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We explore the classical setting for the U(N) framework for SU(2) intertwiners for loop quan-
tum gravity (LQG) and describe the corresponding phase space in terms of spinors with the
appropriate constraints. We show how its quantization leads back to the standard Hilbert
space of intertwiner states defined as holomorphic functionals. We then explain how to glue
these intertwiners states in order to construct spin network states as wave-functions on the
spinor phase space. In particular, we translate the usual loop gravity holonomy observables to
our classical framework. Finally, we propose how to derive our phase space structure from an
action principle which induces non-trivial dynamics for the spin network states. We conclude
by applying explicitly our framework to states living on the simple 2-vertex graph and discuss
the properties of the resulting Hamiltonian.
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INTRODUCTION

Loop quantum gravity (LQG) is now a well-established approach to quantum gravity. It proposes a canonical
framework with quantum states -the spin network states- defining the 3d space geometry and whose evolution in time
generates space-time. The main challenges still faced by the theory are, on the one hand, getting a full understanding
of the geometric meaning of the spin network states both at the Planck scale and in a semi-classical regime and, on the
other hand, constructing a consistent dynamics which would lead back to the standard dynamics of the gravitational
field at large scales. These two issues are obviously related and can not truly be solved independently.

The present work builds on the previously introduced U(N) framework for intertwiners in loop quantum gravity
[1, 2, 3, 4]. Intertwiners are the building blocks of the spin network states, which are constructed from gluing
intertwiners together along particular graphs. This framework was shown to be particularly efficient in building
coherent semi-classical intertwiner states [3, 4], which could be a useful basis to define full coherent semi-classical
spin network states. A side-product of this approach is the possibility of reformulating the whole LQG spin network
framework in terms of spinors [3]. From the point of view of the U(N) techniques, this comes from the harmonic
oscillators that are used to build all the operators and Hilbert spaces and which can be understood as the quantization
of spinors. From the point of view of loop quantum gravity, re-writing everything in terms of spinors might look like
a return to the origin since the theory was first developed in spinorial notations. We nevertheless believe that this
spinorial reformulation is relevant to understand better the geometric meaning of the spin network states and should
be useful in studying their semi-classical behavior and writing the quantum gravity dynamics.

This perspective is consistent with the recent “twisted geometry” framework developed by one of the authors and
collaborators [5, 6]. They explain how the classical phase space of loop quantum gravity on a fixed graph can be
expressed in terms of spinors and show how this can be used to explore the relation between spin network states and
discrete (Regge) geometries. This is particularly relevant to understanding the physical meaning of spinfoam models
defining the dynamics for spin networks.

In the present paper, we show how to fully recast the U(N) framework for SU(2) intertwiners in terms of spinors.
More precisely, we define the corresponding classical spinor phase space and introduce a classical action principle
from which we derive that phase space structure. Furthermore we show how its quantization leads to the Hilbert
space of intertwiner states. These intertwiners are built as some particular holomorphic functionals of the spinors.
We then move on to full spin network states. We explain how to glue intertwiners together to build spin networks.
This leads us to define the classical spinor phase space behind the Hilbert space of spin network states built on a
fixed graph. In particular, we explain how to translate the usual LQG holonomy observables in our framework. Then,
similarly to the case of a single intertwiner, we describe the corresponding classical action principle and discuss the
possible interaction terms we can add to the action in order to define a non-trivial dynamics for the spin network
states of quantum geometry. Finally, we apply these techniques to spin networks on the 2-vertex graph and compare
the resulting classical action principle to the 2-vertex quantum gravity model previously constructed by some of the
authors [7].

SPINORS AND NOTATIONS

In this preliminary section, we introduce spinors and the related useful notations, following the previous works
[3, 4, 6]. Considering a spinor z,

|z〉 =
(
z0

z1

)
, 〈z| =

(
z̄0 z̄1

)
,

we associate to it a geometrical 3-vector �V (z), defined from the projection of the 2 × 2 matrix |z〉〈z| onto Pauli
matrices σa (taken Hermitian and normalized so that (σa)2 = I):

|z〉〈z| =
1
2

(
〈z|z〉I + �V (z) · �σ

)
. (1)

The norm of this vector is obviously |�V (z)| = 〈z|z〉 = |z0|2 + |z1|2 and its components are given explicitly as:

V z = |z0|2 − |z1|2, V x = 2� (z̄0z1), V y = 2� (z̄0z1). (2)
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The spinor z is entirely determined by the corresponding 3-vector �V (z) up to a global phase. We can give the reverse
map:

z0 = eiφ

√
|�V | + V z

2
, z1 = ei(φ−θ)

√
|�V | − V z

2
, tan θ =

V y

V x
, (3)

where eiφ is an arbitrary phase.
Following [3], we also introduce the map duality ς acting on spinors:

ς

(
z0

z1

)
=
(−z̄1

z̄0

)
, ς2 = −1. (4)

This is an anti-unitary map, 〈ςz|ςw〉 = 〈w|z〉 = 〈z|w〉, and we will write the related state as

|z] ≡ ς|z〉, [z|w] = 〈z|w〉.

This map ς maps the 3-vector �V (z) onto its opposite:

|z][z| =
1
2

(
〈z|z〉I − �V (z) · �σ

)
. (5)

Finally considering the setting necessary to describe intertwiners with N legs, we consider N spinors zi and their
corresponding 3-vectors �V (zi). Typically, we can require that the N spinors satisfy a closure condition, i.e that the
sum of the corresponding 3-vectors vanishes,

∑
i
�V (zi) = 0. Coming back to the definition of the 3-vectors �V (zi), the

closure condition is easily translated in terms of 2 × 2 matrices:∑
i

|zi〉〈zi| = A(z)I, with A(z) ≡ 1
2

∑
i

〈zi|zi〉 =
1
2

∑
i

|�V (zi)|. (6)

This further translates into quadratic constraints on the spinors:∑
i

z0
i z̄

1
i = 0,

∑
i

∣∣z0
i

∣∣2 =
∑

i

∣∣z1
i

∣∣2 = A(z). (7)

In simple terms, it means that the two components of the spinors, z0
i and z1

i , are orthogonal N -vectors of equal norm.

I. OVERVIEW OF THE U(N) STRUCTURE OF INTERWINERS

Here, we quickly review the U(N) formalism for SU(2) intertwiners in loop quantum gravity. This framework was
introduced and improved in a series of papers [1, 2, 3, 4, 7]. More precisely, intertwiners withN legs are SU(2)-invariant
states in the tensor product of N (irreducible) representations of SU(2). Then the basic tool used to define the U(N)
formalism is the Schwinger representation of the su(2) Lie algebra in terms of a pair of harmonic oscillators. Since
we would like to describe the tensor product of N SU(2)-representations, we will need N copies of the su(2)-algebra
and thus we consider N pairs of harmonic oscillators ai, bi with i running from 1 to N .

The local su(2) generators acting on each leg i are defined as quadratic operators:

Jz
i =

1
2
(a†iai − b†i bi), J+

i = a†i bi, J−
i = aib

†
i , Ei = (a†iai + b†i bi). (8)

The Ji’s satisfy the standard commutation algebra while the total energy Ei is a Casimir operator:

[Jz
i , J

±
i ] = ±J±

i , [J+
i , J

−
i ] = 2Jz

i , [Ei, �Ji] = 0. (9)

The operator Ei is the total energy carried by the pair of oscillators ai, bi and simply gives twice the spin 2ji of the
corresponding SU(2)-representation. Indeed, we can easily express the standard SU(2) Casimir operator in terms of
this energy:

�J2
i =

Ei

2

(
Ei

2
+ 1
)

=
Ei

4
(Ei + 2) . (10)
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In the context of loop quantum gravity, the spin ji given as the value of the operator Ei/2 defines the area associated
to the leg i of the intertwiner.

Then we look for operators invariant under global SU(2) transformations generated by �J ≡ ∑
i
�Ji. The key result,

which is the starting point of the U(N) formalism, is that we can identify quadratic invariant operators acting on
pairs of (possibly equal) legs i, j [1, 3]:

Eij = a†iaj + b†i bj , E†
ij = Eji, (11)

Fij = (aibj − ajbi), Fji = −Fij . (12)

These operators E,F, F † form a closed algebra:

[Eij , Ekl] = δjkEil − δilEkj , (13)

[Eij , Fkl] = δilFjk − δikFjl, [Eij , F
†
kl] = δjkF

†
il − δjlF

†
ik,

[Fij , F
†
kl] = δikElj − δilEkj − δjkEli + δjlEki + 2(δikδjl − δilδjk),

[Fij , Fkl] = 0, [F †
ij , F

†
kl] = 0.

First focusing on the Eij operators, their commutators close and they form a u(N)-algebra. This is why this formalism
has been dubbed the U(N) framework for loop quantum gravity [1, 2]. The diagonal operators are equal to the previous
operators giving the energy on each leg, Eii = Ei. Then the value of the total energy E ≡∑iEi gives twice the sum
of all spins 2 ×∑i ji, i.e twice the total area in the context of loop quantum gravity.

The Eij-operators change the energy/area carried by each leg, while still conserving the total energy, while the
operators Fij (resp. F †

ij) will decrease (resp. increase) the total area E by 2:

[E,Eij ] = 0, [E,Fij ] = −2Fij , [E,F †
ij ] = +2F †

ij . (14)

This suggests to decompose the Hilbert space of N -valent intertwiners into subspaces of constant area:

HN =
⊕
{ji}

Inv
[⊗N

i=1V
ji
]

=
⊕
J∈N

⊕
∑

i ji=J

Inv
[⊗N

i=1V
ji
]

=
⊕

J

H(J)
N , (15)

where V ji denote the Hilbert space of the irreducible SU(2)-representation of spin ji, spanned by the states of the
oscillators ai, bi with fixed total energy Ei = 2ji.

It was proven in [2] that each subspace H(J)
N of N -valent intertwiners with fixed total area J carries an irreducible

representation of U(N) generated by the Eij operators. These are representations with Young tableaux given by two
horizontal lines with equal numbers of cases (J). More constructively, we can characterize them by their highest
weight vector v(J)

N :

E1 |v(J)
N 〉 = J |v(J)

N 〉, E2 |v(J)
N 〉 = J |v(J)

N 〉, Ek≥3 |v(J)
N 〉 = 0, E |v(J)

N 〉 = 2J |v(J)
N 〉, Ei<j |v(J)

N 〉 = 0 . (16)

These highest weight vectors define bivalent intertwiners where all the area is carried by two legs i = 1, 2 while all
the other legs carried the trivial SU(2)-representation jk≥3 = 0. Then the operators Eij allow to navigate from state
to state within each subspace H(J)

N . On the other hand, the operators Fij , F
†
ij allow to go from one subspace H(J)

N

to the next H(J±1)
N , thus endowing the full space of N -valent intertwiners with a Fock space structure with creation

operators F †
ij and annihilation operators Fij .

Finally, the identification of the highest vectors was made possible by realizing that the operators Eij satisfy
quadratic constraints, which can then be turned by conditions relating the quadratic U(N)-Casimir operator to the
total area E [2]. Then it was realized that the whole set of operators Eij , Fij , F

†
ij satisfy quadratic constraints [7]:

∀i, j,
∑

k

EikEkj = Eij

(
E

2
+N − 2

)
, (17)
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∑
k

F †
ikEjk = F †

ij

E

2
,

∑
k

EjkF
†
ik = F †

ij

(
E

2
+N − 1

)
, (18)

∑
k

EkjFik = Fij

(
E

2
− 1
)
,

∑
k

FikEkj = Fij

(
E

2
+N − 2

)
, (19)

∑
k

F †
ikFkj = Eij

(
E

2
+ 1
)
,

∑
k

FkjF
†
ik = (Eij + 2δij)

(
E

2
+N − 1

)
. (20)

As already noticed in [7], these relations look a lot like constraints on the multiplication of two matrices Eij and Fij .
This is the point which we will explore further in the present paper, and we will show that the operators Eij and Fij

are truly the quantization of the matrix elements of two N ×N classical matrices built from a set of 2N spinors. This
will allow to explore further the representation of the intertwiner space HN as the L2 over the Grassmanian space
U(N)/(U(2) × U(N − 2)) introduced in [2, 3].

II. THE CLASSICAL SETTING FOR INTERTWINERS

A The Matrix Algebra

Drawing inspiration from the operators Eij and Fij and the quadratic constraints relating them, our goal is to
describe the classical system behind the Hilbert space of SU(2)-intertwiners. Thus we consider two N ×N matrices,
a Hermitian matrix and an antisymmetric one:

M = M†, tQ = −Q. (21)

We assume that they satisfy the same constraints (17-20) that the operators Eij and Fij , up to terms which we
identify as coming from quantum ordering, i.e. we keep only the leading (quadratic) order in the operators E and F :

M2 =
TrM

2
M, QQ̄ = −TrM

2
M,

MQ =
TrM

2
Q, Q̄M =

TrM
2

Q̄, (22)

where Q actually plays the role of F † while Q̄ corresponds to F .
Let us now solve these equations and parameterize the space of solutions to these constraints.

Result 1. The quadratic constraints on M and Q, together with the requirement of Hermiticity of M and anti-
symmetry of Q, entirely fix these two matrices up to a global U(N) transformation and a relative phase:

M = λUΔU−1, Δ =

⎛⎝ 1
1

0N−2

⎞⎠ , (23)

Q = eiθλUΔε
tU, Δε =

⎛⎝ 1
−1

0N−2

⎞⎠ ,

where U is a unitary matrix U†U = I, λ ∈ R and exp(iθ) is an arbitrary phase.

Proof. Let us start with the trivial case when TrM = 0. Then it is obvious to see that M = Q = 0. Let us thus
assume that TrM 
= 0 and let us define λ = (TrM)/2.

The equation M2 = λM implies that the matrix M is a projector, with two eigenvalues 0 and λ. Then using
that λ = (TrM)/2, we can conclude that its rank is two. Thus we can write M = λUΔU−1, in terms of a unitary
matrix U ∈ U(N) defining an orthonormal basis diagonalizing M . More precisely, calling |ei〉 the canonical basis for
N -vectors, the basis U |ei〉 diagonalizes M :

M U |e1〉 = λU |e1〉, M U |e2〉 = λU |e2〉, M U |ek≥3〉 = 0.

The next step is to determine the matrix Q in terms of λ and U . We first apply the condition that Q̄M = λ Q̄, this
implies that:

Q̄ U |ek≥3〉 = 0,
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which is equivalent to QŪ |ek≥3〉 = 0. Then we can use the condition MQ = λQ to determine the action of Q on the
first two basis vectors:

∀i = 1, 2, M Q Ū |ei〉 = λQ Ū |ei〉.
Looking at the state Ū |e1〉, this means that either QŪ |e1〉 = 0 or that QŪ |e1〉 is in the subspace generated by U |e1〉
and U |e2〉. The first possibility is impossible, since it would imply that MU |e1〉 = 0 due to the condition QQ̄ = −λM .
Thus we write:

QŪ |e1〉 = αU |e1〉 + βU |e2〉.
Moreover, since Q is antisymmetric, we have 〈Ue1|Q|Ūe1〉 = 0 and thus the coefficient α vanishes. Further using the
antisymmetry property, we have 〈Ue1|Q|Ūe2〉 = −〈Ue2|Q|Ūe1〉, thus we get:

QŪ |e1〉 = βU |e2〉, Q Ū |e2〉 = −βU |e1〉.
Finally, using the last condition QQ̄ = −λM , we can compute the value of the coefficient β:

|β|2 U |e1〉 = −QQ̄U |e1〉 = λM U |e1〉 = λ2 U |e1〉 ⇒ β = eiθλ,

where θ is an arbitrary angle. This allows to conclude that: Q = eiθλUΔε
tU since tU = Ū−1.

Reversely, it is easy to check that the resulting expressions for M and Q in terms of U, λ, θ always satisfy the
quadratic constraints which we started from.

From now on, using the U(1) freedom of chosing U , we will set the phase θ to 0 and define the two matrices as:

M = λUΔU−1, Q = λUΔε
tU. (24)

Comparing with the U(N) framework for intertwiners reviewed in the previous section, the rank-2 matrix Δ plays
the role of the highest weight vector, from which we will get the full space of states by acting on it with U(N)
transformations. Looking at the stabilizer group for the diagonal matrix Δ, we see that M is invariant under:

U → UV, ∀V ∈ U(2) × U(N − 2), (25)

and therefore the matrix M exactly parameterizes the coset space U(N)/U(2)×U(N−2), which was already identified
in [2, 3] as the classical space behind N -valent SU(2) intertwiners. Similarly looking at the stabilizer group for Δε,
we realize that Q is invariant under a slightly smaller subgroup:

U → UV, ∀V ∈ SU(2) × U(N − 2). (26)

Therefore, the space of functions f(Q) invariant under multiplication by a phase, f(Q) = f(eiθQ), is isomorphic to
the space of functions on the Grassmannian space U(N)/U(2) × U(N − 2). This is consistent with the fact that the
quadratic conditions on M and Q only determine the matrix Q up to a phase.

Finally we will also require the positivity of the matrix M , i.e λ ≥ 0. This reflects the positivity of the energy/area
E at the quantum level. So that we now work with λ ∈ R+.

B From U(N) Matrices to Spinors and the Closure Condition

We start by writing explicitly the two matrices M and Q in terms of the matrix elements of the unitary transfor-
mation U :

Mij = λ(ui1ūj1 + ui2ūj2), Qij = λ(ui1uj2 − ui2uj1). (27)

These expressions only involve the first columns of the matrix U . This comes from the definition of the diagonal
matrices Δ and Δε, and the resulting invariance under the U(N − 2) subgroup. Comparing these equations with the
definitions (11-12) of the operators Eij and F †

ij , we see that the matrix element ui1 corresponds to the operator a†i .
Following this logic of a classical-quantum correspondence, we define the spinors zi as the rescaled first two columns
of the U -matrix:

zi ≡
(
ūi1

√
λ

ūi2

√
λ

)
. (28)
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The matrices M and Q are easily expressed in terms of these spinors:

Mij = 〈zi|zj〉 = 〈zj |zi〉, Qij = 〈zj |zi] = [zi|zj〉 = −[zj |zi〉. (29)

The matrix elements Qij are clearly anti-holomorphic in the zi’s while the Mij ’s mix both holomorphic and anti-
holomorphic components. With M and Q written as such, the quadratic constraints on M and Q are exactly the
relations between the matrices 〈zi|zj〉 and [zj |zi〉 written in [3]. The spinors zi are not entirely free, since they come
from the unitary matrix U . The only constraint is that the two vectors ui1 and ui2 are part of an orthonormal matrix,
that is that they are of unit-norm and orthogonal:

U†U = I ⇒
∑

i

|ui1|2 =
∑

i

|ui2|2 = 1,
∑

i

ui1ūi2 = 0. (30)

This is easy translated into conditions on the spinors:∑
i

|z0
i |2 =

∑
i

|z1
i |2 = λ,

∑
i

z0
i z̄

1
i = 0. (31)

Checking out the short preliminary section about spinors, we see that these conditions correspond exactly to the
closure constraints on the spinors zi, thus they are equivalent to the following conditions:∑

i

�V (zi) = 0,
∑

i

|zi〉〈zi| = λI,
1
2

∑
i

|�V (zi)| =
1
2

∑
i

〈zi|zi〉 = λ. (32)

Thus the requirement of unitarity, that our matrix U lays in U(N), is equivalent to the closure conditions on our N
spinors. We could relax these closure conditions by dropping the requirement of unitarity, but this would break the
quadratic constraints that M and Q satisfy.

Let us introduce the matrix elements of the 2 × 2 matrix
∑

i |zi〉〈zi| :

Cab =
∑

i

za
i z̄

b
i . (33)

Then the unitary or closure conditions are written very simply:

C00 − C11 = 0, C01 = C10 = 0. (34)

C Phase Space and SU(2) Invariance

Let us introduce a simple Poisson bracket on our space of N spinors:

{za
i , z̄

b
j} ≡ i δabδij , (35)

with all other brackets vanishing, {za
i , z

b
j} = {z̄a

i , z̄
b
j} = 0. This is exactly the Poisson bracket for 2N decoupled

harmonic oscillators.
We start by checking that the closure conditions generates global SU(2) transformations on the N spinors. First,

we can compute the Poisson brackets between the various components of the C-constraints :

{C00 − C11, C01} = −2iC01, {C00 − C11, C10} = +2iC10, {C10, C01} = i(C00 − C11), (36)
{TrC, C00 − C11} = {TrC, C01} = {TrC, C10} = 0.

These four components Cab do indeed form a closed u(2) algebra with the three closure conditions C00 − C11, C01 and
C10 forming the su(2) subalgebra. Thus we will write �C for these three su(2)-generators with Cz ≡ C00 − C11 and
C+ = C10 and C− = C01. We can further check their commutator with the spinors themselves:

{C00 − C11, z
0
i } = −i z0

i , {C01, z
0
i } = 0, {C10, z

0
i } = −iz1

i ,
{C00 − C11, z

1
i } = +i z1

i , {C01, z
1
i } = −iz0

i , {C10, z
1
i } = 0, (37)

which indeed generates the standard SU(2) transformations on the N spinors. The three closure conditions �C will
actually become the generators �J at the quantum level, while the operator Tr C will correspond to the total energy/area
E.
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We also compute the Poisson brackets of the Mij and Qij matrix elements:

{Mij ,Mkl} = i(δkjMil − δilMkj), (38)
{Mij , Qkl} = i(δjkQil − δjlQik),
{Qij , Qkl} = 0,
{Q̄ij , Qkl} = i(δikMlj + δjlMki − δjkMli − δilMkj),

which reproduces the expected commutators (13) up to the i-factor1. We further check that these variables commute
with the closure constraints generating the SU(2) transformations:

{�C,Mij} = {�C, Qij} = 0. (39)

Finally, we look at their commutator with Tr C. On the one hand, we have:

{Tr C,Mij} = 0, (40)

which confirms that the matrix M is invariant under the full U(2) subgroup. On the other hand, we compute:

{Tr C, Qij} = {
∑

k

Mkk, Qij} = +2iQij , (41)

which means that Tr C acts as a dilatation operator on the Q variables, or reversely that the Qij acts as creation
operators for the total energy/area variable Tr C.

D Action and Matrix model

We can derive the previous Poisson bracket from an action principle, which directly defines the classical phase space
associated to SU(2) intertwiners. In terms of the spinor variables, the action simply reads:

S0[zi] ≡
∫
dt

⎛⎝∑
i,a

iza
i ∂tz̄

a
i − ΛabCab

⎞⎠ =
∫
dt

⎛⎝∑
i,a

iza
i ∂tz̄

a
i − Λab

∑
i

za
i z̄

b
i

⎞⎠ , (42)

=
∫
dt

(∑
i

−i〈zi|∂tzi〉 + 〈zi|Λ|zi〉
)
,

where the 2×2 matrix elements Λab are Lagragian multipliers satisfying TrΛ =
∑

a Λaa = 0 and enforcing the closure
constraints �C = 0. As we have seen in the previous sections, the three constraints �C are first class constraints, they
generate global SU(2) transformations on the spinors. We must both impose and solve these closure constraints and
identify SU(2)-invariant observables on the space of constrained spinors.

This is the free action defining only the classical kinematics on the intertwiner space described in terms of spinors.
We can define dynamics by adding an interaction term to the action:

S[zi] ≡ S0[zi] + I[zi] =
∫
dt

⎛⎝∑
i,a

iza
i ∂tz̄

a
i − ΘabCab −H[zi]

⎞⎠ ,

where H[zi] would be the Hamiltonian of the system defining how intertwiners evolve.

1 In fact, if one compares carefully these Poisson brackets with the original commutators (13), one realizes that there’s an extra term

missing in the bracket {Q̄ij , Qkl} compared to the commutator [Fij , F
†
kl]. This term in [Fij , F

†
kl] is proportional to the identity and of

lower order than the other terms of the commutator (in E). It comes from re-ordering the annihilation/creation operators and can be
considered as a central term that only arises when quantifying. It does not have a counter-part at the level of the classical phase space
and Poisson bracket.
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We can re-write this action principle in terms of the initial unitary matrix U and the parameter λ ∈ R+:

S0[U, λ] ≡
∫
dt
[
−iTr

√
λUΔ∂t(

√
λU†) − TrΘ (UU† − I)

]
(43)

=
∫
dt
(−i λTr UΔ∂tU

† − i ∂tλ − TrΘ (UU† − I)
)
,

where the N ×N matrix Θ is a Lagrange multiplier enforcing that the matrix U is unitary.
A first remark is that the kinematical term

√
λ∂t

√
λ is a total derivative and does not induce any evolution, thus

the dynamics of the variable λ is entirely determined by its coupling to U through the kinematical term λTr UΔ∂tU
†.

Therefore, if the unitary matrix U does not evolve, then λ is frozen too. Then, we see that the action is invariant
under the left U(N) action:

U → V U, V ∈ U(N),

for a constant unitary matrix V (independent from t), but is only invariant under the right action of the stabilizer
subgroup U(2) × U(N − 2):

U → UV, V ∈ U(2) × U(N − 2).

If we want to add dynamics to this system, it is natural to require that the interaction term be also invariant
under the same symmetries. This greatly constrains the possible terms of a Hamiltonian. Indeed, we are left with
polynomials of Tr(λUΔU−1)k = TrMk = 2λk, which are simply polynomials in λ. Since the variable λ is not really
dynamical, we conclude that there are no truly non-trivial invariant dynamics for a single intertwiner.

We could bypass this conclusion by allowing Hamiltonian operators that break the U(N) symmetry. We do not
really see the purpose of such procedure, although it could be used to model the coupling of a single intertwiner to
an external source breaking the U(N) invariance. On the other hand, we will see in section.IV that we can have
non-trivial dynamics as soon as we work with many intertwiners when considering true spin network states on an
arbitrary graph.

Finally, we end this section stressing that we have managed to reformulate the classical setting of a single SU(2)
intertwiner as a unitary matrix model, which was the original goal of the paper [1] which introduces the U(N)
framework for SU(2) intertwiners.

E Intertwiners as (Anti-)Holomorphic Functionals

Now that we have fully characterize the phase space associated to the spinors zi and the variables Mij , Qij , we can
proceed to the quantization.

The most natural choice is to consider polynomials in the Qij matrix elements. More precisely, we introduce the
Hilbert spaces H(Q)

J of homogeneous polynomials in the Qij of degree J :

H(Q)
J ≡ {P ∈ P[Qij ] | P (ρQij) = ρJ P (Qij), ∀ρ ∈ C} . (44)

These are polynomials completely anti-holomorphic in the spinors zi (or holomorphic in z̄i) and of order 2J . Let us
point out that the variables Qij are not independent, since they are expressed in terms of the spinors zi. Resultingly,
they are related to each other by the Plücker relations as already noticed in [3]:

Qij = z̄0
i z̄

1
j − z̄1

i z̄
0
j ⇒ QijQkl = QilQkj +QikQjl. (45)

Interestingly, this can be interpreted as the recoupling relation between interchanging the four legs (i, j, k, l) of the
intertwiner (see fig.1).

Our claim is that these Hilbert spaces H(Q)
J are isomorphic to the Hilbert space H(J)

N of N -valent intertwiners with
fixed total area J . To this purpose, we will construct the explicit representation of the operator quantizing Mij and
Qij on the spaces H(Q)

J and show that they match the actions of the U(N) operators Eij and F †
ij which we described

earlier. Our quantization relies on quantizing the z̄i as multiplication operators while promoting zi to a derivative
operator:

̂̄za
i ≡ z̄a

i × , ẑa
i ≡ ∂

∂z̄a
i

, (46)
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FIG. 1: Focusing on the four legs (i, j, k, l) of the intertwiner, the Plücker relation QijQkl = QilQkj +QikQjl on the
Q-variables becomes the (standard) recoupling relation for SU(2) intertwiners (more precisely, for holonomy operators
acting on SU(2) intertwiners). This relation is often used in Loop Quantum Gravity when still using states defined
as products of Wilson loops instead of spin network states.

which satisfies the commutator [ẑ, ˆ̄z] = 1 as expected for the quantization of the classical bracket {z, z̄} = i. Then,
we quantize the matrix elements Mij and Qij and the closure constraints following this correspondence:

M̂ij = z̄0
i

∂

∂z̄0
j

+ z̄1
i

∂

∂z̄1
j

, (47)

Q̂ij = z̄0
i z̄

1
j − z̄1

i z̄
0
j = Qij , (48)

̂̄Qij =
∂2

∂z̄0
i ∂z̄

1
j

− ∂2

∂z̄1
i ∂z̄

0
j

, (49)

Ĉab =
∑

k

z̄b
k

∂

∂z̄a
k

. (50)

It is straightforward to check that the Ĉab and the M̂ij respectively form a u(2) and a u(N) Lie algebra, as expected:

[Ĉab, Ĉcd] = δadĈcb − δcbĈad, [M̂ij , M̂kl] = δkjM̂il − δilM̂kj , [Ĉab, M̂ij ] = 0. (51)

which amounts to multiply the Poisson bracket (36) and (38) by −i. Then, we first check the action of the closure
constraints on functions of the variables Qij :

�̂CQij = 0, (̂Tr C)Qij = 2Qij ,

∀P ∈ H(Q)
J = PJ [Qij ], �̂C P (Qij) = 0, (̂Tr C)P (Qij) = 2J P (Qij), (52)

so that our wavefunctions P ∈ H(Q)
J are SU(2)-invariant (vanish under the closure constraints) and are eigenvectors

of the Tr C-operator with eigenvalue 2J .
Second, we check that the operators M̂ and (̂Tr C) satisfy the same quadratic constraints on the Hilbert space H(Q)

J
(i.e assuming that the operators acts on SU(2)-invariant functions vanishing under the closure constraints) that the
u(N)-generators Eij :

(̂Tr C) =
∑

k

M̂kk,
∑

k

M̂ikM̂kj = M̂ij

(
(̂Tr C)

2
+N − 2

)
, (53)

which allows us to get the value of the (quadratic) U(N)-Casimir operator on the space H(Q)
J :

∑
ik

M̂ikM̂ki = (̂Tr C)

(
(̂Tr C)

2
+N − 2

)
= 2J(J +N − 2).

Thus, we can safely conclude that this provides a proper quantization of our spinors and M -variables, which matches
exactly with the u(N)-structure on the intertwiner space (with the exact same ordering):

H(Q)
J ∼ H(J)

N , M̂ij = Eij , (̂Tr C) = E. (54)
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Now, turning to the Q̂ij-operators, it is straightforward to check that they have the exact same action that the F †
ij

operators, they satisfy the same Lie algebra commutators (13) and the same quadratic constraints (18-20). Clearly,
the simple multiplicative action of an operator Q̂ij send a polynomial in PJ [Qij ] to a polynomial in PJ+1[Qij ].
Reciprocally, the derivative action of ̂̄Qij decreases the degree of the polynomials and maps PJ+1[Qij ] onto PJ [Qij ].

Finally, let us look at the scalar product on whole space of polynomials P[Qij ]. In order to ensure the correct
Hermicity relations for M̂ij and Q̂ij ,

̂̄Qij , it seems that we have a unique2 measure (up to a global factor):

∀φ, ψ ∈ P[Qij ], 〈φ|ψ〉 ≡
∫ ∏

i

d4zi e
−∑ i〈zi|zi〉 φ(Qij)ψ(Qij) . (55)

Then it is easy to check that we have M̂†
ij = M̂ji and Q̂†

ij = ̂̄Qij as wanted.
It is easy to see that the spaces of homogeneous polynomials PJ [Qij ] are orthogonal with respect to this scalar

product. The quickest way to realize that this is true is to consider the operator (̂Tr C), which is Hermitian with
respect to this scalar product and takes different values on the spaces PJ [Qij ] depending on the value of J . Thus
these spaces PJ [Qij ] are orthogonal to each other3.

This concludes our quantization procedure thus showing that the intertwiner space for N legs and fixed total area
J =

∑
i ji can be seen as the space of homogeneous polynomials in the Qij variables with degree J . This provides us

with a description of the intertwiners as wave-functions anti-holomorphic in the spinors zi (or equivalently holomorphic
in z̄i) constrained by the closure conditions. In particular, the highest weight vector of the U(N) representation
PJ [Qij ] is the monomial QJ

12, which defines the (unique) bivalent intertwiner carrying the spin J
2 on both legs 1 and

2. Finally, in this context, the Plücker relation on the Qij variables can truly be interpreted as recoupling relations
on intertwiners.

Before moving on, we would like to comment about the equivalence on using the spinor variables or the Qij variables
or the initial λ,U variables. Indeed, at the end of the day, we are considering (anti-holomorphic) functions of the
spinors zi satisfying the closure conditions C and also invariant under the SU(2) transformations that they generate,
this defines the manifold C4N//SU(2) = C4N/SL(2,C), with dimension:

4N − (3 + 3).

Let us now compare with the Q-matrix defined as Q = λUΔε
tU . As we already said earlier, this defines the manifold

R+ × U(N)/(SU(2) × U(N − 2)) since the expression of Q is invariant under U → UV with V ∈ SU(2) × U(N − 2).
It is easy to compute the dimension of this manifold:

1 +N2 − 3 − (N − 2)2 = 4N − 6,

which coincides exactly (as expected!) with the previous dimension of the spinor manifold.

In the next section, we will present an alternative construction, which can be considered as “dual” to the represen-
tation defined above. It is based on the coherent states for the oscillators, thus recovering the framework of the U(N)
coherent intertwiner states introduced in [3] and further developed in [4].

F Intertwiners as Holomorphic Functionals - version 2

We can also build our Hilbert space of quantum states as a Fock space acting with creation operators on the vacuum
state |0〉 of the oscillators. This will be based on the SU(2) coherent intertwiners and U(N) coherent states as defined
in [3, 4].

2 If we ask to recover only the hermiticity relation for M̂ij then we can use any function of
∑

i〈zi|zi〉 as a measure instead of the

exponential. Asking in turns that Q̂ and ̂̄Q are hermitian conjugate fixes entirely the measure up to a scale.
3If φJ (Qij)ψJ (Qij) are homogeneous of degree J we can express this scalar product as an integral over the grassmanian:

〈φJ |ψJ 〉 = (N + J − 1)!(N + J − 2)!

∫
G2,N

φJ (Qij)ψJ (Qij) , (56)

where G2,N = {|zi〉i=1···n|
∑

i |zi〉〈zi| = 1} .
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We start by quantizing the spinors components z0
i , z̄

0
i and z1

i , z̄
1
i satisfying the classical Poisson bracket (35) as the

creation and annihilation operators of harmonic oscillators, respectively ai, a
†
i and bi, b

†
i . We will have these operators

acting on the standard coherent states for quantum oscillators by multiplication by z and derivative with respect to
z.

More precisely, let us begin by introducing the basis of SU(2) coherent intertwiners as defined in [3, 4] in terms of
the spinors zi ∈ C2 and some extra spin labels ji ∈ N/2:

||{ji, zi}〉 ≡
∫

SU(2)

dg g �
∏

i

(z0
i a

†
i + z1

i b
†
i )

2ji√
(2ji)!

|0〉, (57)

where |0〉 is the vacuum states of the harmonic oscillators, ai |0〉 = bi |0〉 = 0. The group-averaging is taken over
SU(2) with its standard action on spinors as 2 × 2 matrices. This is exactly the SU(2) transformations generated by
�J [3, 4]. We further introduce the U(N) coherent states4:

|J, {zi}〉 ≡
∑

∑
i ji=J

1√
(2ji)!

||{ji, zi}〉 =
1

(2J)!

∫
SU(2)

dg g �
∏

i

(∑
i

(z0
i a

†
i + z1

i b
†
i )

)2J

|0〉. (58)

Now, we can define our operators M̂ij , Q̂ij and ̂̄Qij as differential operators in the zk’s acting in the basis |J, {zi}〉
and we can check that they exactly match the action of the operators Eij ,Fij and F †

ij .

Result 2. We define the operators M̂ij, Q̂ij and ̂̄Qij as differential operators acting on holomorphic functionals
|ϕ〉 ≡ ∫

[d2z]2N ϕ(zk) |J, {zk}〉 :

M̂ij = −
(

∂

∂z0
i

z0
j +

∂

∂z1
i

z1
j

)
= −

(
z0
j

∂

∂z0
i

+ z1
j

∂

∂z1
i

)
− 2δij (59)

Q̂ij =
∂2

∂z0
i ∂z

1
j

− ∂2

∂z1
i ∂z

0
j

.

̂̄Qij = z0
i z

1
j − z1

i z
0
j = Q̄ij

These differential operators exactly reproduce the action of respectively the operators Eij = a†iaj+b
†
i bj, Fij = aibj−ajbi

and F †
ij on the (coherent) states |J, {zk}〉.

Proof. We start by computing the action of the operators Eij ,Fij and F †
ij on the states ||{jk, zk}〉. In order to do this,

we use the definition of those states and simply compute the commutator of the Eij ,Fij and F †
ij with the operators

(z0
ka

†
k + z1

kb
†
k)2jk . Then it is straightforward to get:

Eij ||{jk, zk}〉 =

√
2jj√

2ji + 1

(
z0
j

∂

∂z0
i

+ z1
j

∂

∂z1
i

)
||{ji +

1
2
, jj − 1

2
, jk, zk}〉, (60)

Fij ||{jk, zk}〉 =
√

2jj
√

2ji (z0
i z

1
j − z1

i z
0
j ) ||{ji − 1

2
, jj − 1

2
, jk, zk}〉,

F †
ij ||{jk, zk}〉 =

1√
(2ji + 1)

√
2ji + 1

(
∂2

∂z0
i ∂z

1
j

− ∂2

∂z1
i ∂z

0
j

)
||{ji +

1
2
, jj +

1
2
, jk, zk}〉,

4 As was shown in [4], these states are closely related to the coherent state basis for the quantum oscillators:∑
J∈N

β2J |J, {zi}〉 =

∫
dg g � eβ[

∑
i z0

i a
†
i +z1

i b
†
i ] |0〉.

This works because the integral over SU(2) of odd powers of a† and b† vanishes.
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which allows to obtain the action on the |J, {zk}〉 states:

Eij |J, {zk}〉 =
(
z0
j

∂

∂z0
i

+ z1
j

∂

∂z1
i

)
|J, {zk}〉, (61)

Fij |J, {zk}〉 = (z0
i z

1
j − z1

i z
0
j ) |J − 1, {zk}〉,

F †
ij |J, {zk}〉 =

(
∂2

∂z0
i ∂z

1
j

− ∂2

∂z1
i ∂z

0
j

)
|J + 1, {zk}〉,

These expressions were actually already derived [4] by other means. Using these actions of the operators Eij ,Fij and
F †

ij on the states ||J, {zk}〉, we finally derive their action on states
∫

[d2z]2N ϕ(zk) |J, {zk}〉 by integration by parts and
we recover the expressions given above.

As in the previous section, we can check that these operators M̂ij , Q̂ij and ̂̄Qij satisfy the exact expected com-
mutation relations and quadratic constraints (when acting on SU(2)-invariant states), and thus provide a proper
quantization of our classical Poisson structure (38). We notice that it is the operator ̂̄Qij = Fij which now acts as a
multiplication operator while Q̂ij = F †

ij becomes a derivative operator. In this sense, we can consider this quantization
scheme as “dual” to the one presented in the previous section. This comes from quantizing z as ∂z̄ in the previous
scheme while quantizing z̄ as −∂z in the present scheme based on the coherent states. For more details on the U(N)
coherent state basis, the interested reader can refer to [3, 4].

III. BUILDING HOLONOMIES FOR LOOP GRAVITY

Up to now, we have described the Hilbert space of a single intertwiner, corresponding to a single vertex of a spin
network state, in terms of spinors and U(N) operators. More precisely, we have described the classical system of 2N
spinors constrained by the closure conditions, which is isomorphic to the coset space U(N)/SU(2) × U(N − 2), and
we have explained how its quantization leads back to the space of N -valent intertwiner states.

In this section, we discuss the generalization of this framework to whole spin network states for Loop Quantum
Gravity. We explain how to glue intertwiners, or more precisely how to glue these systems of spinors together along
particular graphs. The main result is how to express holonomies in terms of the spinors. This allows to view spin
network states as functionals of our Qij variables and fully reformulate the kinematics of Loop Quantum Gravity in
terms of spinors and the U(N) operators.

A Revisiting Spin Network States

Building on the previous works on the U(N) framework for intertwiners [2, 3, 7] and the twistor representation of
twisted geometries for loop gravity [5, 6], we would like to give a full representation of the spin network states in
terms of spinors.

Let us start by considering a given oriented graph Γ, with E edges and V vertices. Let us call s(e) and t(e)
respectively the source and target vertices of each edge. Then the Hilbert space of cylindrical functions for Loop
Quantum Gravity consists in all functions of E group elements ge ∈ SU(2) which are invariant under the SU(2)-action
at each vertex:

∀hv ∈ SU(2)×V , φ(ge) = φ(hs(e)geh
−1
t(e)). (62)

The scalar product between two such functionals is defined by the straightforward integration with respect to the
Haar measure on SU(2):

〈φ|φ̃〉 =
∫

SU(2)×E

[dge]φ(ge) φ̃(ge) (63)

so that the Hilbert space of SU(2)-invariant cylindrical functions on the considered graph Γ is

HΓ ≡ L2(SU(2)E/SU(2)V ).
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A basis of this space is given by the spin network states, which are labeled by one SU(2)-representation je on each
edge e and one intertwiner state Iv on each vertex v of the graph. One goal is to make the link between this and our
formalism based on spinors, Qij variables and U(N) operators.

The first step was already described in [2]. We consider one intertwiner state constructed with the U(N) formalism,
and then we glue them along the edges of the graph. More precisely, we start with a function ψ(Q1, .., QV ) where Qv

is the Nv ×Nv matrix corresponding to the vertex v where Nv is the valence of the node v. Each of these matrices
Qv is constructed from a set of spinors zv,e attached to the corresponding vertex v. These intertwiners are decoupled
for now. Following [2], we glue them by requiring that they carry the same spin je from the point of view of both
vertices s(e) and t(e). Since the spin on the leg e of an intertwiner at the vertex v is given by the energy operator
Ev

e = M̂v
ee living on that leg, this amounts to imposing the constraint Es(e)

e −Et(e)
e = 0 on each edge e. This matching

condition corresponds to the classical constraint:

Ms(e)
ee −MT (e)

ee = 〈zs(e),e|zs(e),e〉 − 〈zt(e),e|zt(e),e〉 = 0, (64)

which requires that the two spinors zs(e),e and zt(e),e have equal norm. At the quantum level, this constraint imposes
a U(1)-invariance for each edge:

ψ(zs(e),e, zt(e),e) = ψ(eiθe zs(e),e, e
−iθezt(e),e), ∀θe ∈ [0, π] , (65)

ψ(Qs(e), Qt(e), Qv) = ψ(e−i(δie+δje)θe Q
s(e)
ij , e+i(δie+δje)θe Q

t(e)
ij , Qv), ∀θe ∈ [0, π] , (66)

whether we express the wave-functions in terms of the Qv
ij matrix elements or directly in terms of the spinors zv,e.

Notice that we multiply the source and target spinors by opposite phases.
There is two equivalent ways to impose these matching constraints on the wave-functions:

• Either, we impose 〈zs(e),e|zs(e),e〉 − 〈zt(e),e|zt(e),e〉 = 0 at the classical level on the phase space and consider
equivalence classes of spinors under the corresponding U(1)E transformations; and then quantize the system by
considering (anti-)holomorphic wave-functions on this constrained phase space.

• Or quantize the system of intertwiners as we have done up to now without imposing 〈zs(e),e|zs(e),e〉 −
〈zt(e),e|zt(e),e〉 = 0 at the classical level, and then impose the U(1)E invariance to the resulting (anti-)holomorphic
wave-functions.

Conjecture 1. Following this procedure, we consider (anti-)holomorphic wave-functions of the spinors
ψ(zs(e),e, zt(e),e), where all sets of spinors around each vertex v satisfy the closure conditions and invariant under
SU(2) (generated by those same closure conditions), and such that they are invariant under multiplication by a phase
on each edge e. We conjecture that the L2 space of such functions with respect to the measure (55) is isomorphic to
the Hilbert space HΓ of spin network states of the graph Γ. In more mathematical terms:

HΓ = L2(SU(2)E/SU(2)V ) = L2
holo

(×v C2Nv//SU(2)
)
/U(1)E (67)

= L2
holo

(×v R+ × U(Nv)/(SU(2) × U(Nv − 2))
)
/U(1)E

where the //SU(2) quotient means that we both impose the closure conditions and the invariance under the SU(2)
transformations that they generate. In this scheme, it is truly the closure conditions at each vertex that induce the
SU(2)-gauge invariance of our quantum states.

A first hint towards establishing this conjecture is a count of the degrees of freedom. Starting by focusing on a
given vertex v, we are looking at holomorphic functions of Nv spinors satisfying the closure conditions C and invariant
under the SU(2), which gives:

1
2

[4Nv − (3 + 3)] = 2Nv − 3,

taking into account that each spinor counts for 4 real degrees of freedom and the 1
2 -factor accounts for considering

only holomorphic functions. We have already commented in section.II E on the equivalence of counting the number of
degrees of freedom defined by the spinor variables or by the Q variables. We now sum over all vertices v and impose
the U(1) on each edge, which gives: ∑

v

(2Nv − 3) − E = 3E − 3V,



15

since the combinatorics of a graph ensures that the number of edges can be expressed in terms of the valence of all the
nodes as 2E =

∑
v Nv. We compare this to the dimension of the quotient manifold SU(2)E/SU(2)V whose dimension

is obviously 3(E − V ) since SU(2) has dimension 3 (excluding the “degenerate” case when E = V which corresponds
to a single Wilson loop).

The second step towards establishing the correspondence between the standard formalism of loop (quantum) gravity
and our spinor formulation is provided by the reconstruction of the group element ge in terms of the spinors. This
was done in [6].

Considering an edge e with the two spinors at each of its end-vertices zs(e),e and zt(e),e, there exists a unique SU(2)
group element mapping one onto the other. More precisely:

ge ≡ |zs(e),e]〈zt(e),e| − |zs(e),e〉[zt(e),e|√〈zs(e),e|zs(e),e〉〈zt(e),e|zt(e),e〉
(68)

is uniquely fixed by the following conditions:

ge

|zt(e),e〉√〈zt(e),e|zt(e),e〉
=

|zs(e),e]√〈zs(e),e|zs(e),e〉
, ge

|zt(e),e]√〈zt(e),e|zt(e),e〉
= − |zs(e),e〉√〈zs(e),e|zs(e),e〉

, ge ∈ SU(2), (69)

thus sending the source normalized spinor onto the dual of the target normalized spinor. Let us point out that if
we impose the matching conditions 〈zs(e),e|zs(e),e〉 − 〈zt(e),e|zt(e),e〉 = 0 on the spinors, then the norm-factors can be
dropped out of the previous equations. This truly means that the ge’s define the parallel transport of the spinors along
the edges of the graph. This expression ge(zs(e),e, zt(e),e) is clearly U(1)-invariant i.e invariant under the simultaneous
multiplication by a phase of the two spinors:

zs(e),e → eiθe zs(e),e, zt(e),e → e−iθe zt(e),e.

Thus we can consider any function φ(ge) as a function ψ(zv,e). We would still need to check how the SU(2) gauge
invariant of the φ(ge) functionals are turned into the closure conditions for the wave-functions ψ(zv,e).

We postpone a rigorous mathematical study of this issue and the resulting proof of the conjecture to future inves-
tigation [8]. Instead, here, we would like to focus on using this formula for the SU(2) group elements in terms of our
spinors to express the holonomy operators of Loop Quantum Gravity in terms of the U(N) operators.

B Reconstructing Holonomies

The group elements ge(zs(e),e, zt(e),e) ∈ SU(2) that we constructed in the previous section are invariant under U(1)
and thus commute with the matching conditions Es(e)

e − E
t(e)
e ensuring that the energy of the oscillators on the

edge e at the vertex s(e) is the same as at the vertex t(e). However, they are obviously not invariant under SU(2)
transformation. As well-known in loop (quantum) gravity, in order to construct SU(2)-invariant observables, we need
to consider the trace of holonomies around closed loops, i.e the oriented product of group elements ge along closed
loops L on the graph:

GL ≡
−→∏
e∈L

ge. (70)

Let us assume for simplicity’s sake that all the edges of the loop are oriented the same way, so that we can number the
edges e1, e2, ..en with v1 = t(en) = s(e1), v2 = t(e1) = s(e2) and so on. Then, we can write explicitly the holonomy
GL in terms of the spinors:

Tr GL = Tr g(e1)..g(en) = Tr
∏

i(|zvi,ei
]〈zvi+1,ei

| − |zvi,ei
〉[zvi+1,ei

|)∏
i

√〈zvi,ei
|zvi,ei

〉〈zvi+1,ei
|zvi+1,ei

〉 . (71)

Now, instead of factorizing this expression per edge, let us group the terms per vertex:

Tr GL =
∑

ri=0,1

(−1)
∑

i ri

∏
i〈ςri−1zvi,ei−1 | ς1−rizvi,ei

〉∏
i

√〈zvi,ei−1 |zvi,ei−1〉〈zvi,ei
|zvi,ei

〉 , (72)
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FIG. 2: The loop L = {e1, e2, .., en} on the graph Γ.

where the ςri records whether we have the term |zvi,ei
]〈zvi+1,ei

| or |zvi,ei
〉[zvi+1,ei

| on the edge ei. Let us remember
that ς is the (anti-unitary) map sending a spinor |z〉 to each dual |z].

Now, depending of the specific values on the ri parameters, the scalar products at the numerators are given by the
matrix elements of M i or Qi at the vertex i:

ri−1 ri 〈ςri−1zvi,ei−1 | ς1−rizvi,ei
〉

0 0 Qi
i,i−1

0 1 M i
i−1,i

1 0 M i
i,i−1

1 1 Q̄i
i,i−1

(73)

Since the matrices M i, Qi, Q̄
i are by definition SU(2)-invariant (they commute with the closure conditions), this

provides a posteriori check that the holonomy Tr GL correctly provides a SU(2)-observables.
Taking into account the various possibilities for the signs (−1)ri , we can write the holonomy in a rather barbaric

way:

Tr GL =
∑

ri=0,1

(−1)
∑

i ri

∏
i ri−1riQ̄

i
i,i−1 + (1 − ri−1)riM i

i−1,i + ri−1(1 − ri)M i
i,i−1 + (1 − ri−1)(1 − ri)Qi

i,i−1∏
i

√〈zvi,ei
|zvi+1,ei

〉 ,

(74)
where actually only one of the four terms is selected for each set of {ri}. To simplify the notations, we call M{ri}

L
each term for a fixed set {ri}:

M{ri}
L ≡

∏
i

ri−1riQ̄
i
i,i−1 + (1 − ri−1)riM i

i−1,i + ri−1(1 − ri)M i
i,i−1 + (1 − ri−1)(1 − ri)Qi

i,i−1 (75)

=
∏

i

〈ςri−1zvi,ei−1 | ς1−rizvi,ei
〉.

Each of these quantities are still SU(2)-invariant observables and are also invariant under the U(1)E transformations
generated by the matching conditions. So there are genuine observables on the space of spin networks.

After having expressed the holonomy observable in terms of the spinors and M,Q, Q̄ matrices at the classical level,
our purpose is to promote it to a quantum operator and express the holonomy operator acting on spin network states
in terms of the U(N)-operators E,F, F †. In order to achieve this, looking at the vertex v and the pair of edges e, f ,
we simply have to quantize the matrix elements as:

Mv
ef → Ev

ef , (76)

Qv
ef → F v

ef
†,

Q̄v
ef → F v

ef .
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Therefore the quantization of the holonomy observable is obvious apart from the factors at the denominator. First,
we notice that the norm 〈zv,e|zv,e〉 for each edge e attached to v is simply the matrix element Mv

ee giving the total
energy on the leg e for the intertwiner living at v. The natural quantization of these terms is thus Ev

ee. However, we
need to take the inverse square-root of these operators and they do have a 0 eigenvalue. We must also face possible
ordering ambiguities because all the E and F and F † operators do not commute. In order to decide which ordering
is right, we draw inspiration from the direct calculation of the holonomy operator for the 2-vertex graph done in [7]
and conjecture the following expression:

Conjecture 2. We can express the holonomy operator around a closed loop L (assuming that all the edges are oriented
the same way) acting on spin network states as:

T̂r GL =
∑

ri=0,1

(−1)
∑

i riE M̂{ri}
L E , (77)

with the operators

E ≡ 1∏
i

√
Eei

+ 1

and

M̂{ri}
L ≡

∏
i

ri−1riF
i
i,i−1 + (1 − ri−1)riEi

i−1,i + ri−1(1 − ri)Ei
i,i−1 + (1 − ri−1)(1 − ri)F i

i,i−1
† .

First, we have written Eei
without reference to any vertex. This is because spin network states satisfy the matching

constraints on all edges Es(e)
ee = E

t(e)
ee , therefore we write here Eei

≡ Evi
eiei

= Evi
ei−1ei−1

. In particular, one can easily

check that the operator
∏

j M̂j commute with all the matching constraints Evi
eiei

− Evi
ei−1ei−1

. Second, Eei
is the

energy operator of the oscillators living on the edge ei, so it has a positive spectrum N. Thus, the shifted operator
Eei

+ 1 is still Hermitian and has a strictly positive spectrum N∗ = N \ {0}. Therefore, the operator 1/
√
Eei

+ 1 is
well-defined.

Finally, we point out that the operator T̂r GL defined as above is straightforwardly Hermitian.

In order to prove this conjecture, we could do a direct calculation of the action of the holonomy operator, check
how it acts on all the intertwiners living at the vertices of the loops L and compare with the expression above. We
believe that a more indirect check but certainly less painful and more enlightening would be to compute the algebra
of our conjectured holonomy operators and compare it to the actual well-known holonomy algebra. We postpone this
study to future investigation [8].

We nevertheless check our conjectured formula against the exact expression of the holonomy operators for the
2-vertex graph [7], and it seems that we have the exact same expressions apart from the sign factor (−1)ri . Let us
look more carefully at this issue.

The 2-vertex graph consists in two vertices α and β, linked by N edges all oriented in the same direction from
α to β. We number the edges i = 1..N . We now have U(N) operators acting at each vertex, E(α)

ij , F
(α)
ij , F

(α)
ij

† and

E
(β)
ij , F

(β)
ij , F

(β)
ij

†. Finally, the matching conditions to ensure that we are working with true spin network states are

E
(α)
ii − E

(β)
ii = 0 for all edges i.

Let us look at a basic loop consisting in two edges (ij). Then we apply our conjectured formula to get:

T̂r G(ij) = − 1√
Ei + 1

√
Ej + 1

(F (α)
ij F

(β)
ij + E

(α)
ij E

(β)
ij + E

(α)
ji E

(β)
ji + F

(α)
ij

†F (β)
ij

†)
1√

Ei + 1
√
Ej + 1

. (78)

This is the exact same expression as we have derived in the earlier work [7] apart from the global minus sign. This
discrepancy is not an issue since it is only due to the difference of orientation. Indeed, our conjecture formula holds
for all edges oriented the same way around the loop L, while the formula derived in [7] assumes that the edges are all
oriented from α to β. There is no problem with changing the orientations in our formula for the holonomy operator
above: we multiply by a minus sign for each edge whose orientation we switch.

At the end of the day, the present framework is totally consistent with the full analysis of spin network states on
the 2-vertex graph done in [7].

By expressing the holonomy operator around a closed loop in terms of the operators Eij , Fij and F †
ij of the U(N)

formalism, we have finally written a proper SU(2)-invariant operators acting on spin network states and not only on
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FIG. 3: The 2-vertex graph with vertices α and β and the N edges linking them.

single intertwiner states as done up to now [1, 2, 3, 4]. As we have said earlier, looking carefully at the expression of
the holonomy operator, each term of the sum over ri = 0, 1 is also SU(2)-invariant and commutes with the matching
conditions. Moreover, we can forget about the factors E in the denominator, which comes from properly normalizing
the spinors into order to define the group elements ge. Finally, we are left with the operators M̂{ri}

L for each set of
values {ri}, which we interpret as defining generalized holonomy operators in our U(N) formalism for loop quantum
gravity. These operators are simply constructed as the product of E or F or F † operators acting on the vertices
around the loop:

M̂{ri}
L ≡

∏
i

ri−1riF
i
i,i−1 + (1 − ri−1)riEi

i−1,i + ri−1(1 − ri)Ei
i,i−1 + (1 − ri−1)(1 − ri)F i

i,i−1
†. (79)

These are the natural SU(2)-invariant operators acting on spin network states in the U(N) formalism. It is easy to
see that they shift the spin je of the edges around the loop e ∈ L by ± 1

2 . For instance, for ri = 0 for all i around the
loop, then:

M̂{ri=0}
L =

∏
i

F i
i,i−1

†

raises all the spins around the loop by +1
2 . On the other hand, for ri = 1 for all i’s, we decrease all the spins by − 1

2 :

M̂{ri=1}
L =

∏
i

F i
i,i−1.

Now, if we put mixed values around the loop L, the corresponding operator M̂{ri}
L increases the spins of the edges i

with ri = 0 and decreases the spins on the edges labeled by ri = 1.
We can also reconstruct every M̂{ri}

L operator from the holonomy operator T̂r G(ij) by suitable insertions of the
energy operators Eei

in order to select specific ± 1
2 shifts for the spins around the loop. This was done explicitly in

the case of the 2-vertex graph in [7] and can get straightforwardly generalized to arbitrary graphs and loops.
Finally, the algebra of these generalized holonomy operators M̂{ri}

L will be investigated elsewhere [8].

IV. CLASSICAL DYNAMICS FOR SPIN NETWORKS

A A Classical Action for Spin Networks

Let us start by summarizing the classical setting for spin network states on a given graph Γ. Spin network states
are V intertwiner states -one at each vertex v- glued together along the edges e so that they satisfy the matching
conditions on each edge. The phase space consists with the spinors zv,e (where e are edges attached to the vertex v,
i.e such that v = s(e) or v = t(e)) which we constrain by the closure conditions �Cv at each vertex v and the matching
conditions on each edge e. The corresponding action reads:

SΓ
0 [zv,e] =

∫
dt
∑

v

∑
e|v∈∂e

(−i〈zv,e|∂tzv,e〉 + 〈zv,e|Λv|zv,e〉) +
∑

e

ρe

(〈zs(e),e|zs(e),e〉 − 〈zt(e),e|zt(e),e〉
)
, (80)
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where the 2× 2 Lagrange multipliers Λv satisfying TrΛv = 0 impose the closure constraints and the Lagrange multi-
pliers ρe ∈ R impose the matching conditions. All the constraints are first class, they generate SU(2) transformations
at each vertex and U(1) transformations on each edge e.

We can describe the same system parameterized by Nv×Nv unitary matrices Uv and the parameters λv. The matrix
elements Uv

ef refer to pairs of edges e, f attached to the vertex v. The closure conditions are automatically encoded in

the requirement that the matrices Uv are unitary. We still have to impose the matching conditions Ms(e)
ee −M t(e)

ee = 0
on each edge e where the matrices Mv = λv U

vΔUv−1 are functions of both λv and Uv. The action then reads:

SΓ
0 [λv, U

v] =
∫
dt
∑

v

(
−i λvTr UvΔ∂tU

v† − TrΘv (UvUv† − I)
)

+
∑

e

ρe(Ms(e)
ee −M t(e)

ee ), (81)

where the ρe impose the matching conditions as before while the Nv ×Nv matrices Θv are the Lagrange multipliers
for the unitarity of the matrices Uv. Moreover, this action is invariant under the action of SU(2)×U(Nv −2) at every
vertex, which reduces the number of degrees of freedom of the matrices Uv to the spinors zv,e which are actually the
two first columns of those matrices.

This free action describes the classical kinematics of spin networks on the graph Γ. Now, we would like to add
interaction terms and a Hamiltonian to this action in order to define a non-trivial dynamics for the system. Such
interaction terms need to be compatible with the closure conditions and the matching conditions i.e be invariant under
SU(2) at each vertex v and U(1) on each edge. The natural candidates are the generalized holonomy observables
M{ri}

L which we described in the previous section. Our proposal for a classical action for spin networks with non-trivial
dynamics is thus:

SΓ

γ
{ri}
L

= SΓ
0 +

∫
dt

∑
L,{ri}

γ
{ri}
L M{ri}

L , (82)

where the γ{ri}
L are the coupling constants giving the relative weight of each generalized holonomy in the full Hamil-

tonian. Let us point out that the generalized holonomies M{ri}
L are a priori not independent from each other. We

postpone the analysis of this issue to future investigation. Instead, we will study in more detail this classical action
principle in the specific case of the 2-vertex graph.

B A Matrix Model for the Dynamics on the 2-Vertex Graph

Coming back to the 2-vertex graph, we have the two vertices α, β linked with N edges. The corresponding classical
phase space is parameterized by 2N spinors z(α)

i and z
(β)
i . Then we need to impose the closure constraints on both

vertices: ∑
i

|z(α)
i 〉〈z(α)

i | =
1
2

∑
〈z(α)

i |z(α)
i 〉 I,

∑
i

|z(β)
i 〉〈z(β)

i | =
1
2

∑
〈z(β)

i |z(β)
i 〉 I, (83)

and the matching conditions on all N edges:

∀i, 〈z(α)
i |z(α)

i 〉 = 〈z(β)
i |z(β)

i 〉 . (84)

These constraints are not straightforward to solve explicitly, since the z(α)
i , z

(β)
i are spinors and not just complex

numbers. We can also write the corresponding action principle in terms of the unitary matrices Uα, Uβ :

S0[Uα, Uβ , λα, λβ ]≡
∫
dt

(
−iλαTrUαΔ∂tU

α† − iλβTrUβΔ∂tU
β† +

∑
i

ρi

(
λα(UαΔUα†)ii − λβ(UβΔUβ†)ii

))
, (85)

where we have left implicit the constraints imposing the unitarity of Uα and Uβ . It is clear that the matching
conditions imply that λα = λβ . We can thus slightly simplify this action:

S0[Uα, Uβ , λ] ≡
∫
dt

(
−i λ [Tr UαΔ∂tU

α† + Tr UβΔ∂tU
β†] +

∑
i

ρi

[
(UαΔUα†)ii − (UβΔUβ†)ii

])
. (86)
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Geometrically, λ represents the total boundary area of the surface separating the two vertices, while Uα and Uβ

describe the shapes and deformations of the two intertwiners sitting at α and β.

We would like to add some dynamics on this basic setting of the 2-vertex graph. Elementary loops on this very
simple graph are made of two edges (ij). Then given such a loop, we have four possibilities for our generalized
holonomy observables M{ri}

L . The observable Qα
ijQ

β
ij corresponds at the quantum level to raising the spins ji and jj

on both edges i, j. Its conjugate Q̄α
ijQ̄

β
ij will decrease the spins ji and jj at the quantum level. The observable Mα

ijM
β
ij

will increase the spin ji while decreasing the spin jj . The final possibility is Mα
jiM

β
ji = Mα

ijM
β
ij simply reverses the

role of the two edges i and j. Finally, our ansatz for a generic action with a non-trivial dynamics reads:

S[Uα, Uβ , λ] ≡ S0[Uα, Uβ , λ] +
∫
dt
∑
i,j

[
γ+

ij Q
α
ijQ

β
ij + γ−ij Q̄

α
ijQ̄

β
ij + γ0

ij M
α
ijM

β
ij ,
]
, (87)

where the γ’s are coupling constants and where we remind that the matrices M and Q are defined as M = λUΔU†
and Q = λUΔε

tU . Further requiring that the new interaction terms defining the action’s Hamiltonian be real, we
need to impose further condition on the coupling constants:

γ− = γ+, γ0 = (γ0)†.

In the previous work on spin networks on the 2-vertex graph [7], it was discussed to introduce an extra U(N)
symmetry and further require that the dynamics of the system be invariant under that symmetry. This was then
interpreted as imposing isotropy on the model. These coupled U(N) transformations act on the matrices at both
vertices α and β: ∣∣∣∣ Uα → V Uα

Uβ → V̄ Uβ for V ∈ U(N). (88)

These U(N) transformations are generated by M̂α
ij − M̂β

ji and they reduce to the U(1)N transformations generated
by the matching constraints in the case that V is a unitary diagonal matrix.

The kinematical terms in Tr UαΔ∂tU
α† and Tr UβΔ∂tU

β† are obviously invariant under such transformations. The
interaction terms also need to be U(N)-invariant. It is easy to check that this leaves only three possible U(N)-invariant
terms made from all the generalized holonomy observables in the equation 87:

γ+ Tr QαQβ + γ− Tr Q̄αQ̄β + γ0 TrMαtMβ , (89)

where we remind that tM = M̄ and tQ = −Q. The requirement to keep the Hamiltonian real imposes as above that
γ− = γ+ and γ0 ∈ R.

Finally, we need to deal with the matching conditions Mα
ii −Mβ

ii = 0. Imposing the invariance under the coupled
U(N)-transformations implies imposing the full equality between the matrices Mα and tMβ , and not only the equality
of their matrix elements on the diagonal. This is a very strong condition, which relates the unitary matrices Uα and
Uβ to each other:

Mα = tMβ ⇔ UαΔUα† = UβΔUβ† ⇒ Uα = eiφ Uβ , (90)

where φ is an arbitrary phase factor and the matrices Uα and Uβ are defined up to SU(2)×U(N−2) transformations.
This means that the spinors z(α) and z(β) are also equal up to a global phase:

z̄
(α)
i = eiφ z

(β)
i , (91)

which obviously solve the matching conditions. This phase eiφ actually defines the SU(2) holonomy living on the
edges between the two vertices.

Simply renaming the matrix Uβ ≡ U , we can re-express the action for this U(N)-invariant sector in terms of λ,
the phase φ and the matrix U . Actually it turns out that the unitary matrix U completely drops out and we are left
with the two conjugated dynamical variables λ and φ:

Sinv[λ, φ] = −2
∫
dt
(
λ∂tφ− λ2

(
γ0 − γ+e2iφ − γ−e−2iφ

))
, (92)
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with the Hamiltonian H = λ2(γ0 − 2γ cos(2φ)). This is an elementary action with simple equations of motion for the
couple of variables (φ, λ). For the sake of simplicity, we will take γ+ = γ− = γ ∈ R. Then we obtain the following
equations of motion:

∂tφ = 2λ (γ0 − 2γ cos 2φ) , (93)
∂tλ = −4γλ2 sin 2φ .

We easily identify two obvious classical solutions. First, λ = 0 (with φ constant and arbitrary) is the trivial solution.
It has no evolution and corresponds to a vanishing total area. Second, we have the case where φ is constant, but λ
does not vanish. In this case, we get:

cos 2φ =
γ0

2γ
, λ =

1
(4γ sin 2φ) t+ kk

,

where kk is a constant of integration. This solution exists iff |γ0| ≤ 2γ. Finally, we can try to solve the equations
of motion more generally. We express λ in terms of ∂tφ from the first equation, which we plug back into the second
equation in order to finally obtain a differential equation on φ only:

λ =
∂tφ

2(γ0 − 2γ cos(2φ))
,

(γ0 − 2γ cos(2φ))∂2
t φ = 2γ sin(2φ)(∂tφ)2 .

Unfortunately, we haven’t been able to solve this differential equation explicitly.
On the other hand, we would like to propose an alternative Hamiltonian, who leads to simpler equations of motion

which we are able to solve exactly. Following what has been done in the quantum 2-vertex model presented in [7], we
introduce a renormalized Hamiltonian:

h ≡ 1
λ
H = λ(γ0 − 2γ cos(2φ)). (94)

This renormalized Hamiltonian is still SU(2) and U(N) invariant, and is related to the generalized holonomy observ-
ables through a factor 1

λ . Using this new Hamiltonian h, the equations of motion actually simplify to

∂tφ = γ0 − 2γ cos(2φ), (95)
∂tλ = −4γλ sin(2φ) .

As in the quantum case [7], the properties of the renormalized Hamiltonian h are much more straightforward than
the original Hamiltonian H. In fact, it is possible to solve exactly these differential equations. We solve for φ(t)
analytically. Then, once we have the solution for φ, we can show that the following expression for λ in terms of φ
solves the equations of motions:

λ =
ε

γ0 − 2γ cos(2φ)
, (96)

where ε = ± is a global sign. Let us point out that the equation of motion for λ only determines it up a global
numerical factor. Then we should remember that λ is the total area and we always constrain it to be positive.

Now, we present the solutions for φ(t) (we have chosen the most convenient constants of integration due to the fact
that this constants are just translations in the temporal variable), depending on the different values for the parameters
γ0 and γ:

Elliptic region (|γ0| > 2|γ|) : φ(t) = − arctan

⎛⎝ (2γ − γ0) tan
(
t
√

(γ0)2 − 4γ2
)

√
(γ0)2 − 4γ2

⎞⎠ , (97a)

Hyperbolic region (|γ0| < 2|γ|) : φ(t) = − arctan

⎛⎝ √
4γ2 − (γ0)2

(2γ + γ0) tanh
(
t
√

4γ2 − (γ0)2
)
⎞⎠ , (97b)

Parabolic region I (γ0 = 2γ) : φ(t) = − arctan
(

1
4γt

)
, (97c)

Parabolic region II (γ0 = −2γ) : φ(t) = − arctan (4γt) . (97d)
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Let us give a brief description of these solutions. First, to derive λ(t) from those solutions for φ(t), we compute
cos 2φ = (1− tan2 φ)/(1+ tan2 φ) and we plug it in the expression (96) above for λ in terms of cos 2φ. Then, the two
cases I and II of the parabolic regime are very similar. In both cases, we get the same solution λ(t) by taking ε = + in
case I and ε = − in case II. Switching the sign ε in the two cases allows to keep a positive solution λ(t) ≥ 0. We have
named the different regions with the name of the conics because, indeed, the equation 96 is the equation for a conic
with radial coordinate given by λ and polar coordinate 2φ, as we can appreciate in the figure 4. Then, the different
values for the ratio 2γ/γ0 represent the different eccentricities corresponding to each of the conics. In the elliptic
case, when |γ0| > 2|γ|, we have a system in which the area λ has an oscillatory behavior. In the other two regimes
(hyperbolic with |γ0| < 2|γ| and parabolic with |γ0| = 2|γ|), the area shrinks under evolution, reaches a minimum
value and then increases until infinity. As it was pointed out in [7], the quantum Hamiltonian of this 2-vertex model
is mathematically (and physically) analogous to the gravitational part of the Hamiltonian in loop quantum cosmology
(LQC). Following this analogy, we can interpret the results we obtained here as the classical model for the quantum
big bounce found in LQC. Nevertheless, further investigation is needed in order to achieve a full understanding of the
relation with the results derived in the LQC framework.
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FIG. 4: We plot the behavior of φ(t) and λ(t) (given by the equations 96 and 97) in the three different regimes for
γ = 1 and respectively γ0 = 4 (elliptic regime), γ0 = 1 (hyperbolic regime) and finally γ0 = 2 (parabolic regime). In
the first column, we give the polar plots constructed by taking as polar coordinates (2φ, λ(φ)). The second column
gives for φ(t) and the third one λ(t). We observe in those plots the periodical behavior of λ (interpreted as the total
area of the model) as a function of time in the elliptic case and a behavior analogous to a cosmological big bounce in
the other two cases.

At this point, it would be enlightening to compare the phase space (φ, λ) and the dynamics defined by the action
(92) above with the classical setting of loop cosmology (see e.g. [9]). In this sense, the framework presented here
opens at least two interesting lines of research upon understanding the precise and explicit links between the 2-vertex
framework and the loop cosmology.

First, we should go beyond the U(N)-invariant sector. Indeed, the action (87) defines the full classical kinematics
and dynamics of spin network states on the 2-vertex graph. It is a non-trivial matrix model defined in terms of the
unitary matrices Uα and Uβ and with quartic interaction terms. Moreover, even if we still choose a U(N)-invariant
Hamiltonian of the the type γ+ Tr QαQβ + γ− Tr Q̄αQ̄β + γ0 TrMαtMβ , this will nevertheless induce non-trivial
dynamics for the matrices Uα and Uβ . It would be very interesting what kind of anisotropy does our model describe
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in the context of loop cosmology.
Second, our classical phase space expressed in terms of spinors or equivalently in terms of unitary matrices admit

a straightforward quantization in terms of U(N) representations. This quantization scheme should be compared to
the quantization procedure of loop quantum cosmology. This would help understanding the explicit relation between
loop quantum cosmology and the full theory of loop quantum gravity.

Finally, a constant issue would be to couple matter degrees of freedom to our model, both in the specific case of the
2-vertex model and in the general case of spin network states on an arbitrary graph. The advantage of our approach
here is that we can do it at the classical level in our spinor phase space before quantizing.

CONCLUSION

The U(N) framework introduced in [1, 2, 3, 4] provides us with a new interesting way to describe the space of
intertwiners for loop quantum gravity. Using this framework, it has been shown that it is possible to tackle some of
the important issues in LQG, such as the construction of coherent states [3], dynamics [7] or the simplicity constraints
for spinfoam models [4]. Our motivation for the present paper was to define the classical phase space (using spinors)
underlying the U(N) framework and to introduce the corresponding classical action principle.

As it was suggested in [7], we explored in this paper the idea of considering the operators Eij and Fij coming from
the quantization of matrix elements of a hermitian matrix M and an antisymmetric matrix Q that satisfy the same
quadratic constraints as the operators themselves (up to quantum ordering terms). We gave the explicit expression
for this matrices in terms of elements of a unitary matrix U and the parameter λ corresponding to the trace of the
matrix M (whose quantum analog is the total area operator E). This allowed us to write these matrices in terms
of spinors defined from the matrix elements of the unitary matrix. This show how the so-called closure conditions
for the spinors, introduced in [3], come from the unitarity requirement in the construction of our matrices M and
Q. We then described the phase space in terms of the spinors, introduced the corresponding Poisson brackets and
showed that the closure constraints generate the SU(2) action relevant to defining intertwiners states. We further
computed the Poisson brackets of the matrix elements Mij and Qij and compared them to the commutator algebra of
the corresponding quantum operators Eij and Fij . Finally, we proposed an action from which we can derive the whole
spinor phase space structure. We wrote it alternatively in terms of the spinors or in terms of the unitary matrix U
and the classical boundary area λ. This way, we have reformulated the classical setting of a single SU(2) intertwiner
as a unitary matrix model (as it was already suggested in the pioneer work [1]). Using this action principle, we finally
showed that there is no non-trivial dynamics for a single intertwiner.

We moved on to the quantum level and showed how to perform the quantization of the classical spinor phase
space in order to obtain the Hilbert space of intertwiners in terms of holomorphic (or alternatively anti-holomorphic)
wave-functions. Having explored in detail the framework for a single intertwiner both at the classical and quantum
level, we studied the gluing of those intertwiners and showed to define loop quantum gravity’s spin-network states over
an arbitrary graph as (anti-)holomorphic wave functions of spinors (appropriately constrained). We have postponed
a more rigorous proof of the equivalence of the standard loop quantum gravity framework to our new U(N)/spinor
framework to future investigation [8]. Then, making use of the expression for SU(2) group elements in terms of spinors
given in [6], we constructed the expression for loop gravity’s holonomy observables in terms of spinors attached to
each of the vertices of the graph and, finally, in terms of the elements of the matrices M and Q. We discuss the
quantization of this expression and express the holonomy operator at the quantum level in terms of the Eij and Fij

operators of the U(N) framework for intertwiners. We checked this formula against the formula derived for the (loop)
quantum gravity 2-vertex model previously introduced and discussed by some of the authors [7].

Finally, we wrote an action for the classical setting of spin-network states on a general graph and we applied it to the
special case of the simple graph with two vertices. Choosing a specific form for the interaction term, written in terms
of the (generalized) holonomy observables, we obtained the classical description for the U(N) invariant Hamiltonian
for the 2-vertex model considered in [7].

To summarize, we have proposed here a classical setting whose quantization in terms of (anti-)holomorphic func-
tionals over constrained spinors describes intertwiners and spin network states. Furthermore, we proposed a classical
action principle encoding the whole corresponding kinematical structure and possible dynamics for spin network
states.



24

ACKNOWLEDGMENTS

This work was in part supported by the Spanish MICINN research grants FIS2008-01980 and FIS2009-11893. IG
is supported by the Department of Education of the Basque Government under the “Formación de Investigadores”
program.

EL acknowledged support from the European Science Foundation (ESF) through the Short Visit Travel Grant 3595
and from the Programme Blanc LQG-09 from the ANR (France).

REFERENCES

[1] F. Girelli and E.R. Livine, Reconstructing Quantum Geometry from Quantum Information: Spin Networks as
Harmonic Oscillators, Class.Quant.Grav. 22 (2005) 3295-3314 [arXiv:gr-qc/0501075]

[2] L. Freidel and E.R. Livine, The Fine Structure of SU(2) Intertwiners from U(N) Representations, Journ. Math.
Phys. 51 (2010) 082502 [arXiv:0911.3553]

[3] L. Freidel and E.R. Livine, U(N) coherent states for Loop Quantum Gravity, arXiv:1005.2090
[4] M. Dupuis and E.R. Livine, Revisiting the Simplicity Constraints and Coherent Intertwiners, arXiv:1006.5666
[5] L. Freidel and S. Speziale, Twisted geometries: A geometric parametrisation of SU(2) phase space, arXiv:1001.2748
[6] L. Freidel and S. Speziale, From twistors to twisted geometries, arXiv:1006.0199
[7] E.F. Borja, J. Diaz-Polo, I. Garay and E.R. Livine Dynamics for a 2-vertex Quantum Gravity Model,

arXiv:1006.2451
[8] L. Freidel, E.R. Livine and S. Speziale, Generalized Holonomy Observables and Holomorphic/Anti-Holomorphic

Splitting, in preparation
[9] A. Ashtekar, Loop Quantum Cosmology: An Overview, Gen.Rel.Grav.41 (2009)707-741 [arXiv:0812.0177]


