Intraspecies Biodiversity of the Genetically Homologous Species Brucella microti. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Applied and Environmental Microbiology Année : 2012

Intraspecies Biodiversity of the Genetically Homologous Species Brucella microti.

Sascha Al Dahouk
Erwin Hofer
  • Fonction : Auteur
Herbert Tomaso
  • Fonction : Auteur
Axel Cloeckaert
Mark S Koylass
  • Fonction : Auteur
Adrian M Whatmore
  • Fonction : Auteur
Karsten Nöckler
  • Fonction : Auteur
Holger C Scholz
  • Fonction : Auteur

Résumé

Brucellosis is one of the major bacterial zoonoses worldwide. In the past decade, an increasing number of atypical Brucella strains and species have been described. Brucella microti in particular has attracted attention, because this species not only infects mammalian hosts but also persists in soil. An environmental reservoir may pose a new public health risk, leading to the reemergence of brucellosis. In a polyphasic approach, comprising conventional microbiological techniques and extensive biochemical and molecular techniques, all currently available Brucella microti strains were characterized. While differing in their natural habitats and host preferences, B. microti isolates were found to possess identical 16S rRNA, recA, omp2a, and omp2b gene sequences and identical multilocus sequence analysis (MLSA) profiles at 21 different genomic loci. Only highly variable microsatellite markers of multiple-locus variable-number tandem repeat (VNTR) analysis comprising 16 loci (MLVA-16) showed intraspecies discriminatory power. In contrast, biotyping demonstrated striking differences within the genetically homologous species. The majority of the mammalian isolates agglutinated only with monospecific anti-M serum, whereas soil isolates agglutinated with anti-A, anti-M, and anti-R sera. Bacteria isolated from animal sources were lysed by phages F1, F25, Tb, BK2, Iz, and Wb, whereas soil isolates usually were not. Rough strains of environmental origin were lysed only by phage R/C. B. microti exhibited high metabolic activities similar to those of closely related soil organisms, such as Ochrobactrum spp. Each strain was tested with 93 different substrates and showed an individual metabolic profile. In summary, the adaptation of Brucella microti to a specific habitat or host seems to be a matter of gene regulation rather than a matter of gene configuration.
Fichier principal
Vignette du fichier
Cloeckaert_Appl_Environ_Microbiol_1.pdf (1.73 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00676848 , version 1 (29-05-2020)

Identifiants

Citer

Sascha Al Dahouk, Erwin Hofer, Herbert Tomaso, Gilles Vergnaud, Philippe Le Flèche, et al.. Intraspecies Biodiversity of the Genetically Homologous Species Brucella microti.. Applied and Environmental Microbiology, 2012, 78 (5), pp.1534-43. ⟨10.1128/AEM.06351-11⟩. ⟨hal-00676848⟩
42 Consultations
34 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More