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This paper deals with the constraint analysis of a novel two-degreeof-freedom (DOF) spatial translational parallel robot for high-speed applications named the IRSBot-2 (acronym for IRCCyN Spatial Robot with 2 DOF). Unlike most two-DOF robots dedicated to planar translational motions this robot has two spatial kinematic chains that provide a very good intrinsic stiffness. First, the robot architecture is presented and its constraint singularity conditions are given. Then, its constraint singularities are analyzed in its parameter space based on a cylindrical algebraic decomposition. Finally, a deep analysis is carried out in order to determine the sets of design parameters of the IRSBot-2 that prevent it from reaching any constraint singularity. To the best of our knowledge, such an analysis is performed for the first time.

Introduction

Several robot architectures with two translational degrees of freedom (DOF) for high-speed operations have been proposed in the past decades. Brogårdh proposed in [START_REF] Brogardh | Device for relative movement of two elements[END_REF] an architecture made of a parallelogram joint (also called Π joint) located between the linear actuators and the platform. Another two-DOF translational robot was presented in [START_REF] Liu | Two novel parallel mechanisms with less than six degrees of freedom and the applications[END_REF], where the authors use two Π joints to link the platform with two vertical prismatic actuators. Its equivalent architecture actuated by revolute joints is presented in [START_REF] Huang | Planar parallel robot mechanism with two translational degrees of freedom[END_REF].
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The foregoing architectures are all planar, i.e., their elements are constrained to move in the plane of motion. As a result, their elements are all subject to bending effects in the direction normal to the plane of motion. In order to guarantee a minimum stiffness in this direction, the elements have to be bulky, leading to high inertia and low acceleration capacities. In order to overcome these problems, a new Deltalike robot, named the Par2, was proposed in [START_REF] Pierrot | Two degree-offreedom parallel manipulator[END_REF]. However, even if its acceleration capacities are impressive, its accuracy is poor.

A two-DOF spatial translational robot, named IRSBot-2, was introduced in [START_REF] Germain | Irsbot-2: A novel two-dof parallel robot for high-speed operations[END_REF] to overcome its counterparts in terms of mass in motion, stiffness and workspace size. The IRSBot-2 has a spatial architecture and the distal parts of its legs are subject only to traction/compression/torsion. As a result, its stiffness is increased and its total mass can be reduced. Nevertheless, the IRSBot-2 may reach some constraint singularities [START_REF] Amine | Singularity Conditions of 3T1R Parallel Manipulators with Identical Limb Structures[END_REF][START_REF] Zlatanov | Constraint singularities of parallel mechanisms[END_REF]. In this paper, a deep analysis is carried out in order to determine the sets of design parameters of the IRSBot-2 that prevent it from reaching any constraint singularity.

This paper is organized as follows. First, the robot architecture is described and its constraint singularity conditions are given. Then, its constraint singularities are analyzed in its parameter space based on a cylindrical algebraic decomposition. Finally, the set of design parameters for the robot to be free of constraint singularity are determined.

Robot Architecture and Constraint Singularity Conditions

The IRSBot-2 is shown in Fig. 1 and is composed of two identical legs linking the fixed base to the moving platform. Each leg contains a proximal module and a distal module, which are illustrated in Fig. 2. 
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Fig. 3 Paramaterization of the ith leg (i = 1, 2)
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The parameters of the IRSBot-2 used throughout this paper are depicted in Figs. 3 and4. From [START_REF] Germain | Irsbot-2: A novel two-dof parallel robot for high-speed operations[END_REF], the IRSBot-2 reaches a constraint singularity iff1 :

θ 1 = θ 2 + k = 0, 1 (1) 
and

(x P 2 -x P 1 ) cos 2 β cos θ 2 -(z P 2 -z P 1 ) sin θ 2 = 0 (2) 
It is noteworthy that Eqs. ( 1) and ( 2) depend only on the design parameters associated with the distal module. Therefore, the proximal modules of the IRSBot-2 do affect its constraint singularities and we focus only on the constraint singularities associated the distal modules.

Constraint Singularity Analysis of the IRSBot-2 in its

Parameter Space

This section aims to find the sets of design parameters (a 1 , a 2 , β , p, l 2eq ) that allow the IRSBot-2 to reach some constraint singularities. Note that the foregoing five design parameters are shown in Fig. 3. a 1 , a 2 and l 2eq are the lengths of segments E i E 1i , F i F 1i and H bi H hi , respectively. p is the moving-platform radius. The coordinates of vector --→ P 1 P 2 can be expressed as:

x P 2 -x P 1 = 2p + (cos ψ 2 -cos ψ 1 ) (3) z P 2 -z P 1 = (sin ψ 2 -sin ψ 1 ) (4) = a 2 l 2eq a 1 -a 2 (5) 
Angles ψ 1 and ψ 2 are depicted in Figs. 3 and4. From the closed-loop E i -H bi -H hi -F i (i = 1, 2) and Fig. 4, the following relations between λ i , θ i and ψ i are obtained:

l 2eq cos ψ i = λ i cos θ i -(a 1 -a 2 ) sin β (6) -l 2eq sin ψ i = -λ i sin θ i ( 7 
)
λ i is depicted in Fig. 4 and is derived from Eqs. ( 3) to [START_REF] Pierrot | Two degree-offreedom parallel manipulator[END_REF]:

λ i = l 2 2 eq + (a 1 -a 2 ) 2 sin 2 β + 2(-1) i+1 l 2eq cos ψ i (a 1 -a 2 ) sin β (8) 
The following three cases, obtained from Eqs. ( 1) and ( 8), allow us to simplify Eqs. ( 3) to [START_REF] Pierrot | Two degree-offreedom parallel manipulator[END_REF] to end up with a univariate polynomial form of constraint singularity condition (2):

Case I: θ 1 = θ 2 + π and λ 1 = λ 2 = 0 Case II: θ 1 = θ 2 + π and λ 1 = λ 2 Case III: θ 1 = θ 2
For Case I, Eq. ( 2) takes the form:

P I (X) = A 1 X 2 + B 1 X +C 1 = 0 (9) with                A 1 = -l 2 2 eq sin 2 β a 2 /(a 1 -a 2 ) B 1 = l 2eq (1 -sin 2 β ) (p -a 2 sin β ) C 1 = -p (a 1 -a 2 ) (1 -sin β ) sin β + l 2 2 eq a 2 /(a 1 -a 2 ) X cos ψ, ψ = ψ 2 , X ∈ [-1, 1], [a 1 , a 2 , β , p] ∈ D, l 2eq ∈ ]0, +∞[ D =]0, +∞[×]0, a 1 [×[0, π/2]×]0, +∞[.
For Case II, Eq. (2) takes the form:

P II (X) = A 2 X 2 +C 2 = 0 (10) with          A 2 = a 2 sin 3 β C 2 = p(1 -sin 2 β ) -a 2 sin 3 β X = cos θ , θ = θ 2 , X ∈ [-1, 0], [a 1 , a 2 , β , p] ∈ D, l 2eq ∈ ](a 1 -a 2 ) sin β | sin θ |, (a 1 -a 2 ) sin β [
For Case III, Eq. ( 2) takes the form:

P III (X) = A 3 X 2 +C 3 = 0 (11) with          A 3 = a 2 sin 3 β C 3 = p(1 -sin 2 β ) -a 2 sin 3 β X = cos θ , θ = θ 2 , X ∈ [-1, 1], [a 1 , a 2 , β , p] ∈ D, l 2eq ∈ ](a 1 -a 2 ) sin β , +∞[
As a matter of fact, the IRSBot-2 reaches a constraint singularity as long as one of the univariate polynomials (9), (10), (11) admits one solution at least. The set of design parameters (a 1 , a 2 , β , p, l 2eq ) for which the constraint singularities associated with Cases I, II and III can be reached are obtained with a method based on the notion of Discriminant Varieties and Cylindrical Algebraic Decomposition. This method resorts to Gröbner bases for the solutions of systems of equations and is described in [START_REF] Moroz | Cusp points in the parameter space of rpr-2prr parallel manipulator[END_REF]. Besides, the tools used to perform the computations are implemented in a Maple library called Siropa2 . 

a 11 = 0 p 1 = 0 a 12 = +∞ p 2 (a 1 , a 2 , β ) = 1-sin β 1+sin β a 2 sin β a 21 = a 1 p 3 (a 1 , a 2 , β ) = 1-sin 2 β 1+sin 2 β a 2 sin β a 22 = +∞ p 4 (a 1 , a 2 , β ) = a 2 sin β β 1 = 0 p 5 (a 1 , a 2 , β ) = 1+sin 2 β 1-sin 2 β a 2 sin β β 2 = arcsin(1/ √ 3) p 6 (a 1 , a 2 , β ) = 1+sin β 1-sin β a 2 sin β β 3 = π/4 p 7 = +∞ β 4 = π/2 p 8 (a 1 , a 2 , β ) = a 2 sin β tan 2 β l 2eq 1 (a 1 , a 2 , β , p) = a 1 -a 2 a 2 p l 2eq 2 (a 1 , a 2 , β , p) = (a 1 -a 2 ) sin β l 2eq 3 (a 1 , a 2 , β , p) = a 1 -a 2 2a 2 sin β (sin 2 β -1) (sin 2 β -1)(p -a 2 sin β ) 2 + 4 p a 2 sin 3 β l 2eq 4 (a 1 , a 2 , β , p) = (a 1 -a 2 ) sin β | sin θ | l 2eq 4 (a 1 , a 2 , β , p) = +∞
Table 1 provides the different formulae bounding the five-dimensional cells associated with Cases I, II and III. a 1 and β can be chosen independently. Then, the boundaries for a 2 , p are l 2eq are determined successively. Table 2 characterizes all the cells where the IRSBot-2 can reach a constraint singularity, namely, where P I , P II or P III has at least one real root. It is noteworthy that a real root of one the three foregoing polynomials amounts to two symmetrical singular configurations of the distal module. It is apparent that six cells arise where P I has a single real root, two cells arise where P I has two real roots. P II and P III can get two real roots in one cell only. Some constraint singularities of the IRSBot-2 are shown in 3 . 

[, ]β 1 , β 4 [) ]p 1 , p 2 [ (]l 2eq 1 , l 2eq 2 [) Two singular configs. ]p 2 , p 3 [ (]l 2eq 1 , l 2eq 2 [) ]p 3 , p 4 [ (]l 2eq 1 , l 2eq 2 [) ]p 4 , p 5 [ (]l 2eq 2 , l 2eq 1 [) ]p 5 , p 6 [ (]l 2eq 2 , l 2eq 1 [) ]p 6 , p 7 [ (]l 2eq 2 , l 2eq 1 [) ]p 3 , p 4 [ (]l 2eq 3 , l 2eq 1 [) Four singular configs. ]p 4 , p 5 [ (]l 2eq 3 , l 2eq 2 [) Case II (]a 11 , a 12 [, ]a 21 , a 22 [, ]β 1 , β 4 [) ]p 1 , p 8 [ (]l 2eq 4 , l 2eq 2 [) Four singular configs. Case III (]a 11 , a 12 [, ]a 21 , a 22 [, ]β 1 , β 4 [) ]p 1 , p 8 [ (]l 2eq 1 , l 2eq 2 [) Four singular configs.

Design Parameters for the IRSBot-2 to be Free of Constraint Singularity

This section aims to find the sets of design parameters (a 1 , a 2 , β , p, l 2eq ) that prevent the IRSBot-2 from reaching any constraint singularity. It amounts to find the intersection of cells where P I , P II and P III do not have any real root over their mutual domain.

It turns to be quite difficult to obtain the intersection of cells contrary to their union. As a consequence, we will search for the cells where the product of P I , P II and P III does not have any real root. From (10) and (11), it is apparent that the expressions of P II and P III are the same, but their domains are disjointed and complementary because of the bounds of l 2eq . Therefore, the sets of design parameters (a 1 , a 2 , β , p, l 2eq ) that prevent the IRSBot-2 from reaching any constraint singularity correspond to the union of cells that do not provide any real root for the following two univariate polynomials: Eq. ( 12) amounts to the product of P I and P II with a change a variable for P II and the most restrictive domain for l 2eq defined in (10), whereas Eq. ( 13) amounts to the product of P I and P III with the most restrictive domain for l 2eq defined in (11). Table 1 gives the different formulae bounding the five-dimensional cells associated with (12) and (13). The cells where P IV and P V do not have any real root, i.e., the sets of design parameters (a 1 , a 2 , β , p, l 2eq ) that prevent the IRSBot-2 from reaching any constraint singularity, are expressed in Tables 3 and4, respectively. 13), resp.) does not have any real root, namely, the sets of design parameters that prevent the IRSBot-2 from reaching any constraint singularity for a 1 = 1, β = arcsin(1/ √ 3) and l 2eq < (a 1a 2 ) sin β (l 2eq > (a 1a 2 ) sin β , resp.). We can notice that the amount of constraint singularity-free designs is higher with l 2eq > (a 1a 2 ) sin β than with l 2eq < (a 1a 2 ) sin β .

P IV (X) = P I P II (X) = (A 1 X 2 + B 1 X +C 1 )(A 2 ((X -1)/2) 2 +C 2 ) = 0 (12) with X ∈ [-1, 1], [a 1 , a 2 , β , p] ∈ D, l 2eq ∈ ]| sin θ |(a 1 -a 2 ) sin β , (a 1 -a 2 ) sin β [ and P V (X) = P I P III (X) = (A 1 X 2 + B 1 X +C 1 )(A 3 X 2 +C 3 ) = 0 (13) with X ∈ [-1, 1], [a 1 , a 2 , β , p] ∈ D, l 2eq ∈ ](a 1 -a 2 ) sin β , +∞[ A 1 , B 1 , C 1 , A 2 , C 2 , A

Conclusions

This paper dealt with the constraint analysis of the IRSBot-2 throughout its parameter space. Its constraint singularities were analyzed in its parameter space with a method based on the notion of Discriminant Varieties and Cylindrical Algebraic Decomposition. This method allowed us to convert a kinematic problem into an algebraic one. Then, a deep analysis was carried out in order to determine the sets of design parameters of the distal modules that prevent the IRSBot-2 from reaching any constraint singularity. To the best of our knowledge, such an analysis had never been performed before. The design parameters associated with the proximal modules for the IRSBot-2 to be assembled will be determined in a future work.
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