Alon, Matias and Szegedy [12] to approximate
the KL divergence of a stream. In the following,
we refer to this algorithm as the AMS algorithm.
Briefly, the core of the AMS algorithm is a basic
estimator, which takes the form of a random
variable X whose mean value is exactly equal
to the kth frequency moment of a stream and
whose variance is very small. Specifically, X is
defined as X = m(rk − (r − 1)k), where r
is the exact number of times element v appears
in the stream from a uniformly and randomly
chosen position p (we have ap = v) in the stream
onwards. Several basic estimators are computed on
the stream (specifically s1× s2 independent basic
estimators Xij , for 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2,
for s1 × s2 positions uniformly chosen at random
in the stream σ), and the final estimator Y is set
to be

Y = median1≤j≤s2

(
1

s1

s1∑
i=1

Xij

)
.

Alon et al. [12] have shown that for any ε, δ ∈
(0, 1), if s1 ≥ V ar[X]/(ε2E[X]2) and s2 =
4 log(1/δ), then Y is a (ε, δ)-approximation of
E[X] (i.e., P{| E[X]− Y |> εE[X]} < δ).

2) Estimating the Number of Items in the
Stream: The problem of estimating the number
of distinct elements has received a lot of attention
in the data stream model. First, the seminal work
of Flajolet and Martin [24] has shown that it
is possible to compute such an estimate using
only logarithmic space in n by relying on prop-
erties of hash functions. Afterwards, follow-up
enhancements have improved the accuracy of the
estimation [22]. (A comprehensive survey describ-
ing the literature on distinct elements in the data
stream model is presented by Gibbons in [25].)
Thereafter, we briefly sketch the BJKST algorithm

Algorithm 1: BJKST algorithm
Input: An input stream σ; k and t settings;
Output: The estimate F̂0 of the number of

distinct elements in the stream
Choose k 2-universal hash functions1

h : [n]→ [n];
Choose k 2-universal hash functions2

g : [n]→ [O(log n/ε2)];
Initialization of k buffers Sj of size t;3

for j ∈ [1. . k] do `j = 0;Sj = ∅;4

for ai ∈ σ do5

v = ai;6

for j = 1 to k do7

b=the largest r ≥ 0 such that the r8

rightmost bits in hj(v) are all 0;
if b ≥ `j and (g(v, b)) 6∈ Sj then9

Sj = Sj ∪ {(g(v, b))};10

while | Sj |> t do11

Sj = Sj \ {g(v′, b′)} with12

b′ = `j ;
`j = `j + 1;13

return F̂0 = median1≤j≤k2
`j | Sj |;14

proposed by Bar-Yossef et al. [22], which is so far
the most efficient space and time algorithm for
approximating the number of distinct elements in
a stream in a single pass (and this even if the
stream is adversarially ordered).

The BJKST algorithm is based on the coordi-
nating sampling algorithm of Gibbons and Tirtha-
pura [26]. Let σ = a1, · · · , am be a a stream of
items such that ai = v ∈ [2r] and h1, · · · , hk
be a set of k pairwise independent universal hash
functions that map symbols vi from [2r] onto [2r].
Moreover, S1, · · · , Sk is a set of k buffers of size
t. The algorithm consists in running k instances
of the same procedure, such that procedure j uses
hash function hj . The hash function hj determines
the “level” of items from the stream such that half
of the items have a level equal to 1, a quarter of
them have a level equal to 2, . . . , until finally 1

2i

of them have a level equal to i.
Initially, the current level of a particular `j is

set to be 0. Afterwards, items are read from the
stream, and by hashing them, one can deduce their
level in the following way: item ai has level i if
the i rightmost bits of hj(ai) are all set to 0. If the
level of the read item is greater than or equal to
the current level `j then this item is stored (once)
in Sj together with its level. The current level `j

is incremented when more than t items have a
level greater than or equal to `j . Afterwards, all
the items with a level equal to `j are removed from
buffer Sj . When this procedure stops, at level `j
each item is in buffer Sj with probability 1/2`j .
To ensure that the estimate F̂0 = 2`j | Sj | is
a (ε, δ)-approximation of F0, k = 1/δ instances
of the procedure are executed, and F̂0 is set to
be median1≤j≤k2

`j | Sj |. The BJKST algorithm
improves upon the original coordinating algorithm
from Gibbons and Tirthapura mainly by decreas-
ing the space bound. This is achieved by using
k additional universal hash function g to store the
hash of the items in buffers Sj instead of the items
themselves [22]. The pseudo-code of the algorithm
is shown in Algorithm 1.

Bar-Yossef et al. [22] have shown that for any
ε, their algorithm outputs F̂0 such that

P{|F̂0 − F0| ≤ ε} ≥ 1− δ,

where δ = 1/3. The worst-case running time
for each input symbol is O(r + 1/ε2(log(1/ε) +
log r)), and the total space required by the algo-
rithm is O(r+1/ε2(log(1/ε)+log r)) bits, where
O(r) represents the space needed for implement-
ing each hash function.

3) Determining the Most Frequent Identifiers of
a Stream: As for counting the number of distinct
items in a stream, the problem of determining the
k most frequent items in a stream has also been
studied extensively in the data stream literature.
Thereafter, we describe a deterministic algorithm
that outputs the k most frequent items in a stream
as well as an estimate m̂u for the frequency mu

of each item, if mu > m/k. This algorithm due
to Misra and Gries [23] maintains k counters such
that for each counter, its key is the item read from
the stream and its value is related to the frequency
of items. Initially, all the counters are set to (–, 0).
Afterwards, when an item is read from the stream,
if that item has already a counter associated to it,
then this counter is incremented. If this is not the
case and if there are still free counters available,
then one of these free counters is allocated to this
new item and its value is set to 1. Otherwise, all
the allocated counters are decremented by one,
and if after this operation some of them are equal
to 0 then their keys are erased and the counters
are released. The pseudo-code of the Misra Gries
algorithm is presented in Algorithm 2.

The Misra Gries [23] algorithm with parameter
k provides, for each item u in the stream, an

Algorithm 2: Misra-Gries algorithm
Input: An input stream σ; a precision

parameter k;
Output: The set of the k most frequent items

in a stream as well as an estimate of
their frequency

for j ∈ [0. . k] do A[j]← (⊥,⊥);1

for ai ∈ σ do2

v = ai;3

if ∃u such that the item of A[u] is s then4

increment the count value of A[u];
else5

if ∃u′ such that A[u′] = (⊥,⊥) then6

A[u′] = (v, 1)7

else for i = 1 to k do8

Decrement the count of A[i];9

if the count value of A[i] = 010

then
A[i] = (⊥,⊥)11

return A;12

estimate m̂u satisfying

mu −
m

k
≤ m̂u ≤ mu.

The algorithm uses a space of O(k(log n+logm))
bits.

B. The AnKLe algorithm

This section presents AnKLe, the algorithm we
propose for computing the KL divergence of a
stream. Our starting point is the re-writing of the
KL divergence as follows. From Definition 1, we
have

D(qσ||p(U))

=

n∑
i=1

qi log (qi)−
n∑
i=1

qi log
(
p
(U)
i

)
=

1

m

(
n∑
i=1

mi log
(mi

m

)
−

n∑
i=1

mi log

(
1

n

))

= log(n)− log(m) +
1

m

n∑
i=1

mi log (mi) . (1)

Thus estimating the KL-divergence amounts
in (1) estimating the number of distinct items
in the stream (i.e., F0) in order to obtain a
good approximation of log(n), and (2) estimating∑n
i=1mi log (mi), which corresponds to the norm

of the entropy FH . While the first point is solved
by relying on the BJKST [22] algorithm, the

second point is tackled by extending the approach
proposed by Alon et al [12] to deal with arbitrary
distributions of items in the input stream.

AnKLe algorithm we propose for estimating
the KL divergence is presented in Algorithm 3.
It consists of two phases, the first one (lines 3–
17) is executed upon reception of the items of the
stream, while the second one (lines 18–26) is run
when m items have been read from the stream.
The first phase is composed of three tasks (T1, T2
and T3), which are executed in parallel. Task T1
(see line 5) estimates the number of distinct items
present in the stream, task T2 (see line 8) identifies
the k most frequent items in the stream, and T3
samples random items in the stream in order to
compute their exact frequency. Specifically, Task
T3 (lines 11–17) consists in running a sampling
estimator X on the stream. The basic estimator
X = Xi,j is designed so that its mean value
is equal to the norm of the entropy FH and its
variance is small. More precisely, we have

X = m(r log r − (r − 1) log(r − 1)) (2)

where r is the random variable representing the
number of occurrence of an item ` in the stream.
This item ` is such that its position j in the stream
is a random number in [m]. The random variable r
counts the number of times ` appears in the stream
from position j onwards. Formally, r is defined as

r =| {j : j ≥ `, aj = a`} | .

We can show as in [12], [15], that the basic
estimator X is unbiased (i.e., the expectation of
X is equal to FH). Specifically,

E[X] =
1

m

n∑
i=1

mi∑
j=1

m(j log j − (j − 1) log(j − 1))

=
m

m

n∑
i=1

mi log(mi)

= FH . (3)

To improve the accuracy of the estimation, s1×
s2 such basic estimators Xij (for 1 ≤ i ≤ s1 and
1 ≤ j ≤ s2) are used, each one sampling a random
position in the stream. From the implementation
point of view, tracking these estimators consists
in storing s1× s2 counters, each one counting the
number of occurrences of an item whose position
has been randomly chosen in the stream. When
item u is read from the input stream, if u has
already one or more counters assigned to it then
all these counters are incremented. In addition, if
the position at which u has been read in the stream

Algorithm 3. AnKLe algorithm
Input: An input stream σ of length m, k (number of counters in the Misra-Gries algorithm), s1

and s2 (size of the AMS-based matrix)
Output: An estimation of D(qσ||p(U)), the KL divergence between the observed stream and the

uniform one
Choose s1 × s2 random integers in [1. .m];1

for u1 ∈ [0. . s1], u2 ∈ [0. . s2] do S[u1, u2]← (⊥,⊥);2

for aj ∈ σ do3

v = aj ;4

begin Task T1:5

F̂0 ← BJKST Algorithm (Algorithm 1) fed with v6

end7

begin Task T2:8

F̂ ← Misra-Gries Algorithm (Algorithm 2) fed with v9

end10

begin Task T3:11

forall entries i of matrix S such that (si, ri) 6= (⊥,⊥) do12

if si = v then13

ri ← ri + 1;14

if j is one the s1 × s2 random integers then15

assign (v, 1) to the first unused entry of S;16

end17

forall entries i of matrix S do18

if (si,−) ∈ F̂ then19

Xi ← 0 // si is one of the frequent items returned by Task T2;20

else21

Xi ← m (ri log ri − (ri − 1) log(ri − 1));22

YS ← average of all non null entries Xi;23

YF̂ ←
∑

(si,ri)∈F̂ ri log ri;24

p← 1−max

(
0,

min
(
YS , YF̂

)
−m

10 ·m

)
;

25

return D = log F̂0 − logm+ p
m

(
YS + YF̂

)
;26

is one of the chosen locations, then a counter is
assigned to u, and its value is set to 1. Thus for
each of these “tracked” items, an exact count of
their frequency is continuously maintained starting
from a random position in the stream.

The post-processing phase of AnKLe algorithm
estimates the KL divergence of the input stream
according to Relation (1). This phase is executed
when m items have been read from the input
stream. In this work, we suppose that m is a
parameter of the algorithm, however by using
techniques proposed in Chakrabarti et al. [13] we
can extend our solution to streams whose size is
a priori unknown. To accurately estimate the KL
divergence of the stream, one needs to cope with

patterns in which a small number of items occur
with a very high frequency with respect to the
other items. When such patterns occur, the basic
estimator X alone is unable to compute the norm
of the entropy in bounded space [13]. Indeed, by
analogy of the calculation performed in [12], the
variance of the estimator grows with the norm of
the entropy. Thus in presence of high frequency
patterns, one needs to estimate the relative entropy
using a different approach. In Chakrabarti et al.,
the authors propose to decompose the computation
of the entropy as the sum of the entropy of the
most frequent items and the estimation of the
entropy of the remaining items of the stream.
In AnKLe, we extend their method to deal with

any stream distribution in order to guarantee that
whatever the strategy of the adversary, the error
on the estimation is kept small (as shown in
Section V). Specifically, the basic estimator X is
computed on unfrequent items (cf., lines 18–23)
as done in Relation (3), while the contribution of
highly frequent items on the norm of the entropy
is directly computed as

∑
(si,ri)∈F̂ ri log ri (cf.,

lines 24). The set F̂ represents the set of highly
frequent items dynamically computed in Task T2.
Finally, to prevent some of the items to appear
in both terms, we weight the contribution of both
terms by p (cf., line 26).

V. PERFORMANCE ANALYSIS

In this section, we evaluate the accuracy of
AnKLe by comparing its estimation with the exact
value of the KL divergence computed between
the observed input stream and the uniform one.
We also compare AnKLe to adapted versions of
the estimator-based algorithms of Alon et al. [12]
and Chakrabarti et al. [13]. In the former case,
the original estimator computes the k-th frequency
moment of a stream, while in the latter case,
the original estimator measures the entropy of
a stream. In both cases, the adapted versions
compute instead the norm of the entropy.

All the experiments have been conducted on
synthetic traces of streams whose distributions are
shown in Figure 1. (Note that we use a logarithmic
scale for the y-coordinate of all the distributions).
More precisely, all the generated streams have a
length of m = 200, 000 items. We have tested
750 different settings of the following parameters:
n, the number of distinct items in the stream, s1
and s2, which are related to size of the estimator
matrix in Task T3, and k, the number of counters
used in Task T2. For each setting of parameters,
we have conducted 10 trials of the same experi-
ment and compute the average and the standard
deviation.

Except from the uniform distribution and the
zipf distribution with parameter α = 1, that
model respectively an ideal stream in which each
item appears exactly with the same frequency (cf.
Figure 1(a)) and a realistic one in absence of any
attacks (cf. Figure 1(d)), the other four distribu-
tions capture different adversarial strategies. More
precisely:
• Figure 1(b) shows a distribution modeling

streams in which the frequency of a large
quantity of items is significantly higher than
the frequency of the remaining items. This
type of stream might reflect an attack during

which the adversary aims at over-representing
a large number of node identifiers that it
owns.

• Figure 1(e) depicts a distribution modeling
streams in which there is a small number of
highly frequent items. This type of stream
might correspond to an eclipse attack in
which the objective of the adversary is to
poison the routing tables of honest nodes.

• Figures 1(c) and 1(f) displays distributions
modeling streams in which a very small num-
ber of items have a very high frequency2.
These distributions might illustrate streams in
which very few items (typically 1, 2 or 3) are
over-pushed by the adversary.

Table 1 summarizes the results obtained for
the AnKLe, AMS and CCM estimators, averaged
over 45,000 experiments (i.e. 750 different settings
with 10 repetitions for each setting, over 6 dis-
tributions). The results clearly show that AnKLe
outperforms the estimator CCM for all the distri-
butions, even in scenario in which CCM should
excel (i.e., Figure 1(f)), as this corresponds to a
stream in which a very frequent item exists in the
observed stream. Compared to the AMS estimator,
the results obtained with AnKLe are often really
better than or sometimes comparable to it for all
the distributions, with the exception of the zipf
distribution with α = 2. But even for this specific
distribution, the standard deviation of AnKLe is
four times smaller than the one of AMS (i.e.,
0.09 versus 0.36), thus demonstrating that AnKLe
provides a more robust and stable estimation than
AMS on this distribution.

Figure 2 shows the evolution of the KL di-
vergence estimation as a function of n, k, s1
and s2. In all the figures, the x-coordinate repre-
sents the number of distinct items in the stream
as a ratio of its length m. For each value of
n ∈ {m/100, . . . ,m/20}, all the other param-
eters k, s1 et s2 also vary in the experiments.
More precisely, the parameter k takes a value
in {0.1n, . . . , n}, s1 ∈ {m/100, . . . ,m/20}, and
s2 ∈ {m/100, . . . ,m/20}. The main observation
that can be drawn from Figure 2(a) is that the
CCM estimator behaves relatively badly in pres-
ence of a small number of distinct items with
frequency uniformly distributed in the stream.
However, its accuracy increases when the number
of distinct items increases. The other two esti-
mators are very close to the real value of the

2Pascal distribution is also known as Negative Binomial
distribution.

(a) Uniform (b) Poisson (c) Pascal

(d) Zipf - α = 1 (e) Zipf - α = 2 (f) Zipf - α = 4

Figure 1. Shape of distributions used for evaluating estimators. The y-ordinate is logarithmic

Distribution Exact AnKLe AMS CCM

Uniform average 0.018240161 0.027314791 0.253219967 -1.161750384
std. dev. 0.00271478 0.029827495 0.071137525 0.015038305

Zipf – α = 1
average 0.825819381 0.688826548 1.055650933 -8.313990878
std. dev. 0.027970186 0.142217553 0.293984322 0.858649847

Zipf – α = 2
average 2.58717975 2.999794044 2.827368288 0.866992924
std. dev. 0.031286484 0.092712953 0.369015065 0.237650647

Zipf – α = 4
average 3.611623614 3.631385192 3.85458675 3.532833916
std. dev. 0.018752397 0.130210517 0.333661261 0.030785665

Pascal average 3.40688118 3.357277524 3.650869233 2.148588258
std. dev. 0.017502656 0.075845977 0.317275996 0.205970693

Poisson average 0.957558622 0.743131204 1.197167903 -2.089271044
std. dev. 0.013611449 0.123500666 0.193894289 0.082006954

Table I
SUMMARY OF PERFORMANCES

KL divergence, with moreover a clear advantage
for AnKLe. This observation is further confirmed
in Figure 2(b) that corresponds to a zoom of
Figure 2(a). This figure demonstrates that the
estimation provided by AnKLe is very good. In
average, the AnKLe estimation overlaps with the
real value of the KL divergence, contrary to AMS,
and its standard deviation remains small, for any
values of n, and for any variations of k, s1, and
s2. Figure 2(c) and its zoom in (cf. Figure 2(d))
further validate the above results. In particular,
we observe that CCM is clearly not adapted to
uniform and near uniform streams, while AMS
and AnKLe provide very good estimates for these
distributions. However, the zoom in Figure 2(d)
shows that the AMS estimator is closer to the exact
value of the divergence than AnKLe. However,
Figures 2(e) and 2(f) demonstrate that CCM is
more adapted to streams in which a very small
fraction of items occur more frequently than the
remaining ones. This is clearly shown in Fig-
ure 2(e). The estimation of AnKLe in presence
of such streams still remains good. In average,
AnKLe overlaps with the real value of the KL
divergence, but its standard deviation is a little

higher than the one of CCM for the Poisson
distribution (cf., Table I).

Figures 3(a) and 3(b) show the KL divergence
estimation as a function of s1 and s2. For each
value of s1, s2 is increased from m/5000 to
m/90. Several observations can be drawn from
both figures. First, the robustness of CCM es-
timator greatly improves with increasing values
of s1, as the cone-shaped curves converge for
s1 > m/500. On one hand, the value towards
which the CCM converges under-estimates the
KL divergence. Thus, both s1 and s2 have a
greater impact on CCM robustness than on its
accuracy. On the other hand, variations of both
s1 and s2 have not impact on AMS robustness.
This feature does not appear in AnKLe as the
weight given to Task T2 makes it preponderant
with respect to Task T3, limiting accordingly the
lack of robustness of Task T3.

Finally, Figures 4(a) and 4(b) show the KL
divergence estimation as a function of k. The
main observation drawn from these figures is that
AnKLe fully overlaps with the exact value of the
KL divergence, which clearly demonstrates the ro-
bustness of this estimator in presence of any input

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

m/100 m/50 m/33 m/25 m/20

D
iv

er
g
en

ce

n value

AMS

CCM
Exact
AMS
CCM

AnKLe

(a) Distribution: Uniform

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

m/100 m/50 m/33 m/25 m/20

D
iv

er
g
en

ce

n value

Exact
AMS

AnKLe

(b) Distribution: Uniform (Closer view)

-25

-20

-15

-10

-5

 0

 5

m/100 m/50 m/33 m/25 m/20

D
iv

er
g
en

ce

n value

CCM Exact
AMS
CCM

AnKLe

(c) Distribution: Zipf – α = 1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

m/100 m/50 m/33 m/25 m/20

D
iv

er
g
en

ce

n value

Exact
AMS

AnKLe

(d) Distribution: Zipf – α = 1 (Closer view)

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

m/100 m/50 m/33 m/25 m/20

D
iv

er
g
en

ce

n value

AMS

CCM

Exact
AMS
CCM

AnKLe

(e) Distribution: Zipf – α = 4

-8

-6

-4

-2

 0

 2

 4

 6

m/100 m/50 m/33 m/25 m/20

D
iv

er
g
en

ce

n value

AMS

CCM

Exact
AMS
CCM

AnKLe

(f) Distribution: Pascal

Figure 2. KL divergence estimation as a function of n, k, s1 and s2

streams. Regarding CCM, we can observe that
when the number of counters k is less than 0.1n,
then the Misra-Gries algorithm under-estimates
the k most frequent items, which degrades the
estimation of CCM. This confirms the theoretical
bound of k ≥ d7ε−1e shown in [13]. On the other
hand, variations of parameter k has not impact
on AMS as this estimator does not decompose its
computation according to items frequency charac-
teristics.

To summarize, experiments have validated the
impressive accuracy and robustness of AnKLe in
presence of a very large spectrum of distributions.

This illustrates the importance of the weighting
factor applied to both terms of the estimator.

VI. CONCLUSION AND FUTURE WORKS

In the setting of large scale distributed systems,
node receives continuously huge amount of data
in the form of a stream that they need to be able
to process and analyze on the fly without being
able to store the whole stream due to memory
constraints. A challenging issue in this setting is
to able to detect if the observed stream is conform
to the expected one or if it has been tampered with
by an adversary. Indeed, an important divergence

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

m/5000
m/1000

m/500
m/333

m/250
m/200

m/166
m/143

m/125
m/111

m/100
m/90

D
iv

er
g
en

ce

s1 value

Exact
AMS
CCM

AnKLe

(a) Pascal Distribution. Settings: n = m/125 – k = 0.1n

-10

-8

-6

-4

-2

 0

 2

m/5000
m/1000

m/500
m/333

m/250
m/200

m/166
m/143

m/125
m/111

m/100
m/90

D
iv

er
g
en

ce

s1 value

Exact
AMS
CCM

AnKLe

(b) Poisson Distribution. Settings: n = m/125 – k = 0.1n

Figure 3. KL divergence estimation as a function of s1 and s2

-4

-3

-2

-1

 0

 1

 2

 3

 4

0.1n 0.2n 0.3n 0.4n 0.5n 0.6n

D
iv

er
g
en

ce

k value

Exact
AMS
CCM

AnKLe

(a) Pascal Distribution. Settings: n = m/100 and s1 =
s2 = m/80

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

0.1n 0.2n 0.3n 0.4n 0.5n 0.6n

D
iv

er
g
en

ce

k value

Exact
AMS
CCM

AnKLe

(b) Poisson Distribution. Settings: n = m/100 and s1 =
s2 = m/80

Figure 4. KL divergence estimation as a function of k

between the observed stream and the expected one
is usually the indication that an attack is being
conducted.

In this paper, we have proposed AnKLe, a
novel algorithm for estimating the KL divergence
between the observed stream and the uniform
one. AnKLe is very efficient both in terms of
space and time, and requires only a single pass
over the data stream. Simulations also show that
AnKLe performs always better, in terms of ac-
curacy and robustness, than other state-of-the-art
estimator-based algorithms such as AMS [12] and
CCM [13].

We left as future work the exact theoretical
analysis of the behavior of the algorithm. In par-
ticular, we want to characterize how the different
parameters impact the precision of the estimation
and the space complexity of AnKLe (and vice-
versa). Moreover, while currently the length of
the stream m is a parameter that has to be fixed
in advance, we will design online version of the
algorithm for which the length is not specified in

advance by using standard windowing techniques.
This corresponds to realistic situations in which
the nodes regularly receive new data that they need
to take into account to update their estimator.

REFERENCES

[1] B. K. Subhabrata, E. Krishnamurthy, S. Sen,
Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,”
in Internet Measurement Conference, 2003, pp.
234–247.

[2] E. D. Demaine, R. López-Ortiz, and J. I. Munro,
“Frequency estimation of internet packet streams
with limited space,” in In Proceedings of the
10th Annual European Symposium on Algorithms.
Springer-Verlag, 2002, pp. 348–360.

[3] J. Bruck, J. Gao, and A. A. Jiang,
“Localization and routing in sensor networks
by local angle information,” ACM Transaction
on Sensor Networks, vol. 5, pp. 7:1–
7:31, February 2009. [Online]. Available:
http://doi.acm.org/10.1145/1464420.1464427

[4] Y. Busnel, M. Bertier, and A.-M. Kermarrec,
“SOLIST or How To Look For a Needle in a
Haystack?” in the 4th IEEE International Confer-
ence on Wireless and Mobile Computing, Network-
ing and Communications (WiMob’2008), Avignon,
France, October 2008.

[5] M. Chu, H. Haussecker, and F. Zhao, “Scalable
information-driven sensor querying and routing for
ad hoc heterogeneous sensor networks,” Interna-
tional Journal of High Performance Computing
Applications, vol. 16, no. 3, pp. 293–313, 2002.

[6] Y. Busnel, R. Beraldi, and R. Baldoni, “On the
uniformity of peer sampling based on view shuf-
fling,” Elsevier Journal of Parallel and Distributed
Computing, vol. 71, no. 8, pp. 1165–1176, August
2011.

[7] M. Bertier, Y. Busnel, and A.-M. Kermarrec,
“On Gossip and Populations,” in Proceedings
of the 16th International Colloquium on Struc-
tural Information and Communication Complexity
(SIROCCO), 2009.

[8] E. Anceaume, Y. Busnel, and S. Gambs, “Uniform
and Ergodic Sampling in Unstructured Peer-to-
Peer Systems with Malicious Nodes,” in Pro-
ceedings of the 14th international conference on
Principles of distributed systems (OPODIS), vol.
6490, 2010, pp. 64–78.

[9] V. Chandola, A. Banerjee, and V. Kumar,
“Anomaly detection: A survey,” ACM Computing
Surveys, vol. 41, no. 3, pp. 1–58, 2009.

[10] T. Cover and J. Thomas, “Elements of information
theory,” Wiley New York, 1991.

[11] A. Chakrabarti, K. D. Ba, and S. Muthukrishnan,
“Estimating entropy and entropy norm on data
streams,” in In Proceedings of the 23rd Inter-
national Symposium on Theoretical Aspects of
Computer Science (STACS). Springer, 2006.

[12] N. Alon, Y. Matias, and M. Szegedy, “The space
complexity of approximating the frequency mo-
ments,” in Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing (STOC),
1996, pp. 20–29.

[13] A. Chakrabarti, G. Cormode, and A. McGregor, “A
near-optimal algorithm for computing the entropy
of a stream,” in In ACM-SIAM Symposium on
Discrete Algorithms, 2007, pp. 328–335.

[14] S. Guha, A. McGregor, and S. Venkatasubrama-
nian, “Streaming and sublinear approximation of
entropy and information distances,” in Proceed-
ings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2006, pp.
733–742.

[15] A. Lall, V. Sekar, M. Ogihara, J. Xu, and
H. Zhang, “Data streaming algorithms for esti-
mating entropy of network traffic,” in Proceedings
of the joint international conference on Measure-
ment and modeling of computer systems (SIGMET-
RICS). ACM, 2006.

[16] C. Cachin, “An information-theoretic model for
steganography,” Information and Computation,
vol. 192, no. 1, pp. 41–56, 2004.

[17] E. Anceaume, Y. Busnel, and S. Gambs, “Char-
acterizing the adversarial power in uniform and
ergodic node sampling,” in Proceedings of the 1st
International Workshop on Algorithms and Mod-
els for Distributed Event Processing (AlMoDEP).
ACM, 2011.

[18] Muthukrishnan, Data Streams: Algorithms and
Applications. Now Publishers Inc., 2005.

[19] E. Sit and R. Morris, “Security considerations for
peer-to-peer distributed hash tables,” in Proc. for
the 1st Int’l Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[20] S. Kullback and R. A. Leibler, “On information
and sufficiency,” The Annals of Mathematical
Statistics, vol. 22, no. 1, pp. 79–86, 1951. [Online].
Available: http://dx.doi.org/10.2307/2236703

[21] S. M. Ali and S. D. Silvey, “General Class of
Coefficients of Divergence of One Distribution
from Another,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 28, no. 1,
pp. 131–142, 1966.

[22] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivaku-
mar, and L. Trevisan, “Counting distinct elements
in a data stream,” in Proceedings of the 6th Inter-
national Workshop on Randomization and Approx-
imation Techniques (RANDOM). Springer-Verlag,
2002, pp. 1–10.

[23] J. Misra and D. Gries, “Finding repeated ele-
ments,” Science of Computer Programming, vol. 2,
no. 2, pp. 143–152, 1982.

[24] P. Flajolet and G. N. Martin, “Probabilistic count-
ing algorithms for data base applications,” Journal
of Computer and System Sciences, vol. 31, no. 2,
pp. 182–209, 1985.

[25] P. Gibbons, Data Streams Management: Process-
ing High-Speed Data Streams. Elsevier, 2007, ch.
Distinct-Values Estimation over Data Streams.

[26] P. B. Gibbons and S. Tirthapura, “Estimating sim-
ple functions on the union of data streams,” in
Proceedings of the Thirteenth Annual ACM Sym-
posium on Parallel Algorithms and Architectures
(SPAA), 2001, pp. 281–291.

