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Abstract

In this paper, the quantification of uncertainty effects esponse variability in rotor systems
is investigated. To avoid the use of Monte Carlo simulatitCg), one of the most straight-
forward but computationally expensive tools, an altesgaprocedure is proposed. Monte Carlo
Simulation builds statistics from responses obtained fsampling uncertain inputs by using a
large number of runs. However, the method proposed heresexhan the stochastic finite element
method (SFEM) using polynomial chaos expansion (PCE).

The efficiency and robustness of the method proposed is dermated through different nu-
merical simulations in order to analyze the random resp@usgnst uncertain parameters and
random excitation to assess its accuracy and calculatioe ti

Keywords: dynamics, rotor, uncertainties

1 Introduction

In rotordynamics, two types of uncertainty on dynamic systare of particular interest. The first
of these can derive from variations in mechanical propg(igeich as mass, stiffness and geometrical
imperfections) due to manufacturing errors [Lalanne anatdfis (1990); Friswell and Mottershead
(1995); Erich (1992); Childs (1993); Yamamoto and Ishida0®)]. Besides this type of structural
uncertainties, external and internal forcing functions akso be random.

Numerous methods have been used to quantify physical anues in a variety of computational
problems like the perturbation method, the Monte Carlo $atons and the Polynomial Chaos Ex-
pansion [Ghanem and Spanos (1991)]. The perturbation méthased on the expansion of random
guantities into Taylor series [Nayfeh (1973)] and the Nenmanethod based on Neumann series



expansion [Benaroya and Rehak (1988); Yamazaki et al. (1 p8&vide acceptable results for small
random fluctuations, then they are not adapted here forreplvidynamic problem in the case of an
excitation frequency close to a resonance frequency. TeetdVlonte Carlo Simulations, which is the
most straightforward and frequently used approach, istaeddp include uncertainties in a determinis-
tic finite element model, by generatingndependent samples of the random parameter. Then it leads
to solve the deterministic problemtimes in order to obtaimn samples of the response vector and so
the statistics of the response. Due to the slow convergexte®f this method, a very high number of
samples is necessary then if solving the deterministiclprobs already computationally intensive,
the computational costs of the method can become impradHeaticularly, rotordynamics problems
are quite complex to solve in a deterministic sense. Thenmwiyal chaos expansion associated with
a Galerkin projection so-called stochastic finite elemepthad [Ghanem and Spanos (1991)] has
shown to be a successful approach to solve uncertainty ifjaation problems. It represents the
stochastic processes and variables in a set of orthogosaslzd random variables. The polynomial
chaoses are from the homogeneous chaos theory of Wienen§f@938)] and the original poly-
nomial chaos expansion [Ghanem and Spanos (1991)] usedrasgaare convergent expansion as
multidimensional Hermite polynomials of normalized Gaassvariables. Since the Hermite poly-
nomials are orthogonal with respect to the Gaussian meagwenomogeneous polynomial chaos
can achieve optimal exponential convergence for Gaussputs [Ghanem (1999)]. This last method
then seems the most adapted to study the influence of thetaimtiers on the parameters of the rotor
structure on the response.

The present paper is organized as follows: firstly, we pretenrotor system after which a brief
explanation is given of the Stochastic Finite Element Mdtftehanem and Spanos (1991)] for the
solution of mechanical problems with several random charetics. Secondly, expansions of the
operator of random material properties and of the randorareat forcing function on the chaos ba-
sis are explained and studied for application to the rotoadyics problem. The Polynomial Chaos
Expansion procedure is illustrated by different numermehmples that include the most common
sources of randomness in a rotordynamics problem (such ysgath and geometric parameters).
Thirdly, the results obtained by applying the PolynomiabGs Expansion (PCE) procedure are com-
pared with those evaluated by Monte Carlo Simulation (MC8pse costs become prohibitive for
large finite element models with large numbers of designrmpatars. Finally, the efficiency and ro-
bustness of the method proposed is demonstrated throughataumerical simulations of the effects
of uncertainties and orders of polynomial chaos.

2 Rotor Model

The system under study is illustrated in Figure 1. The rotorststs of a rotor shaft with two discs.
The shatft is discretized into 10 Timoshenko beam finite efgewwith four degrees of freedom at each
node [Lalanne and Ferraris (1990); Friswell and Motterdh@895)] and a constant circular section.
All the values of the parameters are given in Table 1. The belament model is given by

M} + (IC] + wIG{x} + KHx} = {a} (1)



where the vectofq°} defines forces applied on the shaft ands the rotational speed of the shaft.
[M¢] and [G°] are the mass and gyroscopic matrices of the shaft elemdf. and [C®] are the
elementary stiffness and damping matrices. These mataireedescribed in A.

The model of the rigid discs is given by

MY{x?} +w[G{x?} = {q} )

where[M?] and[G“] are the mass and gyroscopic matrices of the disc. Thesecemisill be de-
scribed in the following part of the paper. The vecfor'} defines the unbalance forces due to an
eccentric mass. For the degree-of-freedem w 6 ]* (see Figure 1), the unbalance forces are
given by

q? = [medew?cogwt + ¢)  medew’sinwt +¢) 0 0]7 (3)

wherem, andd, are the mass unbalance and the eccentricity respectiwelpdw define the initial
angular position in relation to the z-axis and the rotatiepaed of the rotor. Finally, discrete stiffness
components are located at either end of the shaft. Aftemalsiégg the shaft elements and the rigid
discs, the equation of motion for the complete rotor systedefined as follows:

MU} + (IC] + w[G){x} + (K] + [Ks){x} = {a} (4)

where[M|] and[G] are the mass and gyroscopic matrices of the shaft and theisa®. (K] and[C] are
the stiffness and damping matrices of the shiift] is the stiffness matrix of the bearings } is the
unbalance forces of the complete rotor system. Considéhaigthe unbalance force can be written
as{q} = {Q}e™“*, the response vector may be assumed toxje= {X }e™“*. By using Equation (4),
the system governing the equation in the frequency domajive by

[A(w)[{X(w)} = {Q(w)} (5)
where
[A(w)] = —w*M] +iw([C] + w[G]) + [K] + [Ky] (6)

In the following part of the paper, the frequency dependemitidoe omitted to simplify the notation
and[A(w)] will be noted agA)|.

3 Stochastic moddl

In rotordynamics, uncertainties on dynamic responses caaralue to manufacturing inaccuracies
related to mechanical properties such as mass, stiffnesspidg and geometrical imperfections.
Moreover, forcing functions (external and internal) alsad to considerable uncertainties, so that
they have to be taken as random quantities. Therefore, denmsg in this parfA], {X} and{Q} as
random processes, where argumedenotes the random character, Equation (5) can then betewri
in a random way such that

AKX} ={Q(1)} (7)
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Figure 1: Rotor system and Shatft finite element

Material and geometrical properties are randomly modeledM(7)], [G(7)], [K(7)], [C(7)] and
[K4(7)], thus Equation (6) becomes

A(T)] = —w?*[M(7)] + iw([C(7)] + w[G()]) + [K(7)] + [Ko(7)] (8)

3.1 Thesystem equation on the Polynomial Chaos basis

The Polynomial Chaos basis is a set of orthogonal bases dbrawariables, represented in a mean-
square convergent expansion by multidimensional Hernatgnmmials of normalized Gaussian vari-
ables. A rapid overview on the construction of the basisvsigbelow and more details can be found
in [Ghanem and Spanos (1991)]. In the following of the paiberrandom behavior of each physical
or geometrical quantitiyl (scalar or matrix) considered would be sufficiently modddgdusing the
Karhunen-Loeve expansion implemented in the Galerkin fdation of the finite element method
[Ghanem and Spanos (1991)], then we can exparalich as

L
M=M+> &M, )
=1

where{¢,, ...} is a set of orthonormal random variabléd, is the mean oM and M, is its ith
expansion term. The response can be expanded on the Pobir@naios basis such that

{X(n)} = Z{X}j‘l’j(éﬁ)) (10)



Parameters dimension

Length of shaft 1m
Diameter of shaft 0.04 m
Position of disc 1 0.6m
Position of disc 2 0.8 m
Outer diameter of disc 1 0.2m
Outer diameter of disc 2 0.4m
Inner diameter of discs 1 and 2 0.04 m
Thickness of discs 1 and 2 0.02m
Young modulus of elasticity 2.110'* Nm?
Shear modulus? 8.010'% Nm?
Poisson ratio/ 0.3
Densityp 7800 kg n13
Mass unbalance 0.05¢
Phase unbalance °0
Eccentricity of the mass unbalance 0.02 m
Damping factom 0.03

Table 1: Model parameters

where VU ;({()) refers to a rearrangement of the p-order finite dimensiortabgonal polynomials
in relation to the Gaussian function that forms a compleishia the space of second-order random
variables ;{X}; is the unknown deterministigth vector associated witl¥;(£(7)) and¢ = {¢,.}
[Ghanem and Spanos (1991)]. Finally, the system to be spivedn expanded on the polynomial

chaos basis, is

o0

D IAMIEXY;T,(E(n) = {Q(1)} (11)

=0

with random quantitiefA(7)] and[Q(7)] defined by

AM)] = 3_IA () (12)

with
[Al; = —w?’[M]; 4+ iw([C]; + w[G]:) + [K]; + [Ky);  i=0,1,...,00 (13)

and
[Q(M)] = {Q}Tx(&(7)) (14)



where quantityQ denotes the rearrangement of quan@tyin the polynomial chaos basis. Details
of the rearrangement will be given in the following sectidntlve paper. It should be noted that
each random expansion will be described in Subsection 3riall¥; the system to be solved to the
subspace spanned By}, is

(Z[A]i%(é(ﬂ)) (Z{X}j%@m)) =D _{Qhu(g(n)) (15)

1=0

which, after doing a Galerkin projection on the polynomia&os basis, can also be rewritten as

33 B WIALXY, ~ {QWEH) k=01 (16)

i=0 j=0

where E{} denotes the operation of mathematical expectation. Itlghoe noted that coefficients
E{v,v,¥,} andE{¥3;} only have to be calculated once. In practice, the expansinrbe truncated
after thePth term whereP is the total number of polynomial chaoses used in the exparesicluding
theOth order term and can be determined by

P=1+Y —[[L+r (17)
and in whichp is the order of homogeneous chaos used.

3.2 Therandom quantitiesin the stochastic rotor

There are different sources of randomness in the rotordyespnoblem studied due to geometric and
material parameters. This paper deals with uncertainteseted by Gaussian random variables that
represent the random character of the parameters, sucle & timg modulus of the shaft, bearing
stiffness, disc diameter and density and the amplitude efuthbalance force. All these random
quantities are modeled by using expansion defined in Equéjoand, for physically strictly positive
parameters, the random variables of negative values harereenoved.

Stiffness of the shaft From the random character of the Young modulus modeled byraneated
Gaussian random variabfe, thus, from expansion described in Equation (9), we obtaarrélation

E(r) = E(1+ &) (18)

whereE anddy are respectively the mean value and the variation coefficiethe Young modulus.
The detailed deterministic expression of the elementdifpess matrix of the shafik¢| as a function
of the Young modulus is described in A. By introducing thedam Young modulus defined above
and after assembling the elementary stiffness matricebefshaft, it is easy to find the random
expansion ofK]

K] = [K]o + & [K (29)
(20)



i p ¥, E{¥}}
0O O 1 1
11 & 1
2 . 1
3 & 1
4 ¢ 1
5 & 1
6 & 1
72 &-1 2
8 162 1
9 613 1
10 14 1
11 165 1
12 £18e 1
13 @-1 2
14 £283 1
15 £2&4 1
16 £a&s 1
17 £28e 1
18 @-1 2
19 €384 1
20 €385 1
21 €386 1
22 @1 2
23 N 1
24 €a&e 1
25 21 2
26 €586 1
27 @1 2

Table 2: Six-Dimensionnal Polynomial Chaoses and theianae



i j ] E{WWUY i 5 ) E{WU,U i § ] E{UU, U}
1 1 7 2 7 12 12 2 15 16 23 1
1 2 8 1 8 8 13 2 15 17 24 1
1 3 9 1 8 9 14 1 16 16 25 2
1 4 10 1 8 10 15 1 16 17 26 1
1 5 11 1 8 11 16 1 17 17 27 2
1 6 12 1 8 12 17 1 18 18 18 8
2 2 13 2 9 9 18 2 18 19 19 2
2 3 14 1 9 10 19 1 18 20 20 2
2 4 15 1 9 11 20 1 18 21 21 2
2 5 16 1 9 12 21 1 19 19 22 2
2 6 17 1 10 10 22 2 19 20 23 1
3 3 18 2 10 11 23 1 19 21 24 1
3 4 19 1 10 12 24 1 20 20 25 2
3 5 20 1 11 11 25 2 20 21 26 1
3 6 21 1 11 12 26 1 21 21 27 2
4 4 22 2 12 12 27 2 22 22 22 8
4 5 23 1 13 13 13 8 22 23 23 2
4 6 24 1 13 14 14 2 22 24 24 2
5 5 25 2 13 15 15 2 23 23 25 2
5 6 26 1 13 16 16 2 23 24 26 1
6 6 27 2 13 17 17 2 24 24 27 2
7 7 7 8 14 14 18 2 25 25 25 8
7 8 8 2 14 15 19 1 25 26 26 2
7 9 9 2 14 16 20 1 26 26 27 2
7 10 10 2 14 17 21 1 27 27 27 8
7 11 11 2 15 15 22 2

Table 3: CoefficientE{V,¥;V;}, E{V,V,V,} = E{¥,;V,V,} = E{V,¥,¥,;}, Six-Dimensional
Polynomial Chaoses, Chaos order 2



Similarly, the hysteretic damping is defined by

n
= ~LK® 21
C) = CIK (21)
wheren is the hysteretical damping factor. Assembling elementiEmping matrices of the shaft
yields:

[C] = [Clo + &I[Ch (22)

Bearing stiffness  For the shaft corresponding to the degree-of-free¢iomd )|, the deterministic
elementary stiffness matrix of the bearing is defined as

k. 0 00
el ki, 0 0
sym 0

wherek,, andk,, are the stiffnesses of the bearing in directianandy. In this case, it has been
chosen to only investigate the randomness of the stiffnedbefirst bearing in directiom modeled
by the truncated Gaussian random varia@levhich yields:

k(1) = Fig (1 + 0y, 62) (24)

in which k1, and Jx,, are the mean value and the variation coefficient of the st#n Finally, the
expression of the assembled stiffness mdiiy is written as

(K] = [KpJo + &2[Ksy (25)

Disc parameters The parameters of the discs should be random. Here, we @rtkelrandomness
on the outer diameteb(7) and the density(7) of one of the discs, which are the geometric and
material parameters of the model. Describing them by usugtuncated Gaussian random variables
&3 andéy yields

D(7) = D(1 + dp&3) (26)
P(T) = ﬁ(l + 5p£4) (27)

where D andp are the mean value§y andd, are the variation coefficients of the diameter and the
density of the disc respectively. These quantities appetira definition of the mass and gyroscopic
elementary matricefM?] and[G“] that are expressed for the disk relative to the degree ofltnee
[vw @ 4]T such that

ma(T) 0 0 0 00 0 0

B 0 mg(r) 0 0 I 0
M) = 0 i) Ir) 0 ’[@“‘00 0 —I,(7) (28)

0 0 0 Iy(7) 0 0 I(7) 0



with

ma(r) = 3p(r)Eh(D(r)? ~ ) (29)
Iu(7) = Ggp(r)mh(D(r)" = ) + o plm) b (D7)} — ) (30)
Iy(7) = 35p(r)Th(D(r)" — ) (31)

in which h andd are the thickness and the inner diameter of the disc respeéctin addition,m, is
the mass of the diskl, and I, are the diametral moment of inertia about any axis perpetali¢o
the rotor axis and the polar moment of inertia about the raxs.

Substiting Equations (26-27) in Equations (29) to (31) &etdthe expression of the components
of the mass and gyroscopic elementary matrices such that

4 1 4 1 4 1
=D > maliéh  L(r) =) ) LuGE L) =) Ly&&  (32)

7=0 =0 7=0 =0 7=0 =0

wheremy;;, I4;; and 1, are given in B. The Polynomial Chaos Expansion foy(7), I(7) and
I,(1), constructed for two random variablesand¢, is given by

N
Zmdj (63,8) I Zfdj (&,&) L) =) 1,9(&.8)  (33)
j=0

inwhichmg;;, Iy, andlpij are determined after identification between Equations &8#)(33) using
Tables 4 and 5. The number of polynomial chaa¥es deduced from Equation (17) by two random
variables: . = 2. It should be noted that this identification yields a minimarderp = 5. Then,
expressing mass and gyroscopic elementary matrices ofcgMi&] and [G?¢] in the polynomial
chaos basis yields

P P
MY =3 MY, 8) G =) [GY;¥;(6. &) (34)
j=0 Jj=0
where
mg; 0 0 0 00 O 0
a | 0 mg; 0 0 ¢ |00 0 0
[M ]J - 0 0 ]dj 0 ) [G ]j 10 0 0 —1y, (35)
0 0 0 Iy 00 I, 0
Finally, the assembled mass and gyroscopic matrices age Oy
P P
M] = M;¥;(&,&)  and  [G] =) [G];W;(&s, &) (36)
j=0 j=0

10



i b v, B{v?)
0O O 1 1
1 1 & 1
2 & 1
3 2 a1 >
4 384 1
5 21 2
6 3 & — 36 6
7 364 — &4 2
8 &8 — & 2
9 & — 3% 6
10 4 & 66 +3 24
11 584 — 338y 6
12 - -6 +1 4
13 €363 — 36364 6
14 & —682+3 24

Table 4: Two-Dimensionnal Polynomial Chaoses and theianae

1 U

&3 vy

€4 U,

& U3 + W
§384 vy

& U5 + ¥

fg e + 30,
€34 Vs + W,
&5&7 Vg 4 Uy

& Wy + 3W,

&3 Ui+ 6W3 + 3%
55’54 U + 39,
£36 Vi + U5+ U3+ 0,y
&85 Vi3 4 30y

ff;l Uiy +6W5 + 39,

Table 5: Identification

11



Excitation characteristics The unbalance force due to an eccentric mass on a disk canitberwr
on the degree of freedop w 6 ]"

{Q} = myrw?e™®1  —i 0 0" (37)

wherem, andr, are the unbalance mass and the eccentricity respectivatthdfrmore defines the
initial angular position. Parametens, and¢ are considered as random Gaussian type quantities and
are defined as

my(7) = My(1 + 0més) (38)
O(7) = 04&e (39)

with 77, andd,, being the mean value and the variation coefficient of the lamoa mass, and,; the
standard deviation of the angular position of the force. therreader comprehension, the angular
position is illustrated in Figure 2. In additiof; and{s are Gaussian random variables.

Y mass me

Figure 2: Unbalance model

Expanding=? such as

(40)

o _ 5 (Y
j=0

Vi

and substituting Equation (39) in Equation (40) leads raftencation at a given order M, to the new
expression of’®

M . j
=3 (7’“;’_,56) (41)
=0 '

Thus the unbalance force due to an eccentric mass on a didlegginen by

M

{Q} = My (1 + 6ms) ) liogks)

=

1 —i 0 0 (42)

12



Equation (42) can be rewritten as

1 M

{Q}=> ) {Qhciel (43)
k=0 j=0
where
{QYkj = Mprew? (Om)" (ij‘f)j 1 —i 0 0 (44)

Finally, the random loadingQ} can be expanded on the polynomial chaos basis as follow

Q)= Z{Q}jw@,@) (45)

where the deterministic coefficienf®}; are given by using the same identification process described
for the mass and gyroscopic matrices, adapted here to deatf¢ ¢/ and¥;(&s, &). Risthe number

of polynomial chaoses given by Equation (17) fo= 2 and depending on the equivalent to the

p = M + 1 order.

Synthesis Finally, the system to be solved, given by Equation (16)xma@ded on six-dimensional
polynomial chaose¥;(§) with { = {&1,..., &}, j = 0 to P where P is defined by Equation (17) with
L = 6. Thus|A|; is a function ofM];, [C];, [G];, [K]; and[K,); (see Equation (13)) which refer to a
rearrangement dM|;, [Cl;, [G];, [K];, [Ks]; and{Q}, on a six-dimensional polynomial chaos basis.

4 Numerical results

In this section, the quantification of the uncertainty effean the response variability of the rotor
under study are presented using the Polynomial Chaos Exquam&thod. To show lower and higher
dynamic responses of the rotor system under uncertain pdeas) the stochastic response of the rotor
system is proposed via the mean value and the variance oatit®m response, also represented
graphically by an envelope. The envelope of the stochassipanse is constructed by calculating
the maximum and the minimum of all the responses computedch&yPCE approach for samples
generated by the MCS method. Then, the MCS method generatgsies of Hermite polynomials
and consequently samples of the Frequency Response Functions.

Finally, the envelope is built by considering the maximund #me minimum of all the samples.

In the following, the sections are organized as follows:tlfirghe main dynamic characteristics
are investigated in the deterministic case. The efficiemzy @bustness of the Polynomial Chaos
Expansion method is then discussed for the dynamic respafnie rotor system under uncertain
parameters. Finally, the mean and the variance of the Fregueesponse Function obtained via
the PCE approach, and the envelope are compared with rediéised by using the Monte Carlo
simulation.

13



Op 5]€1$ 5[0 op  Om 04 Order

Casel 5% 5% - - - - 2
Case?2 - 10% - - - - 2
Case3 - 10% - - - - 10
Case4 - - - - 1% 0.05rad 2
Case5 - - - - 5% 0.05rad 2
Caseb6 - - 1% 1% - - 2
Case7 - - 5% 5% - - 2
Case8 5% 5% 5% 5% 5% 0.05rad 2
Case9 2% 2% 2% 2% 2% 0.0lrad 2

Table 6: Sets of parameters

4.1 Deterministic case

Before discussing the effects of uncertainties on the dyoaifrthe rotor system, a brief summary is
given of the main dynamic characteristics of the deternimi®tor system. Considering the model
parameters given in Table 1, Figure 3 shows the horizorgaliyt-state responses of the rotor for each
of its transversal nodes.

It can be seen that the horizontal displacements indicatpridsence of the first, second and third
forward critical speeds arourzB.3 Hz, 97.2 Hz and240 Hz, respectively. To facilitate comprehen-
sion, the first, second and third backward critical speedaatappear on the unbalance responses
due to the fact that the bearing stiffnesses are identidalavertical and horizontal directions. Table
7 summarizes the values of the three first forward and backartical speeds of the rotor system.

Critical speed Value (Hz)
1st backward 27.9

1st forward 28.3

2nd backward 61.8

2nd forward 97.2

3rd backward 128.1

3rd forward 240

Table 7: Critical speeds of the rotor system

4.2 Comparisonsbetween the Polynomial Chaos Expansion approach and M onte
Carlo simulation

In this part of the paper, the results of the Monte Carlo satioh and those of the Polynomial
Chaos Expansion method are compared in order to validateftiveency of the second approach.
Comparisons are given for the set of parameters defined by CiasTable 6: to simulate the variation

14



104

Horizontal displacement (m)

100 150

200 250 0 Shaft position (m)

300
Frequency (Hz)

Figure 3: Frequency Response Functions for the determicesa

of mechanical properties, the Young moduld®f the shaft and the horizontal bearing stiffnéss
on the left side of the rotor system are allowed to undéovariations ¢ + 6z andk,, + d;,.).

The Monte Carlo analysis is carried out to obtain a staasgample of the random response. As
explained previously, this method requires a large numbsamples to provide a reference solution.
In this study, to obtain convergence of the Monte Carlo metl®00 samples were used. For this
first case, the order of chaos equals 2. A convergence stuesempied soon after, will justify the
choice of this truncation.

Figures 4 and 5 show the mean and the variance of the Freqiasponse Function (at the node
2 in the directionr) obtained by the two methods. The two methods yield quasitidal results for
both quantities (a very low discrepancy can only be seen ak apundl 00 Hz) which validates the
PCE method.

Figure 6 shows the results for both the Monte Carlo simufestiand the PCE method. All the
Frequency Response Functions samples obtained by usimgaiie Carlo simulations can be seen
at node 2 in the horizontal direction, with their mean valMe can see that the mean of the Frequency
Responses Function and so the envelopes built from the Mzarte simulations and the Polynomial
Chaos Expansion are very close one to the other. It shouldobedirthat the same samples have
been used for both direct Monte Carlo method and PCE appradateover, for this example, if we
compare the CPU time, it appears that PCE approach is emgéstiaster than the direct Monte Carlo
approach.

The variations of the Young modulus of the shaft and the horizontal bearing stiffnéss can
be seen to cause small changes in the critical speeds. Mardoereases (and decreases) of the
maximum amplitudes when the rotor passes through the foredtical speeds are also indicated.

15



Finally, it can be seen that backward critical speed${at Hz and128.1 Hz) can occur due to the
randomness of the bearing stiffnéss which introduces dissymmetry in the rotor system.

A convergence study of the PCE with the order of chaos is pmdd through two choices of
orders :2 and10. Figures 7-8 and 9-10 present the results for cases 2 an@d%3 ¢f the variation
for the horizontal bearing stiffneds, on the right side of the rotor system. See Table 6) for the
Frequency Response Functions at node 2 in the horizon&dtdin. As expected, the order of chaos
improves modeling. However, the effect of this discrepapeiveen both expansions does not harm
the quality of the model, especially when taking into acddhe increase of computation costs (which
depends on the size of the problem as a function of the ordelnads) obtained subsequently. Even
if the effect of damping is not on the scope of the study, it barmentionned that decreasing the
damping factor needs to increase the PCE order, especiaflg to the resonances. For more detalils,
the reader is referred to the research of Dessombz [Dess(009)].

T T T T T

-3

10"

Horizontal displacement (m)

10 F

| | | | |
50 100 150 200 250
Frequency (Hz)

Figure 4: Mean of Frequency Response Functions (Case Yn&uial Chaos method (red dotted-
dashed line); Monte Carlo Simulation (black line)

4.3 Effectsof uncertaintiesin mechanical properties and external forces

In this part of the paper, the effects of uncertainties fraiffiness properties of the rotor, geometric
parameters of the disc and external forces are investigdtethe next paragraphs, only the mean

16



Variance (m2)

| | | | |
50 100 150 200 250
Frequency (Hz)

Figure 5: Variance of Frequency Response Functions (Cag®linomial Chaos method (red dotted-
dashed line); Monte Carlo Simulation (black line)

value and the envelope of the FRF are studied in order toilgigtthe results more clearly. It should
be noted that in the following parts all the results are giaenode 2 in direction.

4.3.1 Excitation

The effects of uncertainties in the external forcing fuos are now studied. Variations on the mass
unbalance and the angular position are considered. Twe @asestudied (cases 4 and 5): the first
and second cases deal witft and5% of uncertainties for both the mass unbalance and the angular
position (n £ 6,, ande £ ;).

Figures 11 and 12 illustrate the mean values (using the Modatk® simulation and the Polynomial
Chaos method) and the envelope. In this particular caseatftom quantities are only located at the
loading{Q}. Therefore, theoretically speaking, the mean of the respand the values of the critical
speed obtained by the Polynomial Chaos method must be ¢déti the reference mean response.
In Figure 11, the mean of the Polynomial Chaos approach sedo the reference mean response:
the error between these two results is only due to the tredcatpansion of the loading expression
defined in Equation (41).

It can then be seen that the variations of the maximum ang@guue to uncertainties for all the
critical speeds are not very great. The amplitudes of the §ezond and third critical speeds increase
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Figure 6: Frequency Response Functions (Case 1); Mean &RRewith Polynomial Chaos method
(red dotted-dashed line); Lower and upper envelopes (retiathline); Mean of the FRF with the
Monte Carlo Simulation (black solid line); Monte Carlo sdegp(grey solid line)

from only2.814 x 1072m, 2.803 x 10~2m and3.76 x 107°m t02.954 x 10~3m, 3.534 x 10~*m and
3.987 x 10~2m respectively.

4.3.2 Uncertaintiesin disc properties

In this paragraph, variations for the properties of the di®ated at the left side of the rotor system
are considered. Two cases are investigated (cases 6 angsfly; fhe density and the diameter of the
disc are allowed to undergds variations p + 6, andD + 65). Secondly5% variations on the same
set of parameters are introduced. As explained previousfection 3.2, these random parameters
affect the mass and gyroscopic matrices (see Equation. (ZBp order of chaos has been chosen as
equal to 2.

Figures 13 and 14 give the mean value of the Frequency Respanmgtion and the envelope at
node 2 in the horizontal direction. It appears that the mednes calculated by applying the Monte
Carlo simulations and the Polynomial Chaos method are \niemjes. It should be noted that an order
2 gives accurate results in spite of the fact that the dewvedoyt given in Section 3.2 shows that an
order 5 is needed to take all terms into account.

It can be seen that increasing uncertainties on the densityttee diameter of the disc can dras-

18



Horizontal displacement (m)

| | | | |
50 100 150 200 250
Frequency (Hz)

Figure 7: Study with chaos order: Mean of Frequency Response Functions (Case 2); Polynomial
Chaos method (red dotted-dashed line); Monte Carlo Sinoulgblack line)

tically affect the values of the critical speeds and the eissed maximum amplitudes. Even if the
maximum variations of amplitudes are located at the cllispaed, the evolutions of the rotor response
far from the critical speed are significant. When comparimguFes 6 and 14, it may be concluded
that the effects of uncertainties on disc properties aratgrehan those on shaft properties of the rotor
under study.

4.3.3 Uncertaintiesin both mechanical properties and external forces

In order to demonstrate the efficiency and accuracy of thgreohial Chaos procedure described
above, this last part of the paper treats the cases in whickrtain quantities come from all the
parameters studied previously (i.e. stiffness propedfake rotor, geometric parameters of the disc
and external forces).

Numerical simulations are given by considering the vasiagiof mechanical properties of the shaft
(i.e. the Young modulug’ and the horizontal bearing stiffness,), the properties of the disc (i.e.
the densityp and the diameteP), and the excitation forces (i.e. the mass unbalanand and the
angular positiony), as indicated in Table 6 for cases 8 and 9. We recall thati;ncise the cost of
calculation may be high since it is directly linked to the ragnof polynomials and consequently to
the order of chaos and the number of random parameters. d5idib-16 and 18-19 show the results
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Figure 8: Study with chaos order. Variance of Frequency Response Functions (Case 2); Poiaho
Chaos method (red dotted-dashed line); Monte Carlo Sinoulgblack line)

for cases 8 and 9 through the mean and the variance obtaioedtire Polynomial Chaos and the
Monte Carlo approaches. The results from both methods averyngood agreement for both the
mean and for the variance. Figures 17 and 20 illustrate elFtequency Response Function samples
(at node 2 in the horizontal direction) obtained by usingftente Carlo simulations, and the lower
and upper envelopes built with the Polynomial Chaos meth@ghpears that increasing uncertainties
affects the maximum amplitudes of the dynamic responselanediue of the critical speeds. Then, as
explained previously in section 4.2, the dissymmetry duf¢ovariations in the bearing stiffneks,
leads to increases in the dynamic response of the rotomayesteund the backward critical speeds (at
61.8Hz and128.1Hz). Finally, it can be seen that the Polynomial Chaos methay over-estimate
vibrational amplitude (see for example the dynamic resparfsthe rotor around the third critical
speed, al40Hz). However, whatever the levels and different kinds ofartainty (such as material,
geometrical and loading characteristics) presented lieeePolynomial Chaos method agrees very
well with the Monte Carlo simulation, thereby demonstrgtihe robustness of the method.

20



Horizontal displacement (m)

| | | | |
50 100 150 200 250
Frequency (Hz)

Figure 9: Study with chaos ordéf) : Mean of Frequency Response Functions (Case 3); Polynomial
Chaos method (red dotted-dashed line); Monte Carlo Sinoul@black line)

5 Conclusion

This paper described a numerical procedure using the Chalysdtmial approach to evaluate the
stochastic response of a rotor system with uncertain mecélgoarameters and uncertain external
forces. It explained how this kind of problem can be solvethwhe Spectral Finite Element Method
and how the random parameters can be modeled by random leariddoough a Karhunen-Loeve
expansion. The results obtained by applying the Polyno@halos Expansion (PCE) procedure were
compared with those evaluated by the Monte Carlo Simulgtit@s).

The stochastic response of the rotor system was proposdtesimean value and the variance of
the random response and also represented graphically byvafope. This envelope could be useful
for designing rotor systems and predicting their lower aigghar dynamic responses under uncertain
parameters.

The efficiency and robustness of the Polynomial Chaos metleod tested and validated through
numerical simulations of the effects of uncertainties arttes of polynomial chaos.
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Figure 10: Study with chaos ordéd : Variance of Frequency Response Functions (Case 3); Polyno
mial Chaos method (red dotted-dashed line); Monte Carlaigition (black line)
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A Modd of the shaft
As illustrated in Figure 1, the nodal displacement of a belment is defined by
0= [Ul wy 01 Yy va wy Oy ¢2]T (46)

and for this element, the mass matfM‘] = [M{] + [M5] (summation of the translational and
rotatory mass matrices), the stiffness mailx|, the gyroscopic matri¥G°¢] and the damping matrix
[C°] are expressed as

22



10°F

10k

|
o

[any
(=)
T

Horizontal displacement (m)

| | | | |
50 100 150 200 250
Frequency (Hz)

Figure 11: FRFs with randomness on the loading (Case 4); Mé#me FRF with the Polynomial
Chaos method (red dotted-dashed line); Lower and uppelae® (red dashed line); Mean of the
FRF with the Monte Carlo Simulation (black solid line)

(156 0 0 =221 54 0 0 131 ]
156 221 0 0 54 =131 0
412 0 0 13 =3* 0

o pSl 42 —131 0 0 =32
M3 = 420 156 0 0 22 (47)
156 —221 0
Sym. —412 0
—41?]
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Figure 12: FRFs with randomness on the loading (Case 5); Mé#me FRF with the Polynomial
Chaos method (red dotted-dashed line); Lower and uppelae® (red dashed line); Mean of the
FRF with the Monte Carlo Simulation (black solid line)

36 0 0 -3 —-36 0 0 =3l
36 3 0 0 -36 3 0
42 0 0 =31 =12 0
.opl 42 31 0 0 -2
[MQ]_@ 36 0 0 3 (48)
36 —31 0
sym. 412 0
L 4l2_
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Figure 13: FRFs with randomness on the disc parameters @adkean of the FRF with the Poly-
nomial Chaos method (red dotted-dashed line); Lower an@mu@pvelopes (red dashed line); Mean
of the FRF with the Monte Carlo Simulation (black solid line)

(12 0 0 6 —-12 0 0 6]
12 -6/ 0 0 —12 —6l 0
420 0 60 22 0
.. EI A2 -6 0 0 22
[K]_l—?’ 12 0 0 -6l (49)
12 6/ 0
sym. 412 0
L 4l2_
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Figure 14: FRFs with randomness on the disc parameters (Qabéean of the FRF with the Poly-
nomial Chaos method (red dotted-dashed line); Lower aneéugpvelopes (red dashed line); Mean

of the FRF with the Monte Carlo Simulation (black solid line)

[0 —36 3l 0 0 36 3l 0 ]
0 0 3l —-36 0 0 3l
0 —412 31 0 0 12
ol 0 0 3 -2 0
C1= 15 0 —36 -3l 0
0 0 -3l
skew — sym. 0 —4/?
0

(50)

in which p and E' are the density and the Young modulus of the shais. the second moment of the

area about any axis perpendicular to the rotor aXiss the area of the cross section.
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Figure 15: Mean of Frequency Response Functions (Case §ndtoial Chaos method (red dotted-
dashed line); Monte Carlo Simulation (black line)

B Massand gyroscopic matrices components

1 _ . _ _ _ _
ma(r) = th((DQ — d%) +20pD &+ 6,(D° — d?)&y + D 0BE2 + 2610,D €34 + 0,65D €264)

(51)
4 1 o
Y i) 52)
=0 =0
1 —4 4 At o4 52 2 2k 3 tes
I(1) = @PWh((D —d") +40pD &+ 0,(D — d")&a + 6D 6585 +40pd, D E3€a +40p D &5
(53)

+ 60,05 D €264 + THD €4 + 46%6,D €56, + 6,05 D €464)

4 1
=3 1.8 (54)

j=0 =0
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Figure 16: Variance of Frequency Response Functions (CasBdynomial Chaos method (red
dotted-dashed line); Monte Carlo Simulation (black line)

1 _
—prh((D' —d*) +45pD & + 6,(D" — d*)&s + 6D 03,E2 + 46p0,D €364 + 465D €5

lo(r) = &5

(55)
+66,05D 28, + 05D ¢ + 45%5@455;54 + 6,00 D'eley)

1 — _
+ @mh?’((DQ — ) + 260D &+ 0,(D° — d®)es + D 62E2 + 26p0,D E364 + 6,65 D €264)
4 1

=3 ) Lyl (56)

7=0 =0
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Figure 17: Frequency Response Functions (Case 8); MearedfRir with the Polynomial Chaos
method (red dotted-dashed line); Lower and upper envelgpdsiashed line); Mean of the FRF with
the Monte Carlo Simulation (black solid line); Monte Carbngples (grey solid line)
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Figure 19: Variance of Frequency Response Functions (Casedynomial Chaos method (red
dotted-dashed line); Monte Carlo Simulation (black line)
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Figure 20: Frequency Response Functions (Case 9); MearediRr with the Polynomial Chaos
method (red dotted-dashed line); Lower and upper envelgpdsiashed line); Mean of the FRF with
the Monte Carlo Simulation (black solid line); Monte Carbnsples (grey solid line)
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