CLASSIFICATION OF ABSOLUTELY DICRITICAL FOLIATIONS OF CUSP TYPE

We give a classification of absolutely dicritical foliation of cusp type, that is, the germ of singularities of complex foliation in the complex plane topologically equivalent to the singularity given by the level of the meromorphic function y 2 +x 3 xy .

An important problem of the theory of singularities of holomorphic foliations in the complex plane is the construction of a geometric interpretation of the so-called moduli of Mattei of these foliations [START_REF] Mattei | Modules de feuilletages holomorphes singuliers[END_REF]. These moduli appear when one considers a very special kind of deformations called the unfoldings. Basically, the moduli of Mattei are precisely the moduli of germs of unfoldings of a given singular foliation. One of the major difficulty one meets looking at the mentionned geometric description is the lack of basic examples in the litterature. Actually, except when the foliation is given by the level of an holomorphic function, there exist none exemple. The purpose of the following article is not to solve the problem of Mattei even for the class of singularities we consider here but to describe this one as accuratly as possible in order to prepare the attack of the problem of moduli of Mattei.

The absolutely dicritical foliations of cusp type are good candidates to begin this study for the following reasons:

(1) their transversal structure, which usually is a very rich dynamic invariant [START_REF] Loray | Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux[END_REF], is very poor and can be completely understood. (2) their number of Mattei moduli is 1.

(3) the topology of their leaves is more or less trivial. Some results in the article might be quite easily extended to a larger class of absolutely dicritical foliations up to some technical and confusing additions. The risk would have been to miss the very first objective of this paper, that is, to give an example.

A germ of singularity of foliation F in C 2 , 0 is said to be absolutely dicritical if there exists a sequence of blowing-up E such that E * F is regular and transverse to each irreducible component of the exceptionnal divisor E -1 (0). It is of cusp type if two successive blowing-up are sufficient. In that case the exceptionnal divisor E -1 (0) is the union of two irreducible components P 1 (C) of respective self-intersection -2 and -1. We denote them respectively D 2 and D 1 . The expression cusp type insists on the fact that the special leaf that passes trough the singular point of the divisor is analytically equivalent to the cuspidal singularity y 2 + x 3 = 0. The simplest example of an absolutely dicritical foliation is given by the levels of the rationnal function near (0, 0)

f = y 2 + x 3 xy .
We associate to F a germ σ ∈ Diff ((D 2 , p) , (D 1 , p)) as in the picture above. It is defined by the property that x ∈ D 2 and σ (x) ∈ D 1 belongs to the same local leaf. This germ is called the transversal structure of F . This is the very first invariant of such a foliation. For the rationnal function above, the transversal structure σ reduces to the identity map in the standard coordinates associated to E.

The main result of this article is the following one: for any foliation F that is absolutely dicritical of cusp type we consider it topological class Top (F ) , that is the set of all foliations topologically equivalent to F . The moduli space Top (F ) / ∼ of F is defined as the quotient of Top (F ) by the analytical equivalence relation. Now we have, Theorem 1. The class Top (F ) is equal to the set of all absolutely dicritical foliations and its moduli space Top (F ) / ∼ can be identified with the functionnal space C {z} up to the action of C * defined by ǫ • (z → f (z)) = ǫ 2 f (ǫz) .

In this theorem, the germ of convergent series f is the image of the transversal structure σ by the Schwarzian derivative

S (σ) = 3 2 σ ′′′ σ ′ -σ ′′ σ ′ 2
. A quick lecture of the theorem would suggest that the transversal structure σ is the sole invariant of the foliation, which is not exactly true as it is highlighted in theorem [START_REF] Grauert | Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen[END_REF].

We have to mention that it does exists a lot of absolutely dicritical foliations. Following a result due to F. Cano and N. Corral [START_REF] Cano | Absolutely dicritical foliations[END_REF], the process E does not contain any obstruction to the existence of absolutely dicritical foliations. In other words, for any sequence of blowing-up E, there exists an absolutely dicritical foliation whose associated process of blowing-ups is exactly E.

Topological classification.

The topological classification is trivial as stated in a proposition to come in the sense that two absolutely dicritical foliations of cusp type are topologically equivalent. To prove this fact, we describe below the model foliations from which the absolutely dicritical foliations are build.

1.1. Model foliations. Let us consider the following model foliations -F 2 is given by the gluing of two copies of C 2

C 2 = (x 1 , y 1 ) C 2 = (x 2 , y 2 )
glued by x 2 = 1 y1 and y 2 = y 2 1 x 1 whose the neighborhood of x 1 = y 2 = 0 is transversaly foliated by y 1 = cst and x 2 = cst. Topologically, this is a foliated neighborhood of a Riemann surface of genus 0 whose selfintersection is -2.

-F 1 is given by the gluing of two copies of C 2

C 2 = (x 3 , y 3 ) C 2 = (x 4 , y 4 )
glued by x 4 = 1 y3 and y 4 = y 3 x 3 whose the neighborhood of x 3 = y 4 = 0 is transversaly foliated by y 3 = cst and x 4 = cst. Topologically, this is a foliated neighborhood of a Riemann surface of genus 0 whose selfintersection is 1.

Following [START_REF] Camacho | Fibered neighborhoods of curves in surfaces[END_REF], any neighborhood of a Riemann surface A of genus 0 embedded in a manifold of dimension two with A • A = -2 (resp. -1) and foliated by a transverse codimension 1 foliation is equivalent ot F 2 (resp. F 1 ). From this, it is easy to show that any C 0 , C ∞ , C ω -isomorphism between two Riemann surfaces A 1 and A 2 as before can be extended in a neigborhood of A 1 and A 2 as a C 0 , C ∞ , C ωconjugacy of the foliations.

Topological classification. Let us first recall the following lemma:

Lemma 2. Let σ be a germ in Diff P 1 , a , i.e., a germ of automorphism of a neighborhood of a in P 1 . Then there exists h a global homeomorphism of P 1 such that h and σ coincide in a neighborhood of a.

Proof. Let S 1 be a small circle around a in a domain where σ is defined. Its image σ (S 1 ) is a topological circle. Consider S 2 a second circle such that the disc bounded by S 2 contains S 1 and σ (S 1 ) . The two coronas bounded respectively by S 1 and S 2 and σ (S 1 ) and S 2 are homeomorphic. Actually, there exists an homeomorphism h of the two coronas such that h

S2 = Id h S1 = σ.
Therefore, we can define the homeomorphism h the following way: in the disc bounded by S 1 , we set h = σ; in the corona bounded by S 1 and S 2 , h = h; everywhere else we set h = Id. Clearly, h satifies the properties in the lemma. 

H * 0 (E * F 0 ) = E * F 1 H * 1 (E * F 0 ) = E * F 1 and H 0 | D2 = Id and H 1 | D1 = h. Since h = σ -1 0 •σ 1 , the automorphism H 1 •H -1
0 of E * F 0 let invariant each leaf of E * F 0 . Now, adapting the argument of the previous lemma yields the existence of H a global homeomorphism of E * F 0 defined in a neighborhood of D 1 letting invariant each leaf such that H and

H 1 • H -1 0 coincide in a neighborhood of p. Thus H -1 • H 1 •H -1
0 is equal to Id in a neighborhood of p. Therefore the collection H -1 • H 1 and H 0 glue in a global homeomorphism between E * F 0 and E * F 1 . This homeomorphism can be blown down in a neighborhood of C 2 and is a C 0 -conjugacy of the foliations F 0 and F 1 . Now, if F 0 is topologically equivalent to an absolutely dicritical foliation of cusp type, a theorem of C. Camacho and A. Lins Neto and P. Sad [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector fields[END_REF] ensures that the process of reduction of F 0 is the one of an absolutely dicritical foliation. Since, they also shared the same dicritical components, F 0 is absolutely dicritical of cusp type.

Moduli space.

Consider a germ of biholomorphism φ written in the coordinates of the model foliations (x 3 , y 3 ) = φ (x 1 , y 1 ) , φ (0, 0) = (0, 0) . Suppose that it send the foliation defined by y 1 = cst to the one defined by y 3 = cst and that the curve x 1 = 0 is send to a curve transverse to x 3 = 0. With such a biholomorphism we can consider the foliation obtained by gluing the two models foliations F 2 and F 1 with the application φ

D 2 D 1 φ F F 2 1
Following a classical result due to Grauert, this gluing is analytically equivalent to the neighborhood of the exceptionnal divisor obtained by a standard process of two successive blowing-ups [START_REF] Grauert | Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen[END_REF]. The obtained foliation can be blown down in an absolutely dicritical foliation of cusp type at the origin of C 2 .

Remark 4. Key remark. Two foliations obtained by such an above gluing with the respective biholomorphisms φ and ψ are analytically equivalent if and only if there exists an automorphism Φ 2 of the foliation F 2 and Φ 1 of the foliation F 1 such that

φ = Φ 1 • ψ • Φ 2 .
Let us fix σ ∈ Diff (C, 0). We consider the following biholomorphisms g σ (x 1 , y 1 ) = (x 1 + σ (y 1 ) , σ (y 1 )) and Φ α (x 1 , y 1 ) = (x 1 (1 + αy 1 ) , y 1 )

The composition g σ • φ α send the foliation y 1 = cst on it-self. Thus we can denote by F σ,α the foliation obtained by the above gluing

F σ,α := F 1 F 2 / p ∼ g σ • Φ α (p) .
Now, moving the parameter α, we obtain an analytical family of absolutely dicritical foliations. Actually, the following property holds.

Theorem 5. The germ of deformation (F σ,α ) α∈(α0,C) for α in a neighborhood of α 0 in C is a germ of equisingular semi-universal unfolding of F σ,α0 in the sense of Mattei [START_REF] Mattei | Modules de feuilletages holomorphes singuliers[END_REF]. In particular, for any germ of equisingular unfolding (F t ) t∈(C p ,0) with p parameters such that F t | t=0 ∼ F σ,α0 there exists a map α : (C, α 0 ) → (C p , 0) such that for all t F t ∼ F σ,α(t) .

Before proving the above result, let us recall that an unfolding of a given foliation F is a germ F of codimension 1 foliation in C 2+p , 0 transversal to the fiber of the projection

C 2+p , 0 → (C p , 0) , π : (x, t) → t such that F| π -1 (0) ∼ F .
The equisingularity property is a quite technical property to state. However, it means basically that the topology of the process of desingularization of the family of foliation F| t=α does not depend on α. For the details, we refer to [START_REF] Mattei | Modules de feuilletages holomorphes singuliers[END_REF].

Proof.

Step 1 -Let us prove that the deformation (F σ,α ) α∈(C,α0) of F σ,α0 is induced by an unfolding. We can make the following thick gluing

F := F 1 × (C, α 0 ) F 2 × (C, α 0 ) / (x 1 , y 1 , α) → (g σ • Φ α0 ) • Φ -1 α0 • Φ α (x 1 , y 1 ) , α .
where F i × (C, α 0 ) stands for the product foliation: its leaves are the product of a leaf of F i and of an open neighborhood of α 0 in C. The codimension 1-foliation F comes clearly with a fibration defined by the quotient of the map π : (p, α) → α whose fibers are transverse to the foliation. Thus, the above gluing is an unfolding. Now, the restriction

F| π -1 (α0) = F 1 F 2 / (g σ • Φ α0 ) is equal to F σ,α0
. Finally, it is equisingular by construction. Thus, it satisfies all the properties of an equisingular unfolding in the sense of Mattei.

Step 2 -Let us consider the sheaf Θ whose base is the exceptionnal divisor E -1 (0) = D = D 2 ∪ D 1 of tangent vector fields to the foliation E * F σ,α0 and to the divisor E -1 (0). The cohomological group H 1 (D, Θ) represents the finite dimensionnal C-space of infinitesimal unfoldings. Following [START_REF] Mattei | Modules de feuilletages holomorphes singuliers[END_REF], there exists a Kodaira-Spencer map like that associate to any unfolding with parameter in (C p , 0), its Kodaira Spencer derivative which is a linear map from C P to H 1 (D, Θ). The unfolding is semi-universal as in the theorem above if and only if its Kodaira Spencer derivative is a linear isomorphism. We consider the covering of the exceptionnal divisor E -1 (0) by two open sets U 1 and U 2 where U 1 and U 2 are respectively tubular neighborhood of D 1 and D 2 . It is known that this covering is acyclic with respect to the sheaf Θ, i.e, H 1 (D i , Θ) = 0. Therefore, following [START_REF] Godement | Théorie des faisceaux[END_REF] to compute the cohomological group H 1 (D, Θ) we can use this covering, that is to say, the following isomorphism

(2.1) H 1 (D, Θ) ≃ H 0 (U 1 ∩ U 2 , Θ) H 0 (U 1 , Θ) ⊕ H 0 (U 2 , Θ)
.

In view of the glued construction of

F σ,α0 , a 0-cocycle X 12 in H 0 (U 1 ∩ U 2 , Θ) is trivial in H 1 (D, Θ) if and only if the cohomological equation (2.2) X 12 = X 1 -(g σ • Φ α0 ) * X 2 admits a solution where X 1 ∈ H 0 (U 1 , Θ) and X 2 ∈ H 0 (U 2 , Θ). Now, it is known [10][3] that the dimension of the C spaceH 1 (D, Θ) is 1.
Thus, to prove the result, it is enough to show that the image of the deformation (F σ,α ) α∈(α0,C) by the foliated Kodaira-Spencer map is not trivial in H 1 (D, Θ). The foliation F σ,α is obtained from F σ,α0 by gluing with the automorphism

Φ -1 α0 • Φ α (x 1 , y 1 ) = x 1 1 + αy 1 1 + α 0 y 1 , y 1 .
Thus, its image by the Kodaira-Spencer map is the cocycle

∂ ∂α Φ -1 α0 • Φ α α=α0 = x 1 y 1 1 + α 0 y 1 ∂ ∂x 1
Hence, the unfolding is semi-universal if and only if the equation

(2.3) x 1 y 1 ∂ ∂x 1 + • • • = X 2 -(g σ • Φ α0 ) * X 1
has no solution. This equation can be more precisely written in the following way

x 1 y 1 ∂ ∂y 1 + • • • = A 2 (x 1 , y 1 ) x 1 ∂ ∂x 1 -(g σ • Φ α0 ) * A 1 (x 3 , y 3 ) x 3 ∂ ∂x 3
where A 1 and A 2 are functions defined respectively in U 1 and U 2 . Let us write the Taylor expansion of

A 2 = ij a 2 ij x i 1 y j 1 . In the coordinates (x 2 , y 2 ) the function A 2 is written A 2 = ij a 2 ij x 2i-j 2 y i 2 .
Therefore, if a 2 ij = 0 then 2i -j ≥ 0 and the monomial term y 1 cannot appear in the Taylor expansion of A 2 . In the same way, the Taylor expansion of

A 1 = ij a 1 ij x i 3 y j 3 , satisfies a 1 ij = 0 ⇒ i ≥ j.
Since X 1 vanishes along the exceptionnal divisor whose trace in U 1 is the diagonal x 3 = y 3 , we have A 1 = (x 3 -y 3 ) Ã1 . Thus, in the coordinates (x 1 , y 1 ), X 1 is written

X 1 = Ã1 (x 1 (1 + α 0 y 1 ) + σ (y 1 ) , σ (y 1 )) (x 1 (1 + α 0 y 1 ) + σ (y 1 )) x 1 ∂ ∂x 1 .
If Ã1 (0, 0) = 0 then the term y 1 x 1 ∂ ∂y1 of the Taylor expansion of the cocycle (2.3) cannot come from X 1 . However, if Ã1 (0, 0) = 0 then A 1 cannot be global. Therefore, the equation (2.3) cannot be solved, which proves the result.

We observe that F σ,α is an unfolding over the whole C. Actually in the course of the above proof, we obtain a more precise result Corollary 6. More generally, for any germ of function A (x, y) with A (0, 0) = 0, the C-space H 1 (D, Θ) for the foliation

F 1 F 2 / (x 1 , y 1 ) → (x 1 A (x 1 , y 1 ) + σ (y 1 ) , σ (y 1 )) .
is generated by the cocycle the image of x 1 y 1 ∂ ∂y1 through the isomorphism (2.1). In particular, any deformation of the form

ǫ → (F 1 F 2 ) ǫ/ (x 1 , y 1 ) → (x 1 A ǫ (x 1 , y 1 ) + σ (y 1 ) , σ (y 1 ))
where ∂Aǫ ∂y1 (0, 0) does not depend on ǫ is locally analytically trivial.

As an easy consequence of the corollary, we obtain a theorem of normalization of the construction of absolutely dicritical foliations of cusp type.

Theorem 7. Any absolutely dicritical foliation of cusp type is equivalent to some F σ,α .

Proof. Let us consider F an absolutely dicritical foliation of cusp type and let E be its associated reduction. Since along each component of the exceptionnal divisor the foliation is purely radial, there exists two automorphisms Φ 1 and Φ 2 that conjugates F respectively to the models F 1 and F 2 in the neighborhood of respectively D 1 and D 2 . The cocycle of gluing is thus written

Φ 1 • Φ -1 2 .
Applying if necessary a global automorphism of Φ 1 that let invariant each leaf, we can suppose that Φ 1 • Φ -1 2 send the exceptionnal divisor x 1 = 0 on the line x 3 = y 3 . Since the cocycle conjugates the foliations F 2 and F 1 , it can be written

(x 1 , y 1 ) → (x 1 A (x 1 , y 1 ) + σ (y 1 ) , σ (y 1 )) .
for some σ ∈ Diff (C, 0) and some A ∈ C {x 1 , y 1 } with A (0, 0) = 0. Applying if necessary an automorphism of F 2 defined by (ǫx 3 , ǫy 3 ) for some ǫ = 0, we can suppose that A (0, 0) = 1. Now we can write the cocycle

(x 1 , y 1 ) → x 1 1 + αy 1 + Ã (x 1 , y 1 ) + σ (y 1 ) , σ (y 1 ) .
where no term of the form ay 1 appears in Ã. According to the corollary, the deformation parametrized by ǫ and defined by the gluing cocycle

(x 1 , y 1 ) → x 1 1 + αy 1 + ǫ Ã (x 1 , y 1 ) + σ (y 1 ) , σ (y 1 )
is locally analytically trivial. Thus the foliation obtained setting ǫ = 1 and ǫ = 0 are analytically equivalent and setting ǫ = 0 yields a cocycle of the desired form.

The couple (α, σ) is unique up to conjugacies fixing any point of the exceptionnal divisor. However, once we authorize any kind of conjugacies, this couple is not unique anymore. But the ambiguity can be described. Proposition 8. Two normal forms F σ,α and F γ,α ′ are conjugated if and only if there are two homographies h 0 and h 1 such that

(2.4)    σ = h 1 • γ • h 0 2 5 α -3 2 σ ′′ (0) σ ′ (0) = 2 5 α ′ -3 2 γ ′′ (0) γ ′ (0) h ′ 0 (0) - h ′′ 0 (0) h ′ 0 (0) 
Proof.

Step 1 -In view of our gluing construction and following the key remark (4), the existence of a conjugacy implies that there exist two automorphisms of respectively F 2 and F 1 written

Φ 2 = (x 1 A 2 (x 1 , y 1 ) , h 0 (y 1 )) and Φ 1 = (x 3 A 1 (x 3 , y 3 ) , h 1 (y 3 )) such that (x 1 (1 + αy 1 ) + σ (y 1 ) , σ (y 1 )) = Φ 1 • x 1 1 + α ′ y 1 + γ (y 1 ) , γ (y 1 ) • Φ 2 .
First, we obviously get the following relation σ = h 1 • γ • h 0 . Moreover, if we look at the first component of the above relation we get

x 1 (1 + αy 1 ) + σ (y 1 ) = x 1 A 2 (x 1 , y 1 ) 1 + α ′ h 0 + γ • h 0 × A 1 x 1 A 2 (x 1 , y 1 ) 1 + α ′ h 0 + γ • h 0 , γ • h 0
If we compute the derivative ∂ ∂x1 of the above relation and then set x 1 = 0, we get

1 + αy 1 = A 2 (0, y 1 ) 1 + α ′ h 0 × γ • h 0 ∂A 1 ∂x 1 (γ • h 0 , γ • h 0 ) + A 1 (γ • h 0 , γ • h 0 ) (2.5)
(1) Now, since Φ 1 preserve the curve y = x, we obtain

A 1 (x, x) = h 1 (x) x Thus, A 1 (0, 0) = h ′ 1 (0) . Setting y 1 = 0 in the relation above, we get 1 = A 2 (0, 0) A 1 (0, 0) . Therefore, A 2 (0, 0) = 1 h ′ 1 (0) . Now, let us write the Taylor expansion of A 1 A 1 (x 3 , y 3 ) = h ′ 1 (0) + rx 3 + sy 3 + • • • . Since, A 1 (x, x) = h1(x)
x , we have r

+ s = h ′′ 1 (0)
2 . Now, the biholomorphism (x 3 A 1 (x 3 , y 3 ) , h 1 (y 3 )) is global: therefore, it can be push down and extended at the origin of C 2 as a local automorphism written

(x, y) → xA 1 x, y x , h 1 y x xA 1 x, y x .
The second component of this expression is written

y αx + βy h ′ 1 (0) x + rx 2 + sy + • • • where α = 1 h ′ 1 (0) and β = - h ′′ 1 (0) 2h ′ 1 (0) 2 .
It is extendable at (0, 0) if and only if the expression in parenthesis can be holomorphically divided by αx + βy. Looking at the first jet of these expressions leads to

β α s h ′ 1 (0) = 0 =⇒ s = βh ′ 1 (0) α = - h ′′ 1 (0) 2 
Finally, we have r = h ′′ 1 (0) . (2) In the same way, let us write the Taylor expansion of

A 2 (x 1 , y 1 ) = 1 h ′ 1 (0) + uy 1 + vy 2 1 + • • • . The second component of the expression of Φ 2 in the coordinates (x 2 , y 2 ) is y 2 x 2 2 h 2 0 1 x2 A 2 y 2 x 2 2 , 1 x2 
which is equal to

y 2 (α ′ x 2 + β ′ ) 2 αx 2 2 + ux 2 + v + y 2 (• • • ) where α ′ = 1 h ′ 0 (0) and β ′ = - h ′′ 0 (0) 2h ′ 0 (0) 2 . Since it is extendable at x 1 = -β ′ α ′ , there exists a constant Γ such that α ′ x 2 + β ′ 2 = Γ αx 2 2 + ux 2 + v
Hence, we have the equality u = 2

αβ ′ α ′ = - h ′′ 0 (0) h ′ 0 (0)h ′ 1 (0) . Now, we can identified the coefficient of the equation (2.5) It is α = A 2 (0, 0) γ ′ (0) h ′ 0 (0) ∂A 1 ∂x 1 (0, 0) + h ′′ 1 (0) 2 γ ′ (0) h ′ 0 (0) + α ′ h ′ 0 (0) h ′ 1 (0) +uh ′ 1 (0) = 3 2 γ ′ (0) h ′ 0 (0) h ′′ 1 (0) h ′ 1 (0) - h ′′ 0 (0) h ′ 0 (0) + α ′ h ′ 0 (0) .
Using the relation σ = h 1 • γ • h 0 the above equality can be formulated as in the theorem.

Step 2 -We suppose that the conclusion of the statement is satisfied. Let us suppose that

h 1 (z) = z α + βz h 0 (z) = z a + bz Then we set A 2 (x 1 , y 1 ) = α + 2 αb a y 1 + αb a 2 y 2 1 A 1 (x 3 , y 3 ) = α + βy 3 (α + βx 3 ) 2 .
In view of the computations done in the first step, the two automorphisms Φ 1 and Φ 2 associated to A 1 and A 2 can be extended on U 1 and U 2 , tubular beighborhood of D 1 and D 2 . Moreover, we obtain the following relation

(x 1 (1 + αy 1 + ∆ (x 1 , y 1 )) + σ (y 1 ) , σ (y 1 )) = Φ 1 • x 1 1 + α ′ y 1 + γ (y 1 ) , γ (y 1 ) • Φ 2
where ∆ does not contain any monomial term in y 1 . Now, using the proposition (6), we see that the deformation defined by ǫ → (x 1 (1 + αy 1 + ǫ∆ (x 1 , y 1 )) + σ (y 1 ) , σ (y 1 ))

is analytically trivial, which ensures the theorem.

Theorem 9. The moduli space of absolutely dicritical foliations of cusp type can be identified with the functionnal space C {z} up to the action of C * defined by

ǫ • (z → σ (z)) = ǫ 2 σ (ǫz) .
Proof. We can consider the following family parametrized by Diff (C, 0)

σ ∈ Diff (C, 0) → F 3 2 σ ′′ (0) σ ′ (0) ,σ
.

It is a complete family for absolutely dicritical foliations of cusp type: in any class of absolutely dicritical foliation of cusp type there is one that is analytically equivalent to one of the form

F 3 2 σ ′′ (0) σ ′ (0) ,σ
. Indeed, considering the foliation

F α ′ ,γ , we can choose h 0 such that 2 5 α ′ -3 2 γ ′′ (0) γ ′ (0) h ′ 0 (0) - h ′′ 0 (0) h ′ 0 (0) = 0. Therefore, setting σ = γ • h 0 ensures that F α ′ ,γ and F 3 2 σ ′′ (0) σ ′ (0) ,σ are analytically equivalent. Moreover, if F 3 2 σ ′′ 0 (0) σ ′ 0 (0) ,σ0
and

F 3 2 σ ′′ 1 (0) σ ′ 1 (0)
,σ1

are analytically equivalent then there exists ǫ ∈ C * and an homographie h 1 such that

(2.6) σ 0 (z) = h 1 • σ 1 • (ǫz) .
Indeed, the second homographie h 0 that appears in the proposition (8) has to be linear for the relations (2.4) ensures that h ′′ 0 (0) = 0. Thus, h 0 is written z → ǫz for some ǫ. To simplify the relation (2.6), we use the Schwartzian derivative which is a surjective operator defined by S :

   Diff (C, 0) → C {z} y → 3 2 y ′′′ y ′ -y ′′ y ′ 2
and satisfying the following property: the relation (2.6) is equivalent to S (σ 0 ) (z) = ǫ 2 S (σ 1 ) (ǫz). Therefore, the moduli space of absolutely dicritical foliation of cusp type is identified via the Schwartzian derivative to the quotient of C {z} up to the action of

C * ǫ • (z → σ (z)) = ǫ 2 σ (ǫz) .
As mentionned in the introduction, this theorem does not state that the transversal structure σ is the sole analytical invariant of an absolutely dicritical foliation of cusp type. Indeed, the action of the group of conjugacies act transversaly to the transverse structures σ and to the moduli of Mattei α. The family

F 3 2 σ ′′ (0) σ ′ (0)
,σ is a complete tranversal set for this action the group of conjugacies.

Orbits of the action of

α ∈ C F 3 2 σ ′′ (0) σ ′ (0) ,σ σ ∈Diff(C, 0)
As a consequence of the above description of the moduli space of absolutely dicritical foliations, we should be able to prove the existence of a non algebrizable absolutely dicritical foliation using technics developped in [START_REF] Genzmer | Existence of non-algebraic singularities of differential equation[END_REF].

3. Formal normal forms for 1-Forms.

It is known [START_REF] Cano | Absolutely dicritical foliations[END_REF] that the valuation of a 1-form ω with an isolated singularity defining an absolutely dicritical foliation of cusp type is 3. Up to some linear change of coordinates, we can suppose that the singular point of the foliation after one blowing-up has (0, 0) for coordinates in the standard coordinates associated to the blowing-up. Moreover, since the foliation is generically transversal to the exceptionnal divisor of the blowing-up of 0 ∈ C 2 , 0 , the homogeneous part of degree 3 of ω is tangent to the radial form ω R = xdy -ydx. Thus there exists an homogeneous polynomial function of degree 2 P 2 such that

ω = P 2 ω R + i≥4 (A i (x, y) dx + B i (x, y) dy) .
After one blowing-up, the singular locus is given by the solutions of P 2 (1, y) = 0 and P 2 (x, 1) = 0 in each chart. Thus P 2 is simply written ay 2 for some constant a = 0. After on blowing-up (x, t) → (x, tx), the linear part near (0, 0) of the pull-back form is written

A 4 (1, 0) + t ∂A 4 ∂t (1, 0) + tB 4 (1, 0) dx + xB 4 (1, 0) dt + xA 5 (1, 0) dx.
The absolutely dicritical property ensures that this linear part is non trivial and tangent to the radial vector field tdx + xdt. Hence, the following relations hold

A 4 (1, 0) = A 5 (1, 0) = 0 and ∂A 4 ∂t (1, 0) + 2B 4 (1, 0) = 0
Finally, the form ω is written

ω = y 2 ω R + -2αx 3 + yQ 2 (x, y) ydx + αx 4 + yQ 3 (x, y) dy + (A 5 (x, y) dx + B 5 (x, y) dy) + • • •
where α = 0.

Proposition 10. The 1-form ω is formally equivalent to a 1-form written

y 2 ω R + αx 3 (xdy -2ydx) + ax 3 ydy + n≥5 x n-1 ((a n x + b n y) dx + (c n x + d n y) dy)
where a 5 = 0. Moreover, this formal normal form is unique up to change of coordinates tangent to Id.

Proof. The action of a change of coordinates φ n : (x, y) → (x, y) + (P n , Q n ) where P n and Q n are homogeneous polynomial functions of degree n does not modify the jet of order n + 1 of ω. Moreover, the action on the homogeneous part of degree n + 2 is written

J n+2 φ * n ω = J n+2 ω +y 2 x ∂Q n ∂x -y ∂P n ∂x + Q n dx + x ∂Q n ∂y -x ∂P n ∂x + P n dy
We are going to verify that the linear morphism defined by

L : (P n , Q n ) → x ∂Q n ∂x -y ∂P n ∂x + Q n , x ∂Q n ∂y -x ∂P n ∂x + P n
from the set of couples of homogeneous polynomial functions of degree n to itself is a one to one correspondance. To do so, let us compute the kernel of this morphism and let us write

P n = n i=0 p i x i y n-i and Q n = n i=0 q i x i y n-i . The coefficients of the components of L (P n , Q n ) on the monomial term x i y n-i are q i (i -1) -p i+1 (i + 1) i = 0..n -1 q n (n -1) i = n and -p i (n -i -1) + q i-1 (n -i + 1) i = 1..n p 0 (n -1) i = 0.
If (P n , Q n ) is in the kernel then q n = 0 and p 0 = 0. Moreover, applying the above relation with i = 1 and i = n -1 yields p 2 = 0 and q n-2 = 0. Now for i = 1..n -1 but i = n -2, a combination of the relations above ensures that

0 = q i (i -1) -q i (i + 1) n -i n -i -2 = q i n -i -2 (2 -2n)
Thus q i = 0 for i = 0..n -1. Therefore (P n , Q n ) = 0 and L is an isomorphism. Thus, we can choose φ n such that

J n+2 φ * n ω = x n-1 ((a n x + b n y) dx + (c n x + d n y) dy) . Clearly the composition φ 2 •φ 3 •• • • is formally convergent, which proves the propo- sition.

Absolutely dicritical foliation admitting a first integral.

In this section, we study absolutely dicritical foliations that admit a meromorphic first integral. Such an existence can be completely red on the transverse structure.

Theorem 11. Let F be an absolutely dicritical foliation of cusp type with σ as transverse structure. Then F admits a first integral if and only if there exists two non constant rationnal functions R 1 and R 2 such that

R 1 • σ = R 2 .
Notice that the existence of R 1 and R 2 does not depend on the equivalence class of σ modulo homographies.

Proof. Suppose that F admits a meromorphic first integral f . After blowing-up, the function f is a non constant rationnal function in restriction to each component of the divisor. Since for any point p, p and σ (p) belongs to the same leaf, we have

f | D1 (p) = f | D2 (σ (p)) .
Now, suppose there exist two rationnal function as in the lemma. According to some previous result, there exists α and γ such that the foliation F is analytically equivalent to F α,γ . The application σ and γ are linked by a relation of the form

h 0 • σ • h 1 = γ
where h 0 and h 1 are homographies. Thus, setting

R1 = R 1 • h -1 0 and R2 = R 2 • h 1 yields R1 • γ = R2
where R1 and R2 are still rationnal. Now, let us go back to the construction of F α,γ . We glue the models F 1 and F 2 around (x 1 , y 1 ) = 0 and (x 3 , y 3 ) = 0 by

(x 1 , y 1 ) → (x 3 = x 1 (1 + αy 1 ) + γ (y 1 ) , y 3 = γ (y 1 ))
Consider for F 1 the first integral F 1 (x 1 , y 1 ) = R2 (y 1 ) and for F 2 the first integral F 2 (x 3 , y 3 ) = R1 (y 3 ). Then these two meromorphic first integrals can be glued in a global meromorphic first integral since

F 2 (x 3 , y 3 ) = F 2 (x 1 (1 + αy 1 ) + γ (y 1 ) , γ (y 1 )) = R1 (γ (y 1 )) = R2 (y 1 ) = F 1 (x 1 , y 1 ) .
Thus the absolutely dicritical foliation admits a meromorphic first integral.

In view of this result, it is easy to produce a lot of examples of absolutely dicritical foliation admitting no meromorphic first integral setting for instance

σ (z) = e z -1.
Notice that the existence of the first integral depends only on the transversal structure σ and not on the value of the moduli of Mattei α. This is consistent with the fact that along an equireducible unfolding the existence of a meromorphic first integral for one foliation in the deformation ensures the existence of such a first integral for any foliation in the deformation. Finally, since the topologically classification of absolutely dicritical foliations is trivial, the above result produce a lot of examples of couples of conjugated foliations such that only one of them admits a meromorphic first integral. Hereafter we treated a special case, that is when the transversal structure σ is an homography.

Proposition 12. Let F be an absolutely dicritical foliation of cusp type with an homographic transversal structure. Then, up to some analytical change of coordinates, F admits one of the following rationnal first integrals:

(1) f = y 2 +x 3 xy . (2) f = y 2 +x 3 xy + x
Proof. Let us consider the following germ of family of meromorphic functions with (x, y, z) ∈ C 3 , (0, 0, 0) defined by

f z = y 2 + x 3 + zx 2 y xy = a b .
For any z, the foliation associated to f z is absolutely dicritical of cusp type. Let us prove that this family is an equireducible unfolding. We consider the integrable 1-form Ω = adb -bda. It is written

2x 3 y + zx 2 y 2 -y 3 dx + xy 2 -x 4 dy + x 3 y 2 dz.
It defines an unfolding of the foliation given by f 0 with one parameter. Its singular locus is the z-axes and it is transversal to the fibers of the fibration (x, y, z) → z.

Once we blow-up the z-axe, in the chart E : (x, t, z) = (x, tx, z), the 1-form Ω is written

Ω = t (1 -zt) dx + t 2 -x dt + t 2 xdz.
Therefore, the singular locus of the pull-back foliation is still the z-axe in the coordinates (x, t, z) and in a neighborhood of x = 0 the foliation Ω is transverse to the fibration z = cst. If we blow-up again the z-axe we find

(1 -zx) dt + (1 -zt) dx + txdz
which is smooth. Since the curve x = t = 0 is invariant and since the foliation is still transverse to the fibration z = cts, the unfolding is equisingular. Now, this unfolding is analytically trivial if and only if the monomial term x 3 y 2 belongs to the ideal generated by 2x 3 y + zx 2 y 2 -y 3 and xy 2 -x 4 [START_REF] Cerveau | Formes intégrables holomorphes singulières[END_REF]. Setting z = 0 this would imply that x 3 y 2 ∈ 2x 3 y -y 3 , xy 2 -x 4 which is impossible. Thus, this unfolding is not analytically trivial and since the moduli space of unfolding of absolutely dicritical foliations is of dimension 1, it is also semi-universal. Now, let us consider a foliation F as in the proposition. Up to some linear change of coordinate, we can suppose that after the reduction process its singular point and its transversal structure are the same as the function x 2 +y 3 xy that is to say (0, 0) and Id in the standard coordinates associated to the reduction process. Let us denote by F 0 the foliation given by x 2 +y 3 xy . We are going to construct an unfolding from F 0 to F . As always since the beginning of this article, we denote by D 1 and D 2 the two exceptionnal component of the divisor. In the neighborhood of each of them, both foliation are purely radial. Thus there exists two conjugacy Φ 1 and Φ 2 defined in the neighborhood of respectively D 1 and D 2 such that

Φ * 1 F 0 = F Φ * 2 F 0 = F Φ 1 | D1∪D2 = Id Φ 2 | D1∪D2 = Id .
Since, F 0 and F have the same transversal structures, the cocycle

Φ 1 • Φ -1 2
is a germ automorphism of F 0 near the singular point of the divisor that lets fix the points of the divisor and that let globally fix each leaf. It is easy to see that one can construct an isotopy from Φ 1 • Φ -1 2 to Id in the group of germs of automorphisms of F 0 near the singular point of the divisor that let fix each point of the divisor and that let globally fix each leaf. Let us denote by Φ t this isotopy satisfying Φ 0 = Id and

Φ 1 = Φ 1 • Φ -1
2 . The unfolding defined by the following glued construction

((F 0 , D 1 ) × U ) ((F 0 , D 2 ) × U ) / (x, t) ∼ (Φ t (x) , t) .
where U is an open neighborhood of {|t| ≤ 1} links F 0 and F . The meromophic first integral f 0 of F 0 can be extended in a meromorphic first integral F of the whole unfolding [START_REF] Cerveau | Formes intégrables holomorphes singulières[END_REF]. Thus F | t=1 is a meromorphic first integral of F . By equisingularity F | t=0 and F | t=1 must have exactly the same number of irreducible components in their zeros and in their poles, which is the same number of irreducible components in the zeros and in the poles of F . They also must have the same topology since an unfolding is topologically trivial. Thus the foliation F admits a meromorphic first integral whose zero is exactly the leaf passing through the singular point of the exceptionnal divisor and whose poles are the union of two smooth curves attaching respectively to D 1 and D 2 . Thererfore up to some change of coordinates, we can suppose that F has a meromorphic first integral of the form

f = y 2 + x 3 + ∆ (x, y) a x b y c
where the Taylor expansion of ∆ (x, y) admits monomial term x i y j with 2i + 3j > 6. The absolutely dicritical property ensures that a = b = c. Therefore, we can suppose that a = b = c = 1. Let us denote by Λ λ (x, y) the homothetie Λ λ (x, y) = λ 2 x, λ 3 y . Composing by Λ λ at the right of f yields

f • Λ λ λ = y 2 + x 3 + ∆ λ (x,

y) xy

For any λ = 0, the foliation given by f and by f •Λ λ λ are analytically conjugated. But the deformation given by λ → f •Λ λ λ is an equisingular unfolding of f 0 since ∆ λ goes to 0 when λ → 0. Using the semi-universality of the family introduced at the beginning of the proof, for λ small enough, there exists some α such that the following conjugacies holds [START_REF] Camacho | Topological invariants and equidesingularization for holomorphic vector fields[END_REF]. If α = 0, applying some well-chosen homothetie, we can suppose α = 1. And f is of type (2).

f ∼ f • Λ λ λ ∼ f α . Now if α = 0 then f is of type ( 
Remark 13. In the last part of this article, we will prove that actually the two functions (1) and (2) of the previous result define two foliations analytically equivalent.

It is possible to construct some others examples of absolutely dicritical foliations of cusp type with a rationnal first integral: to do so, consider a foliation of degree 1 on P 2 . These are well-known [START_REF] Cerveau | Géométrie classique de certains feuilletages de degré deux[END_REF]: they have three singular points counted with multiplicities and admit an integrating factor. For instance, the foliation given in homogeneous coordinates by the multivalued functions

[x : y : z] → x α y β z α+β or [x : y : z] → Q z 2
where Q is a non-degenerate quadratic form is of degree 1. When α and β are rationnal numbers, the foliation admits a rationnal first integral. Now consider two generic lines L 1 and L 2 . Each of them is tangent to one leaf of the foliation. We can suppose that the tangency point is different from the intersection point of L 1 and L 2 . Now, blow-up twice the tangency point on L 1 and thrice the tangency point on L 2 . The final configuration is the following

L 1 2 L -1 -2 -1 -2 -2 -1 - 2 
Thus, the divisor L 1 ∪ L 2 can be contracted toward a smooth algebraic manifold. The obtained singularity is naturally absolutely dicritical of cusp type and admits a rationnal first integral. For instance, if we consider the foliation given in affine coordinates by xy = cst and L 1 : x + y = 1 and L 2 : x -y = 1, the transverse structure is equivalent to σ (t) = t + 1 and thus the foliation is equivalent to the functions of proposition (12). However, considering the foliation given by x + y 2 = cst yields the transverse structure t

→ 1- √ 1+12t+4t 2 2
which is not an homography.

5. Moduli of Mattei.

5.1.

The parameter space of the unfoldings. As already explain, the deformation α → F α,σ is an unfolding with a set of paramater equal to C. It is a natural problem to ask if two parameters define two foliations analytically equivalent. In order to do so, we introduced the following definition:

Definition 14. Let σ be an element of Diff (C, 0). An homography h with h (0) = 0 is called an homographic symetry of f if and only if there exists an homography h 1 such that (5.1)

h 1 • σ • h = σ.
We denote by H (f ) the group of homographic symetries of f .

The following result is probably known but we do not find any reference in the litterature.

Lemma 15. If H (f ) is infinite then f is an homography and H (f ) is the whole set of homographies fixing the origin.

Proof. The relation (5.1) is equivalent to the functionnal equation

f • h (z) = 1 (h ′ ) 2 f (z)
where f = S (σ) is the Schwartzian derivative of σ. Let us write h (z) = z a+bz and f (z) = n≥1 f n z n .

(1) Suppose that h ′ (0) is not a root of unity. Then applying the above relation at z = 0 leads to f (0) = 0. Now, we have

a 2 n≥1 f n z n (a + bz) n = (a + bz) 4 n≥1 f n z n .
An easy induction on n show that for any n f n = 0, thus f = 0 and σ is an homography.

(2) Suppose now h

′ (0) = 1 then n≥0 f n z n (1 + bz) n = (1 + bz) 4 n≥0 f n z n
Suppose that b = 0. If for any n ≤ N -1 we have f n = 0, let us have a look at the terms in x N +1 in the above equality. It is

-N bf N + f N +1 = 4bf N + f N +1
Thus f N = 0. Which, proves by induction that f still is equal to zero.

(3) If H (f ) is infinite, suppose it admits two elements h and g that did not commute, then [h, g] is tangent to Id but is not the Id . Thus using the above computation, f = 0. (4) Finally, if h ′ (0) is a root of unity, it is easly seen that h •(n) = Id where n is the smallest integer such that h ′ (0) n = 1. Thus, suppose that the group H (f ) is abelian and any element of finite order. We have an embedding

H (f ) -→ Aff (C)
since, the sole element tangent to Id is the identity itself. Therefore, H (f ) can be seen as abelian subgroup of Aff (C). Hence, the group has a fix point and can be seen as a subgroup of the linear transformations of C. Now let us write the relation on the Schwartzian seen at ∞ f (1/ (1/h (1/z))) = 1

h ′ 1 z 2 f 1 z .
Setting, u (z) = 1 z 4 f 1 z yields u (az + b) = 1 a 2 u (z) . Since, u = α z 4 + • • • we can consider the double primitive function U = ˜u with U (∞) = 0. This is a univalued holomorphic function defined near ∞. Finally, the function U satisfies the following functionnal relation

U (az + b) = U (z) .
But in view of the dynamics of Lin (C), it is clear that if H (f ) is infinite then U = cst and thus u = 0.

In the course of the proof of the above result, we obtain the following result Corollary 16. Let M be the quotient of C by the relation α ∼ α ′ if and only if F α,σ ∼ F α ′ ,σ then there is only two possibilities

(1) M = {0} when σ is an homography -F α,σ is then analytically to y 2 +x 3 xy .

(2) M = C / H where H is a finite subgroup of Aff (C).

Genrerically, H is reduced to {Id}.

As an obvious consequence, the functions obtained in proposition (12) define two foliations analytically equivalent. 5.2. Toward a geometric description of the moduli of Mattei. It remains to give a geometric interpretation of the parameter α. A promising approach is the following. Near the singular point of the divisor, the leaf is conformally equivalent to a disc minus two points which are the intersections between the leaf and the exceptionnal divisor. If we consider in the leaf a path linking this two points, we obtain after taking the image of this path by E, an asymptotic cycle γ as defined in [START_REF] Teyssier | Analytical classification of singular saddle-node vector fields[END_REF]which is not topologically trivial. γ Therefore, considering the family of these cycles parametrized by a transversal parameter to the foliation yields a vanishing asymptotic cycle. We claim that the moduli of Mattei should be associated to the length of this vanishing asymptotic cycle: more precisely, it should be computed by the integral of some form along this vanishing cycle. Actually, it easy to prove the following: let ω be a 1-form defining an absolutely dicritical foliation of cusp type and let η be any germ of 1 form. Then η is relatively exact with respect to ω, i.e., there exist two germs of holomorphic functions f and g such that η = df + gω if and only if the integral of η along any asymptotic cycle γ vanish. Thus, we think that in a sense that has to be worked out, the moduli of Mattei should be computed by the integral of some generator of the relative cohomology group of ω along the asymptotic vanishing cycle.

  Let us consider F 0 and F 1 two absolutely dicritical foliations of cusp type. Applying if necessary a linear change of coordinates to F 0 for instance, we can suppose that both foliations are reduced by exactly the same sequence of two blowingups E. Let us write E -1 (0) = D 2 ∪ D 1 and D 2 ∩ D 1 = {p} . Let us consider σ 0 and σ 1 in Diff ((D 2 , p) , (D 1 , p)) the transversal structures of F 0 and F 1 . According to the previous lemma, there exist h an homeomorphism of D 2 such that h = σ -1 0 • σ 1 in a neighborhood of p in D 2 . Since, along D 2 or D 1 the foliations are transverse, there exist two homeomorphisms H 0 and H 1 defined respectively in a neighborhood of D 2 and D 1 such that

Proposition 3. Two absolutely dicritical foliations of cusp type are topologically equivalent. The class Top (F ) is equal to the set of all absolutely dicritical foliations.

Proof.