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Abstract. We investigate the nature of the dynamically inactive phase of a
simple symmetric exclusion process on a ring. We find that as the system’s
activity is tuned to a lower-than-average value the particles progressively lump
into a single cluster, thereby forming a kink in the density profile. All dynamical
regimes, and their finite size range of validity, are explicitly determined.
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1. Introduction

The study of temporal large deviations in simple systems such as those of
interacting diffusing particles has revealed an unexpected wealth of behaviors,
ranging from puzzling correspondences between driven systems and their equilibrium
counterparts [1, 2, 3, 4], to intrinsically dynamic phase transitions [5, 6, 7, 8, 9, 10].
The dynamical phase transition terminology dates back to the eighties [11], in an
era when the dynamical systems community exploited the so-called thermodynamic
formalism of Ruelle and others to study and characterize the variety of dynamical
regimes displayed by simple iterated maps. There have been many efforts in the
recent past to classify the various phase transitions that can be found between distinct
dynamical regimes, but there is a great scarcity of studies attempting an even coarse
description of the properties of these dynamical regimes. Exceptions are Bodineau and
Derrida’s study of a weakly asymmetric exclusion process [5], Toninelli and Bodineau’s
work on kinetically constrained models [12] and the finite size study of Bodineau,
Lecomte and Toninelli [13]. In the generic dynamical phase transition scenario, one of
the dynamical phases is disordered and its physics is easy to grasp, while the ordered
symmetry-breaking phase is usually hard to characterize, for in dynamics there is no
such thing as an easy-to-implement free-energy based variational principle.

In the present work, we would like to devote our own efforts to the understanding
of the nature of the various dynamical phases of the Simple Symmetric Exclusion
Process (SSEP) on a ring, a system of mutually excluding particles hopping (if the
target site is empty) with equal rates to either of their nearest neighbor sites on a
one-dimensional lattice with periodic boundary conditions. The SSEP belongs to the
broader class of diffusive systems whose dynamics can be described by fluctuating
hydrodynamics, meaning that at the scale fixed by the system size, the field of
occupation numbers becomes a smoothly varying function evolving through a Langevin
equation with a vanishingly small noise (as the system size increases). We choose
to classify the various time realizations the system can follow according to their
activity level defined as the number of particle moves having taken place over a
given time interval. In practice, however, we introduce a Lagrange multiplier s
biasing trajectories towards a given average activity [14]. The s > 0 (resp. s < 0,
s ∼ 0) regime allows one to explore the less-than-average-activity (resp. larger-than-
average, typical) trajectories. The latter activity is a physical observable that has
received considerable attention in the past [7, 14, 15], not only in diffusive systems
but also in a variety of systems with slow dynamics [16, 17, 18], and which has strong
connections with entropy production in nonequilibrium systems [19]. This is the
simplest trajectory-dependent time-reversal symmetric observable one can think of.
For realizations showing typical or larger than typical activity, the particles remain
uniformly distributed, and the density profile remains flat. This is the disordered
regime. By contrast, if we focus on realizations displaying a smaller than typical
activity (s < 0), the uniform profile becomes unstable. This scenario was identified in
[20], and presents features similar to the transition at high enough values of the current
in the weakly asymmetric exclusion process [6]. The transition point, occurring right
at the typical (or average) activity is characterized by a universal scaling function that
does not depend on the specifics of the SSEP, in the large size limit. The purpose
of our work is precisely to investigate the properties of the ordered phase in which
translation invariance, as our intuition tells us, will be broken. The extreme low-
activity behavior is indeed going to be dominated by realizations in which particles
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have clustered into a single lump, thus permitting particle moves at the borders of the
cluster, leading to a strongly subextensive activity.

Before we proceed, we would like to recall that studying the statistics of the
activity in the SSEP is equivalent to investigating the ground-state properties of a
ferromagnetic XXZ chain [20], which allows one to connect our work to the integrable
systems literature. We are indeed interested in the smallest eigenvalue −ψ(s) of the
operator

H(s) =
L

2
− e−s

2

L
∑

k=1

[σx
kσ

x
k+1 + σy

kσ
y
k+1 + esσz

kσ
z
k+1] (1)

where the σα
i ’s are the Pauli matrices. In standard notations (see Baxter [21] for

instance) the anisotropy parameter ∆ is related to the Lagrange multiplier s enforcing
a given average activity by ∆ = es. Another related problem [22, 23] is that of
determining the ground state of a gas of hard-core bosons with interaction strength
−s and density ρ0, which, in the present s > 0 case, would thus correspond to
attractive interactions (this is the no-saturation case discarded by Lieb and Liniger
at the beginning of their seminal work [22]). In the regime of interest here, we have
that ∆ > 1. The same problem of attractive bosons with hardcore interactions is of
direct interest to study the directed polymer in the replica approach [24], for which
the problem was fully diagonalized [25, 26], see [27] for a review. It was shown [28]
that such a model and such a regime for ∆ were relevant for the description of
the superconducting phase of some generalized Hubbard models, when working at
fixed magnetization. The latter constraint, which renders the problem nontrivial
(without the constraint, see section 8.8 in Baxter [21]) turns out to be our working
framework, since particles are conserved in our closed ring, and magnetization per
site is 2ρ0 − 1. While the active dynamical phase lent itself moderately easily to a
Bethe Ansatz approach [20], which was shown to be fully equivalent to the fluctuating
hydrodynamics approach, it can be understood from [28] that things only get worse for
∆ > 1. It therefore appears to be desirable to resort an alternative method. It seems to
us that the phase separation mechanism conjectured in [28] has a simple interpretation
in our approach, as will become clear later in the paper. Fluctuating hydrodynamics,
in the integrable systems language, can be viewed as the correct effective field theory
able to describe low lying excitations of the system.

The questions we wish to answer can be phrased as follows. As the system’s
activity is lowered below its average, how does the flat density profile become unstable?
Is there any limiting profile deep into this inactive phase? Which are the activity
scales, and what are their system size dependence, governing these various dynamical
inactive regimes? Given that these are generic questions that can be raised for other
comparable systems, it is of interest to present a model with a dynamic phase transition
for which they can be answered in an exact manner. We will begin with a brief
overview of existing results related to large deviations in the SSEP, as predicted by
fluctuating hydrodynamics—also termed Macroscopic Fluctuation Theory by Bertini
et al. [29, 30, 31, 9, 10]. This will allow us, in Section 3, to present explicit results on
the density profile in the inactive regime. Three scaling regimes exist, which we will
investigate separately in a mathematically controlled fashion. Open questions will be
gathered in the final section.
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2. The symmetric exclusion process and its fluctuating hydrodynamics

description

2.1. Fluctuating hydrodynamics

We consider a Simple Symmetric Exclusion Process (SSEP) on an L-site one-
dimensional lattice with periodic boundary conditions. Each of the mutually excluding
N particles can hop with rate 1 to either of its nearest neighboring site, if empty. We
consider time realizations of the process over the time interval [0, t] and we choose to
work in space and time units scaled by the system size L and the diffusion relaxation
time L2, respectively. We thus introduce a smoothly varying field ρ(x, τ) of occupation
numbers, defined by nj(t

′) = ρ(j/L, t′/L2), whose existence we assume. The field ρ
evolves according to a conserving Langevin equation

∂τρ+ ∂xj = 0 (2)

with j = −D∂xρ− 1√
L

√
σξ, and where D(ρ) = 1 and σ(ρ) = 2ρ(1 − ρ) are functions

reflecting the SSEP dynamics at a macroscopic scale. The Gaussian white noise,
ξ(x, τ), has unit correlations, 〈ξ(x, τ)ξ(x′, τ ′)〉 = δ(x− x′)δ(τ − τ ′). The Green-Kubo
relation ensures that 2D

σ = βf ′′, where f(ρ) is the free energy per unit length, which, in
the SSEP, reduces to the purely entropic expression−βf = −ρ ln ρ−(1−ρ) ln(1−ρ) [up
to ρ2, f ′′ is the inverse isothermal compressibility, κT = (ρ2f ′′)−1]. The conditions
under which fluctuating hydrodynamics is valid, and the reasons why it applies to
the SSEP, have been discussed by many authors. We refer the reader to Kipnis and
Landim’s book [32] which specifically addresses the SSEP, and to the series of papers by
Bertini et al. [29, 30, 31, 9, 10], the latter employing the macroscopic fluctuation theory
vocabulary. See also [2] for a field theory approach using coherent state construction
of path integrals to represent the 〈e−sK〉 = 〈e−tH(s)〉 [the operator H(s) is defined
in (1)].

We will focus on the so-called activity K(t), which, in the SSEP, is the number of
particle hops that have taken place over a given time window [0, t], over the whole ring.
Up to irrelevant finite size corrections, we may view the activity as a functional of the

local occupation numbers given by K(t) =
∫ d

0 dt′
∑

j,± nj(t
′)(1−nj±1(t

′)). In terms of

the field of occupation numbers, it is expressed by K(t) = L3
∫ 1

0
dx
∫ t/L2

0
dτσ(ρ(x, τ)).

The equilibrium distribution in the SSEP is a simple Bernoulli distribution with
parameter ρ0. Denoting by ρ0 = N/L the average density, we thus find that, to leading

order in the system size, 〈K〉/(tL) = 2N(L−N+1)
L(L−1) ≃ σ(ρ0). For time realizations

with activity greater than 〈K〉 we expect that the system remains as homogeneous
as possible to favor particle hops able to accommodate a high value of K. We also
expect, as we confirm below, that for low activities the system will group particles
into a single cluster. We now briefly recall what the existing literature has established
about these opposite regimes.

2.2. Universal fluctuations of the activity

The key to the calculation of large deviation properties in systems described by a
Langevin equation (2) is that, since the noise becomes vanishingly small as the system
size increases, a WKB-like saddle point expansion can be exploited. There are many
ways to implement the saddle point expansion. One is to cast the generating function
Z(s, t, L, ρ0) = 〈e−sK〉 of the activity in the form of a path-integral over a pair of
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fields ρ̄ and ρ (the latter is the actual occupation number field, while the former is
conjugate to the noise ξ). The net result of that procedure that has been described
many times in the past (see e.g. [2]) is that

Z =

∫

D ρ̄Dρ e−LS[ρ̄,ρ;s] (3)

where the action S[ρ̄, ρ; s] reads

S =

∫ t/L2

0

dτ

∫ 1

0

dx

[

ρ̄∂τρ+ ∂xρ̄∂xρ−
σ(ρ)

2
(∂xρ̄)

2 + sL2σ(ρ)

]

(4)

Once cast in the above path-integral formulation, it is clear that, as L → ∞, the
leading behavior to Z will be given by a saddle point evaluation of the path-integral.
One must then minimize the action S with respect to ρ̄ and ρ. The latter gives us the
optimal density profile able to accommodate a given value of the average activity, as
tuned by s. In Appert et al. [20] it was shown that the large deviation function of the
activity, defined by

ψ(s) = lim
t→∞

lnZ

t
(5)

could be written in the form

ψ(s) = −s 〈K〉
t

+
D

L2
F
(

−σσ
′′

8D
sL2

)

(6)

where F is a scaling function independent of the functions D and σ, and its argument
reduces to F

(

σ
2 sL

2
)

in the SSEP. The functions D and σ appearing in this formula
are evaluated at ρ0, as in the sequel of the paper when no argument is made explicit.
The hypotheses underlying this result are that the optimal profile in the path-integral
formulation for the generating function Z is both stationary and uniform at the value
ρ0. The function F(u) exhibits a branch cut along the real axis for u → (π2/2)−,
which signals that for s > λc

L2 , λc = π2/σ(ρ0), the uniform profile ceases to be the one
minimizing the action. The new results of the present work are devoted to a study of
this sL2 > λc regime. We now define the parameter λ by λ = sL2.

It is piquant to note that F has different integral representations according
to whether λ < 0 or 0 < λ < λc. We need it on the positive side, namely

F(x) = 2x− 4
√
2x3/2

∫ 1

−1
dy y2 cot

(√
2x
√

1− y2
)

. The function F has the following

limiting behaviors

F(x) ≃ 27/2

3π
(−x)3/2 for x→ −∞ (7)

F(x) = C1 − C2(π
2/2− x)1/2 + . . . for x→ π2

2

−
(8)

where C1 ≃ 51.61351... and C2 ≃ 55.83091... > 0. The latter expansion explicitly
displays the

√

π2/2− x singularity. The x → −∞ limiting behavior was first found
by Lieb and Liniger in their study of the one-dimensional Bose gas with repulsive
interactions [22]. We now turn to our analysis of the inactive phase.
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3. Inactive phase

3.1. The technical problem

Inspired by the recent work of Bodineau and Toninelli [12], we define a rescaled large

deviation function φ(λ) ≡ limL→∞ L limt→∞
ln〈e−λK/L2〉

t = limL→∞ Lψ(λ/L2). From
(6) we get that φ(λ) = −λσ(ρ0) which has finite size corrections of the order 1/L given
by F(σλ/2). While F appears only through finite-size corrections, we note that its
singularities signal the end of the regime over which the uniform saddle profile remains
the optimal one. Mathematically, the quadratic expansion of the action around the
uniform saddle ceases to be positive definite at λ > λc. We therefore search for another
saddle to the Euler-Lagrange equations. Due to the conservation of the number of
particles, we introduce a Lagrange multiplier µ enforcing the total density to be ρ0,
by adding a µ

∫

(ρ− ρ0) contribution to the action. Assuming a stationary saddle, the
Euler-Lagrange equations of motion read

j = −∂ρ+ σ∂ρ̄, ∂2ρ̄+
σ′

2
(∂ρ̄)2 − λσ′ − µ = 0 (9)

We see a posteriori that in the homogeneous regime we must have µ = −λσ′(ρ0). The
only way to find out the stability regime of the homogeneous profile is to study the
quadratic action expanded in the vicinity of that saddle. Since biasing the trajectories
with the activity does not break the left-right symmetry nor the time-reversal one (K
is even by time-reversal), we search for a solution to (9) in which the current j = 0.
Then it is easy to verify that the equations in (9) are equivalent to Euler-Lagrange

equations deduced from a Lagrangian L = (∂xρ)
2

2σ + λσ + (ρ − ρ0)µ, and were the

momentum conjugate to ρ is π = ∂L
∂∂xρ

= ∂xρ
σ = ∂xρ̄. The corresponding Hamiltonian

H = π∂xρ − L is a constant of motion, which means, when written in terms of the
Lagrangian variables, that H given by

H =
1

2σ
(∂ρ)2 − λσ − (ρ− ρ0)µ (10)

is independent of x. A simple rewriting of the above equation tells us that

1

2
(∂xρ)

2 + EP (ρ) = 0, EP (ρ) = −λσ(ρ)2 −
[

(ρ− ρ0)µ+H
]

σ(ρ) (11)

Again, (11) has a simple mechanical interpretation: ρ is the position of a particle
evolving in the force field given by the potential energy EP (ρ), with kinetic energy
1
2 (∂xρ)

2, while maintaining a zero total mechanical energy. Time coordinate is x.
The two constants H and µ are for the moment undetermined. Periodic boundary
conditions and particle conservation will lead to λ and ρ0 dependent expressions for
these parameters. In the homogeneous regime (λ < λc), we must have EP = 0,
H = −λσ(ρ0) and µ = −λσ′(ρ0). In the mechanical analogy, searching for a periodic
profile means that we are after a periodically oscillating solution between two extreme
positions. For λ < λc and the corresponding values of H and µ there is only a single
value of ρ such that EP (ρ) = 0, which means that the oscillations are reduced to
a standstill at this very density (which is of course ρ0). Note that, mathematically
speaking, a similar set of equations were obtained by Bodineau and Derrida [33] in the
context of the additivity principle for the large deviations of the current in a system
in contact with two reservoirs (a situation in which particle number is not conserved
and no chemical potential is required). We now set out to find the optimal profile ρ(x)
along with H and µ in the regime where λ→ λ+c .
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Figure 1. The potential energy profile, EP (ρ), is shown for a set of typical values
of the parameters λ, H, µ and ρ0.

3.2. Close to the critical point

We use this formulation to find the optimal profile for λ = λc + ε, with ε → 0+.
In the spirit of [5], we assume that a small perturbation around the flat profile
will develop, which leads us to write that ρ(x) = ρ0 +

√
εφ1(x) + εφ2(x) + . . .,

µ = µc +
√
εµ1 + εµ2 + . . ., with µc = −π2 σ′

σ . We write that H is independent
of x order by order in ε, which, after a few manipulations, leads to

φ1(x) =
4

π
[ρ0(1− ρ0)]

3/2 cos(2πx) (12)

and

φ2(x) = − 1

2π2
σ′(ρ0)σ(ρ0)

2 cos(4πx) (13)

together with µ1 = 0 and µ2 = −σ′(ρ0)3/4. We then find that as λ = λc + ε, with
ε→ 0+,

φ(λ) = −π2 − σ(ρ0)ε+ 3
σ(ρ0)

3

π2
ε2 + . . . (14)

We find that H = −π2 − σ(1 − 4σ)ε + . . .. In other words, the instability sets in via
the largest wave-length Fourier mode, just as was the case in the system studied by
Bodineau and Derrida [5]. However, in our case, we can go deeper into the broken
symmetry phase, as will now become clear.

3.3. In the inactive regime

In order to pursue our mechanical analogy, we plot EP (ρ) as a function of ρ and have
the space variable x play the role of a time. A typical plot is shown in figure 1. There
one can see that EP (ρ) vanishes at two densities ρ± given by

ρ± =
2λ+ µ±

√

8λ(H− µρ0) + (2λ+ µ)2

4λ
(15)
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The particle thus oscillates between these two extreme positions, and it takes a full
period

∫ 1

0

dx = 1 = 2

∫ ρ+

ρ−

dρ
1

√

−2EP (ρ)
(16)

to do the round-trip between ρ− and ρ+. Besides, we must have that the total density
is ρ0, which in turn imposes

ρ0 =

∫ 1

0

dxρ(x) = 2

∫ ρ+

ρ−

dρ
ρ

√

−2EP (ρ)
(17)

The two equations (16) together with (17) thus completely fix the unknowns H and µ.
At this stage, it is more convenient to deal with the ρ0 = 1/2 case, for which analytic
expressions are somewhat simpler.

3.3.1. At half-filling Particle-hole symmetry at ρ0 = 1/2 imposes that EP (ρ) =
EP (1 − ρ), which in turn forces µ = 0 (this can explicitly be verified from (16) and
(17)). Then we have that

0 < ρ− =
λ−

√

λ(2H+ λ)

2λ
< ρ+ =

λ+
√

λ(2H + λ)

2λ
< 1 (18)

The density profile thus evolves between ρ− and ρ+ given above, with the constant H
being given by the implicit solution to

1

2
=

(
√
2H+ λ−

√
λ)K

(

2
√

λ(2H+λ)

H+λ+
√

λ(2H+λ)

)

√
2H

(19)

where K is the complete elliptic integral of the first kind. Using that as u→ 0

K(1− u) = 2 ln 2− 1

2
lnu+

u

8
(− lnu− 2 + 4 ln 2) +O(u2) (20)

we can solve for H as a function of λ from (19), which leads to

H = 8λe−
√

λ
2 + 16e−2

√
λ
2 λ
(
√
2λ− 4

)

+ 16e−3
√

λ
2 λ(6λ− 19

√
2λ+ 22) +O

(

λ3/2e−4
√

λ
2

)

(21)

The large deviation function φ(λ) is then obtained from

φ(λ) = −
∫ 1

0

dx

[

(∂xρ)
2

2σ
+ λσ + (ρ− ρ0)µ

]

(22)

=

∫ 1

0

dx

[

H− (∂xρ)
2

σ

]

(23)

Given that we have
∫ 1

0

dx
(∂xρ)

2

σ
= 2

∫ ρ+

ρ−

dρ

√
−2EP

σ
(24)

we arrive, after some manipulations, at

φ(λ) = −
√
2
(
√
2H+ λ+

√
λ
)

E

(

2
√

λ(2H + λ)

H+ λ+
√

λ(2H + λ)

)

(25)

where H as a function of λ is extracted from the implicit formula (19). The notations



Inactive dynamical phase of a symmetric exclusion process on a ring 9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. The density profile is shown for λ = λc + 1
10

(red, large dashes), 25

(blue), 200 (purple, small dashes) at average density ρ0 = 1
2
. The kink becomes

steeper as λ is increased. The slope of the rise to the plateau increases as
√
λ for

large λ.

K and E refer to the complete elliptic integrals of the first and second kind, respectively.
This expression is valid for any λ > λc. Using the following asymptotic formula for E
as u→ 0

E(1− u) = 1 + u

(

−1

4
lnu− 1

4
+ ln 2

)

+
u2

64
(−6 lnu− 13 + 24 ln 2) +O(u3) (26)

we arrive at the following large λ asymptotics for φ(λ):

φ(λ) = − 2
√
2λ− 8

√
2λe−

√
λ
2

+ 8
(

2λ− 3
√
2λ
)

e−2
√

λ
2 +O

(

λ
3
2 e−3

√
λ
2

)

(27)

This is the final result for the ρ0 = 1/2 particular case. Translated into the language of
quantum spin chains, φ(λ) in (25) is the ground-state energy per site of a ferromagnetic
XXZ chain with anisotropy parameter ∆ = 1+ λ

L2 for λ > λc, and at half-filling. To
our knowledge, this is the first appearance of this expression in the literature. The
optimal profile corresponding to that value of φ(λ) takes the form of a smooth kink
with area equal to 1/2, as shown in figure 2 for increasing values of λ. Its expression
reads (for x as function of ρ for 0 ≤ x ≤ 1

2 )

x(ρ) =
1

2
−

√
2 F
(

1
2 arccos

(

(ρ−1)λ−H

(1−ρ)
√

λ(2H+λ)

)

∣

∣

∣

2
√

λ(2H+λ)

H+λ+
√

λ(2H+λ)

)

√
2H + λ+

√
λ

(28)

where F is the incomplete elliptic integral of the first kind.
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3.3.2. At arbitrary density ρ0 For general ρ0, by exactly the same methods, though
with somewhat less elegant simplifications (no symmetry enforces the Lagrange
multiplier µ to vanish), the two equations (16) and (17) now take the following forms

1

2
ρ0 =

2λK
(

µ+2λ(1−2ρ̂)
(µ+2λ(1−ρ̂))(1−ρ̂)

)

+ (µ− 2λρ̂)Π
(

µ+2λ(1−2ρ̂)
2λ(1−ρ̂)

∣

∣

∣

µ+2λ(1−ρ̂)
(µ+2λ(1−ρ̂))(1−ρ̂)

)

2λ
√

(1− ρ̂)(µ+ 2λ(1− ρ̂))
(29)

where Π is the complete elliptic integral of the third kind, along with

1

2
=

√

1

(1− ρ̂)(2λ(1 − ρ̂) + µ)
K

(

µ+ 2λ(1− 2ρ̂)

(µ+ 2λ(1− ρ̂))(1 − ρ̂)

)

(30)

Λc
-10 10 20 30 40 50

-20

-15

-10

-5

5

Figure 3. Large deviation function φ(λ) (thick line) as a function of λ, at average

density ρ0 = 2
3
. The function is singular at λ = λc = π2

σ(ρ0)
(the second derivative

is discontinuous), marking the entrance in the regime where the density profile is
non-uniform (λ > λc). The value of the large deviation function for a uniform
profile at λ > λc is shown for comparison (dashed line).

where ρ̂ is either equal to the minimum or the maximum density ρ± [defined in (15)].
Once µ and H have been extracted from (29) and (30), one can determine the large
deviation function φ(λ) as a function of λ and ρ0 from the formula (see figures 3 and 4)

φ(λ) = −2
√

(1 − ρ̂)(2λ(1 − ρ̂) + µ) E

(

µ+ 2λ(1− 2ρ̂)

(µ+ 2λ(1− ρ̂))(1 − ρ̂)

)

(31)

where λ > λc.The expansion close to λc can be checked from those results. We see in

particular that 1
L3t 〈K2〉c = φ′′(λ) presents a jump φ′′(λ+c )−φ′′(λ−c ) =

6σ(ρ0)
3

π2 . We do
not intend to labour beyond the leading order of φ(λ) as λ≫ 1, which is independent
of ρ0,

φ(λ) ≃ −2
√
2λ+H+ (1− ρ0)µ+ . . . (32)

That the leading contribution is independent of ρ0 could have been expected, as the
main contribution to φ as given in (23) is the integral (24), which is itself dominated by
a small region of size 1/

√
λ where the derivative of ρ varies the most steeply between

ρ− and ρ+, while density is close to ρ−+ρ+

2 ≃ 1/2, and thus

φ(λ) ∼ −
(

1/
√
λ
)

× 1

1/
√
λ
2 ∼ −

√
λ (33)
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Figure 4. Mean activity 1
Lt

〈K〉λ = −φ′(λ) (thick blue line) as a function of λ, at

average density ρ0 = 2
3
. The function is singular at λ = λc = π2

σ(ρ0)
. The value of

1
Lt

〈K〉s is shown for a uniform profile at λ > λc is shown for comparison (dashed
line). As expected, above λc, the activity for histories with a non-uniform profile
is lower than for uniform profiles.

Together with the implicit formulas (29) and (30), equation (31) is the ground
state energy of an XXZ ferromagnetic Heisenberg chain with anisotropy parameter
∆ = 1+ λ

L2 at fixed magnetization L(2ρ0−1). The density profile is, for x as function
of ρ for 0 ≤ x ≤ 1

2 (see figure 5),

x(ρ) =
F
(

arcsin
(√

(µ−2λρ−)(ρ−ρ−)
(2(2ρ−−1)λ−µ)(1−ρ)

)∣

∣

∣

2λ(1−2ρ−)+µ
(µ−2λρ−)ρ−

)

√

ρ−(2λρ− − µ)
(34)

3.4. The infinitely inactive regime

In the infinitely inactive regime, that is for λ ≫ L2, the density profile described
in the previous subsections becomes infinitely steep and the assumptions underlying
fluctuating hydrodynamics fail. Since the typical slope of the rise of the profile towards
its plateau value increases at

√
λ, fluctuating hydrodynamics must fail when the slope

exceeds L, that is when profile variations become significant at the lattice scale, which
is consistent with the λ≫ L2 condition. For large s it is easy to see that the ground
state of the s-modified evolution operator (1) reads

ψ(s) = −2Lσ(ρ0)(1− e−s) +O(e−2s) (35)

The above regime consistently connects to the calculation of the previous subsection
where it was shown that φ(λ) ∼ −

√
λ for large values of λ. The validity of that

previous result holds until φ(λ) ∼ −2Lσ(ρ0), when it connects with the infinitely
inactive regime. This occurs as λ ∼ L2 and confirms once more that the crossover is
at a typical λ of the order of L2.
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5. The density profile is shown for λ = λc + 1
10

(red, large dashes), 25

(blue), 200 (purple, small dashes) at average density ρ0 = 2
3
(thin dashes). The

kink becomes steeper as λ is increased.

4. Prospects

The SSEP on a ring displays a phase transition from a homogeneous state to a kink-
like profile as the trajectories’ activity is lowered below its average value. We have
described both the details of the kink profile that develops and the large deviation
function of the activity itself in this nonuniform dynamical state. In the course of
our analysis, we have identified three distinct finite-size scaling regimes. The system
dealt with in the present work exhibits a second order continuous phase transition.
It would certainly be quite desirable to find similar solvable examples for first-order
transitions. The mechanism by which the symmetry breaking sets in may be more
subtle. This is work in progress.
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